iVOD / 165036

Field Value
IVOD_ID 165036
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/165036
日期 2025-11-05
會議資料.會議代碼 委員會-11-4-20-6
會議資料.會議代碼:str 第11屆第4會期財政委員會第6次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 6
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第4會期財政委員會第6次全體委員會議
影片種類 Clip
開始時間 2025-11-05T10:34:16+08:00
結束時間 2025-11-05T10:44:20+08:00
影片長度 00:10:04
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/0bb7d6ea348ff1d2bf94ee1f40f68873e93813deec41dbca462d9096eb7c9b67608b7010f5f8dc8a5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 顏寬恒
委員發言時間 10:34:16 - 10:44:20
會議時間 2025-11-05T09:00:00+08:00
會議名稱 立法院第11屆第4會期財政委員會第6次全體委員會議(事由:審查「使用牌照稅法」29案:(僅詢答) 一、行政院函請審議、本院委員邱鎮軍等19人、委員陳超明等18人、委員羅明才等20人、委員廖偉翔等19人、委員楊瓊瓔等27人、委員許宇甄等22人、委員邱若華等17人、委員林俊憲等26人、委員王鴻薇等19人、委員李彥秀等16人、委員蘇清泉等18人、委員徐欣瑩等24人、委員郭昱晴等19人、委員王美惠等19人、委員李坤城等18人、委員羅廷瑋等17人、委員郭國文等18人、委員吳沛憶等17人、委員葛如鈞等16人、委員沈發惠等17人、委員林思銘等22人、委員賴士葆等25人、委員黃健豪等20人分別擬具「使用牌照稅法第五條條文修正草案」等24案。【後2案如經院會復議,本次會議不予審查】 二、本院台灣民眾黨黨團擬具「使用牌照稅法第五條及第七條條文修正草案」案。 三、本院委員廖先翔等17人擬具「使用牌照稅法第五條及第三十八條條文修正草案」案。 四、本院委員牛煦庭等17人、委員鍾佳濱等16人分別擬具「使用牌照稅法第七條條文修正草案」等2案。【後1案如經院會復議,本次會議不予審查】 五、本院委員廖偉翔等17人擬具「使用牌照稅法第七條及第三十八條條文修正草案」案。 【11月5日及6日二天一次會】)
transcript.pyannote[0].speaker SPEAKER_03
transcript.pyannote[0].start 0.03096875
transcript.pyannote[0].end 1.88721875
transcript.pyannote[1].speaker SPEAKER_04
transcript.pyannote[1].start 0.77346875
transcript.pyannote[1].end 0.87471875
transcript.pyannote[2].speaker SPEAKER_04
transcript.pyannote[2].start 1.66784375
transcript.pyannote[2].end 5.12721875
transcript.pyannote[3].speaker SPEAKER_04
transcript.pyannote[3].start 5.58284375
transcript.pyannote[3].end 6.27471875
transcript.pyannote[4].speaker SPEAKER_04
transcript.pyannote[4].start 7.33784375
transcript.pyannote[4].end 8.55284375
transcript.pyannote[5].speaker SPEAKER_03
transcript.pyannote[5].start 7.91159375
transcript.pyannote[5].end 7.94534375
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 7.94534375
transcript.pyannote[6].end 8.29971875
transcript.pyannote[7].speaker SPEAKER_03
transcript.pyannote[7].start 13.95284375
transcript.pyannote[7].end 14.83034375
transcript.pyannote[8].speaker SPEAKER_03
transcript.pyannote[8].start 16.75409375
transcript.pyannote[8].end 17.71596875
transcript.pyannote[9].speaker SPEAKER_03
transcript.pyannote[9].start 18.10409375
transcript.pyannote[9].end 22.86284375
transcript.pyannote[10].speaker SPEAKER_03
transcript.pyannote[10].start 23.08221875
transcript.pyannote[10].end 29.19096875
transcript.pyannote[11].speaker SPEAKER_03
transcript.pyannote[11].start 29.69721875
transcript.pyannote[11].end 36.26159375
transcript.pyannote[12].speaker SPEAKER_03
transcript.pyannote[12].start 36.56534375
transcript.pyannote[12].end 51.07784375
transcript.pyannote[13].speaker SPEAKER_03
transcript.pyannote[13].start 51.46596875
transcript.pyannote[13].end 52.84971875
transcript.pyannote[14].speaker SPEAKER_03
transcript.pyannote[14].start 53.86221875
transcript.pyannote[14].end 54.40221875
transcript.pyannote[15].speaker SPEAKER_03
transcript.pyannote[15].start 54.85784375
transcript.pyannote[15].end 59.17784375
transcript.pyannote[16].speaker SPEAKER_03
transcript.pyannote[16].start 59.49846875
transcript.pyannote[16].end 59.76846875
transcript.pyannote[17].speaker SPEAKER_03
transcript.pyannote[17].start 60.13971875
transcript.pyannote[17].end 62.13096875
transcript.pyannote[18].speaker SPEAKER_03
transcript.pyannote[18].start 62.55284375
transcript.pyannote[18].end 63.41346875
transcript.pyannote[19].speaker SPEAKER_03
transcript.pyannote[19].start 63.76784375
transcript.pyannote[19].end 66.45096875
transcript.pyannote[20].speaker SPEAKER_03
transcript.pyannote[20].start 68.32409375
transcript.pyannote[20].end 68.74596875
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 68.74596875
transcript.pyannote[21].end 68.76284375
transcript.pyannote[22].speaker SPEAKER_03
transcript.pyannote[22].start 69.64034375
transcript.pyannote[22].end 69.85971875
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 69.85971875
transcript.pyannote[23].end 69.91034375
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 70.92284375
transcript.pyannote[24].end 74.82096875
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 74.98971875
transcript.pyannote[25].end 77.30159375
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 77.57159375
transcript.pyannote[26].end 78.85409375
transcript.pyannote[27].speaker SPEAKER_03
transcript.pyannote[27].start 78.93846875
transcript.pyannote[27].end 80.92971875
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 80.59221875
transcript.pyannote[28].end 81.97596875
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 84.74346875
transcript.pyannote[29].end 85.28346875
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 87.74721875
transcript.pyannote[30].end 92.10096875
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 92.33721875
transcript.pyannote[31].end 92.91096875
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 92.97846875
transcript.pyannote[32].end 97.26471875
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 97.77096875
transcript.pyannote[33].end 99.59346875
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 101.70284375
transcript.pyannote[34].end 105.75284375
transcript.pyannote[35].speaker SPEAKER_03
transcript.pyannote[35].start 105.71909375
transcript.pyannote[35].end 107.64284375
transcript.pyannote[36].speaker SPEAKER_03
transcript.pyannote[36].start 108.09846875
transcript.pyannote[36].end 109.92096875
transcript.pyannote[37].speaker SPEAKER_03
transcript.pyannote[37].start 110.56221875
transcript.pyannote[37].end 114.40971875
transcript.pyannote[38].speaker SPEAKER_03
transcript.pyannote[38].start 114.59534375
transcript.pyannote[38].end 122.35784375
transcript.pyannote[39].speaker SPEAKER_03
transcript.pyannote[39].start 122.62784375
transcript.pyannote[39].end 123.55596875
transcript.pyannote[40].speaker SPEAKER_03
transcript.pyannote[40].start 123.75846875
transcript.pyannote[40].end 125.58096875
transcript.pyannote[41].speaker SPEAKER_03
transcript.pyannote[41].start 125.90159375
transcript.pyannote[41].end 129.44534375
transcript.pyannote[42].speaker SPEAKER_03
transcript.pyannote[42].start 129.74909375
transcript.pyannote[42].end 132.07784375
transcript.pyannote[43].speaker SPEAKER_03
transcript.pyannote[43].start 132.39846875
transcript.pyannote[43].end 134.32221875
transcript.pyannote[44].speaker SPEAKER_03
transcript.pyannote[44].start 134.71034375
transcript.pyannote[44].end 137.56221875
transcript.pyannote[45].speaker SPEAKER_03
transcript.pyannote[45].start 137.86596875
transcript.pyannote[45].end 139.13159375
transcript.pyannote[46].speaker SPEAKER_03
transcript.pyannote[46].start 139.43534375
transcript.pyannote[46].end 140.19471875
transcript.pyannote[47].speaker SPEAKER_03
transcript.pyannote[47].start 140.68409375
transcript.pyannote[47].end 143.73846875
transcript.pyannote[48].speaker SPEAKER_03
transcript.pyannote[48].start 144.19409375
transcript.pyannote[48].end 144.97034375
transcript.pyannote[49].speaker SPEAKER_03
transcript.pyannote[49].start 145.18971875
transcript.pyannote[49].end 146.52284375
transcript.pyannote[50].speaker SPEAKER_03
transcript.pyannote[50].start 146.89409375
transcript.pyannote[50].end 148.71659375
transcript.pyannote[51].speaker SPEAKER_03
transcript.pyannote[51].start 148.95284375
transcript.pyannote[51].end 151.02846875
transcript.pyannote[52].speaker SPEAKER_03
transcript.pyannote[52].start 151.29846875
transcript.pyannote[52].end 154.97721875
transcript.pyannote[53].speaker SPEAKER_03
transcript.pyannote[53].start 155.23034375
transcript.pyannote[53].end 171.29534375
transcript.pyannote[54].speaker SPEAKER_03
transcript.pyannote[54].start 172.03784375
transcript.pyannote[54].end 176.79659375
transcript.pyannote[55].speaker SPEAKER_03
transcript.pyannote[55].start 177.23534375
transcript.pyannote[55].end 183.83346875
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 187.39409375
transcript.pyannote[56].end 194.12721875
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 194.36346875
transcript.pyannote[57].end 196.86096875
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 197.35034375
transcript.pyannote[58].end 203.77971875
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 204.23534375
transcript.pyannote[59].end 205.87221875
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 206.15909375
transcript.pyannote[60].end 210.36096875
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 210.56346875
transcript.pyannote[61].end 211.84596875
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 212.03159375
transcript.pyannote[62].end 214.74846875
transcript.pyannote[63].speaker SPEAKER_03
transcript.pyannote[63].start 213.83721875
transcript.pyannote[63].end 214.52909375
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 214.79909375
transcript.pyannote[64].end 214.81596875
transcript.pyannote[65].speaker SPEAKER_03
transcript.pyannote[65].start 214.81596875
transcript.pyannote[65].end 218.98409375
transcript.pyannote[66].speaker SPEAKER_03
transcript.pyannote[66].start 219.43971875
transcript.pyannote[66].end 220.72221875
transcript.pyannote[67].speaker SPEAKER_03
transcript.pyannote[67].start 221.04284375
transcript.pyannote[67].end 224.19846875
transcript.pyannote[68].speaker SPEAKER_03
transcript.pyannote[68].start 224.46846875
transcript.pyannote[68].end 226.69596875
transcript.pyannote[69].speaker SPEAKER_03
transcript.pyannote[69].start 227.06721875
transcript.pyannote[69].end 228.18096875
transcript.pyannote[70].speaker SPEAKER_03
transcript.pyannote[70].start 228.34971875
transcript.pyannote[70].end 228.78846875
transcript.pyannote[71].speaker SPEAKER_03
transcript.pyannote[71].start 229.02471875
transcript.pyannote[71].end 231.42096875
transcript.pyannote[72].speaker SPEAKER_03
transcript.pyannote[72].start 231.72471875
transcript.pyannote[72].end 233.10846875
transcript.pyannote[73].speaker SPEAKER_03
transcript.pyannote[73].start 233.47971875
transcript.pyannote[73].end 233.93534375
transcript.pyannote[74].speaker SPEAKER_03
transcript.pyannote[74].start 234.76221875
transcript.pyannote[74].end 245.17409375
transcript.pyannote[75].speaker SPEAKER_03
transcript.pyannote[75].start 245.29221875
transcript.pyannote[75].end 248.17784375
transcript.pyannote[76].speaker SPEAKER_03
transcript.pyannote[76].start 248.32971875
transcript.pyannote[76].end 250.60784375
transcript.pyannote[77].speaker SPEAKER_03
transcript.pyannote[77].start 250.65846875
transcript.pyannote[77].end 252.70034375
transcript.pyannote[78].speaker SPEAKER_03
transcript.pyannote[78].start 252.93659375
transcript.pyannote[78].end 254.60721875
transcript.pyannote[79].speaker SPEAKER_03
transcript.pyannote[79].start 255.07971875
transcript.pyannote[79].end 257.44221875
transcript.pyannote[80].speaker SPEAKER_03
transcript.pyannote[80].start 257.81346875
transcript.pyannote[80].end 259.46721875
transcript.pyannote[81].speaker SPEAKER_03
transcript.pyannote[81].start 259.72034375
transcript.pyannote[81].end 266.16659375
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 265.87971875
transcript.pyannote[82].end 266.84159375
transcript.pyannote[83].speaker SPEAKER_03
transcript.pyannote[83].start 268.15784375
transcript.pyannote[83].end 270.73971875
transcript.pyannote[84].speaker SPEAKER_03
transcript.pyannote[84].start 274.80659375
transcript.pyannote[84].end 285.03284375
transcript.pyannote[85].speaker SPEAKER_03
transcript.pyannote[85].start 285.48846875
transcript.pyannote[85].end 294.56721875
transcript.pyannote[86].speaker SPEAKER_03
transcript.pyannote[86].start 295.00596875
transcript.pyannote[86].end 296.59221875
transcript.pyannote[87].speaker SPEAKER_03
transcript.pyannote[87].start 296.82846875
transcript.pyannote[87].end 298.76909375
transcript.pyannote[88].speaker SPEAKER_03
transcript.pyannote[88].start 299.79846875
transcript.pyannote[88].end 300.57471875
transcript.pyannote[89].speaker SPEAKER_03
transcript.pyannote[89].start 300.64221875
transcript.pyannote[89].end 303.08909375
transcript.pyannote[90].speaker SPEAKER_03
transcript.pyannote[90].start 303.32534375
transcript.pyannote[90].end 314.19284375
transcript.pyannote[91].speaker SPEAKER_03
transcript.pyannote[91].start 314.51346875
transcript.pyannote[91].end 317.06159375
transcript.pyannote[92].speaker SPEAKER_03
transcript.pyannote[92].start 318.31034375
transcript.pyannote[92].end 319.69409375
transcript.pyannote[93].speaker SPEAKER_03
transcript.pyannote[93].start 320.41971875
transcript.pyannote[93].end 325.63409375
transcript.pyannote[94].speaker SPEAKER_03
transcript.pyannote[94].start 326.35971875
transcript.pyannote[94].end 328.84034375
transcript.pyannote[95].speaker SPEAKER_03
transcript.pyannote[95].start 329.41409375
transcript.pyannote[95].end 335.03346875
transcript.pyannote[96].speaker SPEAKER_03
transcript.pyannote[96].start 335.45534375
transcript.pyannote[96].end 335.86034375
transcript.pyannote[97].speaker SPEAKER_03
transcript.pyannote[97].start 336.28221875
transcript.pyannote[97].end 341.56409375
transcript.pyannote[98].speaker SPEAKER_03
transcript.pyannote[98].start 342.23909375
transcript.pyannote[98].end 348.65159375
transcript.pyannote[99].speaker SPEAKER_03
transcript.pyannote[99].start 349.03971875
transcript.pyannote[99].end 351.67221875
transcript.pyannote[100].speaker SPEAKER_03
transcript.pyannote[100].start 352.17846875
transcript.pyannote[100].end 353.41034375
transcript.pyannote[101].speaker SPEAKER_03
transcript.pyannote[101].start 353.68034375
transcript.pyannote[101].end 354.62534375
transcript.pyannote[102].speaker SPEAKER_03
transcript.pyannote[102].start 354.99659375
transcript.pyannote[102].end 359.01284375
transcript.pyannote[103].speaker SPEAKER_03
transcript.pyannote[103].start 359.16471875
transcript.pyannote[103].end 359.68784375
transcript.pyannote[104].speaker SPEAKER_03
transcript.pyannote[104].start 360.17721875
transcript.pyannote[104].end 370.36971875
transcript.pyannote[105].speaker SPEAKER_03
transcript.pyannote[105].start 370.80846875
transcript.pyannote[105].end 375.16221875
transcript.pyannote[106].speaker SPEAKER_03
transcript.pyannote[106].start 375.39846875
transcript.pyannote[106].end 376.52909375
transcript.pyannote[107].speaker SPEAKER_03
transcript.pyannote[107].start 376.57971875
transcript.pyannote[107].end 377.40659375
transcript.pyannote[108].speaker SPEAKER_03
transcript.pyannote[108].start 377.74409375
transcript.pyannote[108].end 382.13159375
transcript.pyannote[109].speaker SPEAKER_03
transcript.pyannote[109].start 382.53659375
transcript.pyannote[109].end 385.50659375
transcript.pyannote[110].speaker SPEAKER_03
transcript.pyannote[110].start 385.67534375
transcript.pyannote[110].end 386.68784375
transcript.pyannote[111].speaker SPEAKER_03
transcript.pyannote[111].start 387.10971875
transcript.pyannote[111].end 393.23534375
transcript.pyannote[112].speaker SPEAKER_02
transcript.pyannote[112].start 393.80909375
transcript.pyannote[112].end 394.88909375
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 395.00721875
transcript.pyannote[113].end 400.59284375
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 400.62659375
transcript.pyannote[114].end 400.64346875
transcript.pyannote[115].speaker SPEAKER_03
transcript.pyannote[115].start 400.64346875
transcript.pyannote[115].end 400.96409375
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 400.96409375
transcript.pyannote[116].end 402.39846875
transcript.pyannote[117].speaker SPEAKER_03
transcript.pyannote[117].start 401.94284375
transcript.pyannote[117].end 403.29284375
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 403.29284375
transcript.pyannote[118].end 419.47596875
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 420.38721875
transcript.pyannote[119].end 434.83221875
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 434.89971875
transcript.pyannote[120].end 444.48471875
transcript.pyannote[121].speaker SPEAKER_03
transcript.pyannote[121].start 442.96596875
transcript.pyannote[121].end 451.28534375
transcript.pyannote[122].speaker SPEAKER_03
transcript.pyannote[122].start 452.07846875
transcript.pyannote[122].end 455.25096875
transcript.pyannote[123].speaker SPEAKER_03
transcript.pyannote[123].start 455.89221875
transcript.pyannote[123].end 456.90471875
transcript.pyannote[124].speaker SPEAKER_03
transcript.pyannote[124].start 457.36034375
transcript.pyannote[124].end 460.24596875
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 460.41471875
transcript.pyannote[125].end 461.32596875
transcript.pyannote[126].speaker SPEAKER_03
transcript.pyannote[126].start 461.64659375
transcript.pyannote[126].end 464.83596875
transcript.pyannote[127].speaker SPEAKER_03
transcript.pyannote[127].start 466.67534375
transcript.pyannote[127].end 467.13096875
transcript.pyannote[128].speaker SPEAKER_03
transcript.pyannote[128].start 467.62034375
transcript.pyannote[128].end 471.02909375
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 468.00846875
transcript.pyannote[129].end 468.02534375
transcript.pyannote[130].speaker SPEAKER_04
transcript.pyannote[130].start 468.02534375
transcript.pyannote[130].end 468.53159375
transcript.pyannote[131].speaker SPEAKER_04
transcript.pyannote[131].start 469.08846875
transcript.pyannote[131].end 470.65784375
transcript.pyannote[132].speaker SPEAKER_04
transcript.pyannote[132].start 471.02909375
transcript.pyannote[132].end 471.04596875
transcript.pyannote[133].speaker SPEAKER_03
transcript.pyannote[133].start 473.25659375
transcript.pyannote[133].end 477.62721875
transcript.pyannote[134].speaker SPEAKER_03
transcript.pyannote[134].start 478.50471875
transcript.pyannote[134].end 491.02596875
transcript.pyannote[135].speaker SPEAKER_03
transcript.pyannote[135].start 491.41409375
transcript.pyannote[135].end 497.60721875
transcript.pyannote[136].speaker SPEAKER_03
transcript.pyannote[136].start 498.14721875
transcript.pyannote[136].end 500.07096875
transcript.pyannote[137].speaker SPEAKER_03
transcript.pyannote[137].start 500.35784375
transcript.pyannote[137].end 507.00659375
transcript.pyannote[138].speaker SPEAKER_03
transcript.pyannote[138].start 507.36096875
transcript.pyannote[138].end 515.61284375
transcript.pyannote[139].speaker SPEAKER_03
transcript.pyannote[139].start 516.03471875
transcript.pyannote[139].end 520.59096875
transcript.pyannote[140].speaker SPEAKER_03
transcript.pyannote[140].start 520.81034375
transcript.pyannote[140].end 524.03346875
transcript.pyannote[141].speaker SPEAKER_03
transcript.pyannote[141].start 524.50596875
transcript.pyannote[141].end 526.88534375
transcript.pyannote[142].speaker SPEAKER_03
transcript.pyannote[142].start 527.20596875
transcript.pyannote[142].end 538.57971875
transcript.pyannote[143].speaker SPEAKER_00
transcript.pyannote[143].start 538.66409375
transcript.pyannote[143].end 557.07471875
transcript.pyannote[144].speaker SPEAKER_03
transcript.pyannote[144].start 557.07471875
transcript.pyannote[144].end 558.74534375
transcript.pyannote[145].speaker SPEAKER_03
transcript.pyannote[145].start 558.76221875
transcript.pyannote[145].end 558.77909375
transcript.pyannote[146].speaker SPEAKER_03
transcript.pyannote[146].start 558.82971875
transcript.pyannote[146].end 577.64534375
transcript.pyannote[147].speaker SPEAKER_00
transcript.pyannote[147].start 563.87534375
transcript.pyannote[147].end 564.43221875
transcript.pyannote[148].speaker SPEAKER_00
transcript.pyannote[148].start 566.01846875
transcript.pyannote[148].end 566.03534375
transcript.pyannote[149].speaker SPEAKER_04
transcript.pyannote[149].start 566.03534375
transcript.pyannote[149].end 566.57534375
transcript.pyannote[150].speaker SPEAKER_04
transcript.pyannote[150].start 566.72721875
transcript.pyannote[150].end 566.98034375
transcript.pyannote[151].speaker SPEAKER_04
transcript.pyannote[151].start 570.08534375
transcript.pyannote[151].end 570.52409375
transcript.pyannote[152].speaker SPEAKER_03
transcript.pyannote[152].start 577.71284375
transcript.pyannote[152].end 580.14284375
transcript.pyannote[153].speaker SPEAKER_03
transcript.pyannote[153].start 580.86846875
transcript.pyannote[153].end 587.85471875
transcript.pyannote[154].speaker SPEAKER_00
transcript.pyannote[154].start 587.85471875
transcript.pyannote[154].end 587.87159375
transcript.pyannote[155].speaker SPEAKER_03
transcript.pyannote[155].start 587.87159375
transcript.pyannote[155].end 587.88846875
transcript.pyannote[156].speaker SPEAKER_00
transcript.pyannote[156].start 587.88846875
transcript.pyannote[156].end 589.94721875
transcript.pyannote[157].speaker SPEAKER_03
transcript.pyannote[157].start 587.92221875
transcript.pyannote[157].end 589.44096875
transcript.pyannote[158].speaker SPEAKER_04
transcript.pyannote[158].start 589.44096875
transcript.pyannote[158].end 589.45784375
transcript.pyannote[159].speaker SPEAKER_04
transcript.pyannote[159].start 592.10721875
transcript.pyannote[159].end 594.63846875
transcript.pyannote[160].speaker SPEAKER_04
transcript.pyannote[160].start 599.05971875
transcript.pyannote[160].end 601.47284375
transcript.whisperx[0].start 0.589
transcript.whisperx[0].end 1.71
transcript.whisperx[0].text 交通部趙專員還有經濟部邱署長委員好
transcript.whisperx[1].start 16.969
transcript.whisperx[1].end 35.603
transcript.whisperx[1].text 大家好今天要審查的是使用牌照稅法我想是沒有什麼爭議電動汽機車是國際潮流主要是因為配合永續再生以及淨零排碳今天要延長電動汽機車輛免徵使用牌照稅其實不只是要鼓勵民眾多購買
transcript.whisperx[2].start 37.244
transcript.whisperx[2].end 66.316
transcript.whisperx[2].text 電動汽機車主要是要提醒政府必須要為電動汽機車做更完善的規劃那近年來我們可以看到電動汽機車是在街上都變多了一個趨勢那公車也逐漸的轉型為電動化但是實際上因為整體規劃做得不夠完善所以電動汽機車的比例那我想要請問一下交通部到今天純電動車的佔比規模是多少
transcript.whisperx[3].start 68.379
transcript.whisperx[3].end 81.433
transcript.whisperx[3].text 占比跟我們報告目前電動小客車到目前總登記數大概是11萬將近12萬輛占比啦我說占比不是數量大概幾%
transcript.whisperx[4].start 87.979
transcript.whisperx[4].end 93.301
transcript.whisperx[4].text 電動機車到目前為止它的登記數大概是大概是79萬將近80萬然後它的佔比大概是5.4%
transcript.whisperx[5].start 106.924
transcript.whisperx[5].end 119.097
transcript.whisperx[5].text 5.4%所以我想這個比例是不成比例啦我們台灣電動車一年會比一年更加競爭那Smart協會在10月底公佈
transcript.whisperx[6].start 121.14
transcript.whisperx[6].end 134.177
transcript.whisperx[6].text 電動機車政策2025民意大調查調查結果顯示說有八成的民眾要求政府應該更積極的推動這些相關政策超過半數的民眾只指政府推動力道不足
transcript.whisperx[7].start 135.158
transcript.whisperx[7].end 150.613
transcript.whisperx[7].text 現行補助效益有限已經大幅延宕運具電動化的進程實際上面臨購車的時候在選擇的時候民眾最重視的都是車價還有就是說政府補助
transcript.whisperx[8].start 151.374
transcript.whisperx[8].end 168.82
transcript.whisperx[8].text 那這個都會影響購買意願的首要跟次要的因素從調查結果來看依現行政策的目標與實際執行之間的政策落差導致民眾認為購買力道不足那交通部這邊對於電動汽機車未來有沒有更積極的規劃
transcript.whisperx[9].start 172.343
transcript.whisperx[9].end 181.876
transcript.whisperx[9].text 這個對於電動汽機車的尚未普及化中央補助就大幅縮水的情況經濟部這裡對於新購電動車有沒有考慮恢復以往補助金額這兩點請說明
transcript.whisperx[10].start 187.683
transcript.whisperx[10].end 214.555
transcript.whisperx[10].text 報告委員有關電動機車補助的部分我們今年經濟部有加大補助的力道就是說針對電動機車補助加碼1000元針對電能補充設施的部分我們是從上限30萬元增加到60萬元希望能夠增加更多的誘因鼓勵企業還有民眾他們可以多使用
transcript.whisperx[11].start 214.935
transcript.whisperx[11].end 233.569
transcript.whisperx[11].text 民眾現在的購買都轉為觀望原本想要購買就是因為政府這個政府補助的部分那當然還是會考慮到選擇購買油車因為現在加油方便嘛對不對那里程焦慮因為充電樁的不普及那
transcript.whisperx[12].start 234.93
transcript.whisperx[12].end 254.5
transcript.whisperx[12].text 這要如何才能夠達成2050淨零排單的目標我覺得還是要應該要像財政部一樣大方一點有心要推動這個政策那補助就不要吝嗇尤其因為如果失去這些誘因那導致整個銷量整體大幅的下滑那你之前做的努力全部都白費掉了
transcript.whisperx[13].start 255.16
transcript.whisperx[13].end 266.608
transcript.whisperx[13].text 所以經濟部請回去研議針對這些新購電動車以及太舊換新的獎勵補助方面看能不能再加碼來恢復以前的一個補助水準好不好是那你先請回再請教交通部
transcript.whisperx[14].start 275.047
transcript.whisperx[14].end 298.43
transcript.whisperx[14].text 我們一般加油啦 遊車啦就是說隨時到加油站加油就馬上就可以解決但是因為充電樁 這些充電焦慮 里程焦慮那我想根據這個公路總局數據還有這個歐盟的建議就是說電動車跟充電樁的比例應該是10比1啦他們建議是10比1那台灣目前大概是40比1
transcript.whisperx[15].start 300.224
transcript.whisperx[15].end 325.481
transcript.whisperx[15].text 40比1相差了4倍那等於說這種量能源源不足所以光是這個原因那我們要買車要太舊換新他就會考慮到說這個充電的不方便還有里程焦慮等等那這個民意調查發現電動車車主使用家用充電的比例高達八成
transcript.whisperx[16].start 326.754
transcript.whisperx[16].end 341.087
transcript.whisperx[16].text 也就是我們剛剛講的這個原因所以只有兩成多的車主會在他們的社區內可能有這種設施充電樁那其他的都是自行購買來安裝而且花費也非常的高昂
transcript.whisperx[17].start 342.324
transcript.whisperx[17].end 369.656
transcript.whisperx[17].text 尤其是社區管委會這部分要跟管委會來回溝通可能時間就非常的長所以這個就是購買電動車的一個痛點之一我想理想的部分大家都希望能夠這樣子主要就是減碳但是充電樁不足已經變成是我國電動車數量及發展2025近零排碳最大的一個瓶頸
transcript.whisperx[18].start 370.996
transcript.whisperx[18].end 392.988
transcript.whisperx[18].text 就算財政部祭出一些免稅 減稅的優惠這效果也不大所以就是說等於是政府無法消除民眾對於電動車的一個充電焦慮那經濟部對於這個問題有沒有什麼改善措施有沒有什麼目標讓跟民眾保證2030電動車與充電中的比例可以達到10比1有沒有 計畫耿委員報告
transcript.whisperx[19].start 395.117
transcript.whisperx[19].end 418.887
transcript.whisperx[19].text 目前到今年的九月我們全國大概已經有一萬三千一百三十五支的充電樁那電動車的數量呢相對我們現在電動車的數量的話它的車裝比目前是八點九比一那八點九比一的數量呢是委員講到這邊所提的電動車歐盟建議電動車跟充電樁比例是十比一的部分的話其實我們現在國內八點九比一實際上是優於歐盟建議的十比一的這個數字
transcript.whisperx[20].start 420.624
transcript.whisperx[20].end 437.432
transcript.whisperx[20].text 數字事實上是數量上是比歐盟來得更好的那後面有一個這個39.7比1這個部分的話大概是歐盟有另外一個數字就是充電除了從慢充之外還有快充那快充的部分的話他是希望能夠達到80比1那在國內快充的充電窗大概有3386支
transcript.whisperx[21].start 439.173
transcript.whisperx[21].end 464.32
transcript.whisperx[21].text 我們的快充的車裝比是34.7比1這些技術上需要去克服的問題我想請你們就趕快按照計畫然後加緊腳步把這些把這個推動我國電動車的決心就讓更要設法化解民眾的一個充電焦慮好不好好 我們會願意好 你請回最後一點時間我請交通部莊部長
transcript.whisperx[22].start 466.841
transcript.whisperx[22].end 470.623
transcript.whisperx[22].text 莊部長 有請莊部長財政部 莊部長不好意思 講錯了 財政部委員好部長早以往一開始都是先請部長
transcript.whisperx[23].start 479.147
transcript.whisperx[23].end 502.275
transcript.whisperx[23].text 部長主要就是因為我在每一次都會跟你討論到租屋黑市的問題根據2021到2023年度個人非資助型房屋租賃所得虛補稅者每年都超過25萬件個人房屋租賃查核資查獲率都超過五成
transcript.whisperx[24].start 503.095
transcript.whisperx[24].end 523.982
transcript.whisperx[24].text 那更發現2020年到2024年需要補徵的件數的稅額都是呈現增加的趨勢從這些執行的成效來看我們財政部還是留於這個紙上的宣示所以部長加強個人房屋租賃所得專案查核這項計畫已經四年了
transcript.whisperx[25].start 524.522
transcript.whisperx[25].end 528.484
transcript.whisperx[25].text 就數據來看要加強的空間還很大所以部長你要怎麼做才能夠降低房東逃漏報稅的情況還有沒有什麼積極的辦法是委員這個部分謝謝委員的提示我們也會積極的加強來查核讓有房屋出租而有租金所得要誠實申報所得稅這是主要執行的目的當然我們也會選擇
transcript.whisperx[26].start 553.695
transcript.whisperx[26].end 578.65
transcript.whisperx[26].text 一定的適當的區域來做加強的一個查核部長再強調就是說這個黑市的存在不是只有稅務的問題因為主要是居住正義還有住屋安全安全的問題更重要所以對於這些漏報的房東不要一再的寬容不要一再寬容要讓年輕世代有一個安全對於制度的信任所以我想部長
transcript.whisperx[27].start 580.951
transcript.whisperx[27].end 589.553
transcript.whisperx[27].text 除了宣傳 宣導之外我們要看到的是說有什麼具體改革能夠改善這些 好不好好的 謝謝委員是 謝謝好 謝謝顏寬文委員好 接下來我們請鍾嘉賓委員質詢