iVOD / 157913

Field Value
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/66a8e59aed318d2187a77eda5f6167a7d143e698449c70dc7c550343fa2202f42843dd09ca1b81945ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 王義川
委員發言時間 14:59:36 - 15:07:18
影片長度 462
會議時間 2024-12-05T09:00:00+08:00
會議名稱 立法院第11屆第2會期司法及法制委員會第18次全體委員會議(事由:一、併案審查 (一)委員賴士葆等31人擬具「公務人員退休資遣撫卹法第三十七條條文修正草案」案。 (二)委員賴士葆等19人擬具「公務人員退休資遣撫卹法第六十七條條文修正草案」案。 (三)委員張智倫等16人擬具「公務人員退休資遣撫卹法第三十七條條文修正草案」案。 (四)委員張嘉郡等23人擬具「公務人員退休資遣撫卹法第三十七條條文修正草案」案。 (五)委員賴士葆等26人擬具「公務人員退休資遣撫卹法第三十八條條文修正草案」案。 (六)委員徐欣瑩等20人擬具「公務人員退休資遣撫卹法第三十七條、第三十八條及第六十七條條文修正草案」案。 (七)委員邱鎮軍等25人擬具「公務人員退休資遣撫卹法第三十七條條文修正草案」案。 (八)國民黨黨團擬具「公務人員退休資遣撫卹法第三十七條條文修正草案」案。 (九)委員林思銘等26人擬具「公務人員退休資遣撫卹法第六十七條條文修正草案」案。 (十)委員陳超明等19人擬具「公務人員退休資遣撫卹法第三十七條條文修正草案」案。 (十一)委員許宇甄等20人擬具「公務人員退休資遣撫卹法第三十七條及第六十七條條文修正草案」案。 (十二)委員黃健豪等18人擬具「公務人員退休資遣撫卹法第六十七條條文修正草案」案。 (十三)委員張智倫等19人擬具「公務人員退休資遣撫卹法第三條、第八條及第三十七條條文修正草案」案。 (十四)委員馬文君等20人擬具「公務人員退休資遣撫卹法第三十七條條文修正草案」案。 (十五)委員傅崐萁等21人擬具「公務人員退休資遣撫卹法第六十七條條文修正草案」案。 (十六)委員王鴻薇等25人擬具「公務人員退休資遣撫卹法第三十七條及第六十七條條文修正草案」案。 (十七)委員黃建賓等16人擬具「公務人員退休資遣撫卹法第三十七條條文修正草案」案。 (十八)委員陳玉珍等16人擬具「公務人員退休資遣撫卹法第三十七條條文修正草案」案。 (十九)委員王鴻薇等19人擬具「公務人員退休資遣撫卹法第三十八條條文修正草案」案。 (二十)委員羅智強等16人擬具「公務人員退休資遣撫卹法第三十七條條文修正草案」案。 二、併案審查 (一)委員李彥秀等18人擬具「公務人員任用法第三十六條之一條文修正草案」案。 (二)委員翁曉玲等22人擬具「公務人員任用法第二十八條之一條文修正草案」案。)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 0.03096875
transcript.pyannote[0].end 8.26596875
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 18.34034375
transcript.pyannote[1].end 20.65221875
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 20.93909375
transcript.pyannote[2].end 21.59721875
transcript.pyannote[3].speaker SPEAKER_02
transcript.pyannote[3].start 25.12409375
transcript.pyannote[3].end 25.63034375
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 26.08596875
transcript.pyannote[4].end 33.46034375
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 34.30409375
transcript.pyannote[5].end 38.11784375
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 38.60721875
transcript.pyannote[6].end 42.03284375
transcript.pyannote[7].speaker SPEAKER_02
transcript.pyannote[7].start 42.03284375
transcript.pyannote[7].end 46.13346875
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 46.60596875
transcript.pyannote[8].end 46.94346875
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 47.21346875
transcript.pyannote[9].end 50.35221875
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 47.33159375
transcript.pyannote[10].end 48.42846875
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 50.94284375
transcript.pyannote[11].end 54.14909375
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 54.48659375
transcript.pyannote[12].end 62.58659375
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 56.35971875
transcript.pyannote[13].end 57.27096875
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 62.97471875
transcript.pyannote[14].end 65.92784375
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 65.60721875
transcript.pyannote[15].end 65.86034375
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 66.85596875
transcript.pyannote[16].end 71.68221875
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 71.37846875
transcript.pyannote[17].end 71.76659375
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 72.28971875
transcript.pyannote[18].end 78.70221875
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 79.03971875
transcript.pyannote[19].end 84.64221875
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 83.17409375
transcript.pyannote[20].end 86.54909375
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 85.38471875
transcript.pyannote[21].end 85.68846875
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 86.07659375
transcript.pyannote[22].end 86.49846875
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 86.54909375
transcript.pyannote[23].end 86.56596875
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 86.56596875
transcript.pyannote[24].end 86.61659375
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 87.19034375
transcript.pyannote[25].end 92.59034375
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 93.07971875
transcript.pyannote[26].end 95.29034375
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 95.88096875
transcript.pyannote[27].end 97.68659375
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 98.56409375
transcript.pyannote[28].end 103.55909375
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 103.98096875
transcript.pyannote[29].end 104.52096875
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 104.97659375
transcript.pyannote[30].end 105.87096875
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 106.20846875
transcript.pyannote[31].end 109.58346875
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 110.62971875
transcript.pyannote[32].end 112.21596875
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 111.22034375
transcript.pyannote[33].end 113.61659375
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 114.15659375
transcript.pyannote[34].end 116.77221875
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 116.85659375
transcript.pyannote[35].end 116.90721875
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 116.90721875
transcript.pyannote[36].end 117.71721875
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 118.30784375
transcript.pyannote[37].end 119.35409375
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 119.50596875
transcript.pyannote[38].end 121.22721875
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 122.49284375
transcript.pyannote[39].end 123.10034375
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 123.53909375
transcript.pyannote[40].end 126.99846875
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 127.25159375
transcript.pyannote[41].end 128.61846875
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 129.36096875
transcript.pyannote[42].end 130.62659375
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 131.18346875
transcript.pyannote[43].end 143.29971875
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 133.54596875
transcript.pyannote[44].end 134.00159375
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 143.65409375
transcript.pyannote[45].end 146.37096875
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 146.25284375
transcript.pyannote[46].end 150.70784375
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 150.97784375
transcript.pyannote[47].end 151.97346875
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 151.65284375
transcript.pyannote[48].end 153.40784375
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 154.55534375
transcript.pyannote[49].end 155.65221875
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 157.40721875
transcript.pyannote[50].end 161.03534375
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 161.54159375
transcript.pyannote[51].end 170.18159375
transcript.pyannote[52].speaker SPEAKER_02
transcript.pyannote[52].start 169.86096875
transcript.pyannote[52].end 177.20159375
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 174.85596875
transcript.pyannote[53].end 175.42971875
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 177.77534375
transcript.pyannote[54].end 178.16346875
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 178.78784375
transcript.pyannote[55].end 199.24034375
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 184.37346875
transcript.pyannote[56].end 184.81221875
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 199.62846875
transcript.pyannote[57].end 209.51721875
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 211.35659375
transcript.pyannote[58].end 222.79784375
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 222.86534375
transcript.pyannote[59].end 223.70909375
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 224.02971875
transcript.pyannote[60].end 228.73784375
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 229.31159375
transcript.pyannote[61].end 231.97784375
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 231.97784375
transcript.pyannote[62].end 232.29846875
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 233.44596875
transcript.pyannote[63].end 239.36909375
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 240.87096875
transcript.pyannote[64].end 242.30534375
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 242.30534375
transcript.pyannote[65].end 243.43596875
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 242.32221875
transcript.pyannote[66].end 242.38971875
transcript.pyannote[67].speaker SPEAKER_02
transcript.pyannote[67].start 242.64284375
transcript.pyannote[67].end 247.18221875
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 243.94221875
transcript.pyannote[68].end 244.24596875
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 245.73096875
transcript.pyannote[69].end 246.40596875
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 248.16096875
transcript.pyannote[70].end 258.35346875
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 259.48409375
transcript.pyannote[71].end 259.99034375
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 259.68659375
transcript.pyannote[72].end 262.06596875
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 261.93096875
transcript.pyannote[73].end 262.16721875
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 262.16721875
transcript.pyannote[74].end 270.97596875
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 263.77034375
transcript.pyannote[75].end 264.20909375
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 270.97596875
transcript.pyannote[76].end 279.44721875
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 279.66659375
transcript.pyannote[77].end 288.10409375
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 288.10409375
transcript.pyannote[78].end 302.58284375
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 302.58284375
transcript.pyannote[79].end 307.15596875
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 307.20659375
transcript.pyannote[80].end 317.41596875
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 313.50096875
transcript.pyannote[81].end 314.37846875
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 316.70721875
transcript.pyannote[82].end 318.49596875
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 318.49596875
transcript.pyannote[83].end 332.92409375
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 333.19409375
transcript.pyannote[84].end 337.48034375
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 337.12596875
transcript.pyannote[85].end 342.40784375
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 342.40784375
transcript.pyannote[86].end 342.42471875
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 342.42471875
transcript.pyannote[87].end 342.72846875
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 343.21784375
transcript.pyannote[88].end 365.99909375
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 348.60096875
transcript.pyannote[89].end 349.25909375
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 357.91596875
transcript.pyannote[90].end 358.15221875
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 366.43784375
transcript.pyannote[91].end 368.07471875
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 368.07471875
transcript.pyannote[92].end 368.58096875
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 368.86784375
transcript.pyannote[93].end 369.79596875
transcript.pyannote[94].speaker SPEAKER_02
transcript.pyannote[94].start 370.42034375
transcript.pyannote[94].end 390.50159375
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 390.97409375
transcript.pyannote[95].end 397.63971875
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 396.69471875
transcript.pyannote[96].end 397.38659375
transcript.pyannote[97].speaker SPEAKER_02
transcript.pyannote[97].start 397.99409375
transcript.pyannote[97].end 411.08909375
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 406.83659375
transcript.pyannote[98].end 407.46096875
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 411.46034375
transcript.pyannote[99].end 415.64534375
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 415.88159375
transcript.pyannote[100].end 438.84846875
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 439.32096875
transcript.pyannote[101].end 457.61346875
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 456.66846875
transcript.pyannote[102].end 456.68534375
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 456.68534375
transcript.pyannote[103].end 456.70221875
transcript.pyannote[104].speaker SPEAKER_01
transcript.pyannote[104].start 456.70221875
transcript.pyannote[104].end 458.91284375
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 459.01409375
transcript.pyannote[105].end 461.57909375
transcript.whisperx[0].start 0.129
transcript.whisperx[0].end 20.268
transcript.whisperx[0].text 是從一點開始開會到現在都沒有休息,所以稍後在黃秀芳委員詢答完畢之後休息五分鐘。好,召委我們請部長麻煩部長
transcript.whisperx[1].start 25.151
transcript.whisperx[1].end 47.962
transcript.whisperx[1].text 副總統如果當年這個蔡總統沒有推動這一個年金的改革那當時的說法是這個基金什麼時候就破產了根據精算應該在119年或者120年當時什麼都沒做對就是6年後就破產了對那現在坐在這裡的公務員就怎麼辦就會很慘
transcript.whisperx[2].start 54.642
transcript.whisperx[2].end 78.199
transcript.whisperx[2].text 救援產,若當時什麼都沒做,那因為當時做了一些改變,把這個替代率做了一些調整之後,那又經過這個去年的一些改變,那你們也提到說這個要用慶,要到一百三十幾年嘛,民國。
transcript.whisperx[3].start 79.433
transcript.whisperx[3].end 80.355
transcript.whisperx[3].text 三)委員張智倫等16人擬具
transcript.whisperx[4].start 98.775
transcript.whisperx[4].end 120.797
transcript.whisperx[4].text 我們沒有具體的去評不過因為每個版本都差不了太多就要停止在今年或者是明年就停止就只差一年啦所以其實效果都差不多啦就在提早的四到五年到一百三十五年左右啦那如果真的通過了會怎麼辦
transcript.whisperx[5].start 122.54
transcript.whisperx[5].end 124.082
transcript.whisperx[5].text 三(委員張智倫等16人擬具
transcript.whisperx[6].start 131.669
transcript.whisperx[6].end 152.915
transcript.whisperx[6].text 這是一個修法的問題如果最後真的通過的話那我想站在全區部是一個執行的一個機關當然要執行但是他會財務上真的會會對很多限職的公務人員會產生很大的影響那我們請那個蘇仁市長來你算行政院的啦通過了會怎麼辦
transcript.whisperx[7].start 157.941
transcript.whisperx[7].end 176.898
transcript.whisperx[7].text 這個就是政府整個財政調度的問題本來就是一個小水庫如果能夠自己自主的話我覺得這是一個比較健康的一個生態系你講的這個小水庫基本上就是公務員要提撥政府要提撥 對不對
transcript.whisperx[8].start 178.86
transcript.whisperx[8].end 198.851
transcript.whisperx[8].text 租貸是公務人員要提,不夠的部分政府當然今年一百萬每年一百九十就補,再從大水庫引進來的錢可以少一點的話政府的財政調度會比較健康。
transcript.whisperx[9].start 199.673
transcript.whisperx[9].end 228.444
transcript.whisperx[9].text OK那接下來如果通過我們就是行政院就接下來編這種預算的時候要多挖走多少錢?那就差不多你如果說那一百三十五年就會掉掉本來是要可以動到八十嘛對那就是會在一三五的時候就會碰到那個比較大的risk
transcript.whisperx[10].start 229.349
transcript.whisperx[10].end 250.264
transcript.whisperx[10].text 三)委員張智倫等19人擬具:「公務人員退休資遣撫卹法第六十七條條文修正草案.一)委員張智倫等19人擬具:「公務人員退休資遣撫卹法第六十七條條文修正草案.一)委員張智倫等19人擬具:「公務人員退休資遣撫卹法第六十七條條文修正草案.一)委員張智倫等19人擬具:「公務人員退休資遣撫卹法第六十七條條條文修正草案.一)委員張智倫等19人擬具:「公務人員退休資遣撫卹
transcript.whisperx[11].start 259.714
transcript.whisperx[11].end 260.094
transcript.whisperx[11].text 三)委員張智倫等16人擬具
transcript.whisperx[12].start 284.011
transcript.whisperx[12].end 284.552
transcript.whisperx[12].text 三)委員張智倫等16人擬具
transcript.whisperx[13].start 302.568
transcript.whisperx[13].end 302.608
transcript.whisperx[13].text 三)委員
transcript.whisperx[14].start 320.743
transcript.whisperx[14].end 322.264
transcript.whisperx[14].text 撫卹法第六十七條條文修正草案案
transcript.whisperx[15].start 344.237
transcript.whisperx[15].end 345.077
transcript.whisperx[15].text 三)委員張智倫等19人擬具
transcript.whisperx[16].start 370.655
transcript.whisperx[16].end 388.306
transcript.whisperx[16].text 全序部人事總書中央合調一個大家算出因為這錢是公務人員的不是外購大家是公務人員的算出一個最好的方式不要說現在的公務員要越提越多去補那個已經退休的
transcript.whisperx[17].start 388.994
transcript.whisperx[17].end 404.197
transcript.whisperx[17].text 已經退休了,他現在會改革後,他總有一個預期,說我現在拿了第一年這麼多、第二年這麼多。你現在第一年這麼多、第二年這麼多,現在聽你說的是第一年,第二年你省下的時候發現說,他其實還差這麼多。所以這一個所有的利害關係,我是建議你們一定要去整合一下,讓大家都完蛋,因為錢就是這麼多。
transcript.whisperx[18].start 416.059
transcript.whisperx[18].end 418.641
transcript.whisperx[18].text 三)委員張智倫等16人擬具 «公務人員退休資遣撫卹法第六十七條條文修正草案》案。
transcript.whisperx[19].start 431.129
transcript.whisperx[19].end 455.563
transcript.whisperx[19].text 相關的利害關係人,你不怕找那些退休的,你也要找那些限職的。限職的你不怕找那些高級官員,你也要找那些六職等、七職等的、九職等做客廳、檢任官的、十二職的。大家各自有各自的盤算嘛,因為他們自己的生活。大家尋求一個比較好的方法,讓這一個改革能夠比較圓滿一點。好不好?好,議長。謝謝。
transcript.whisperx[20].start 459.106
transcript.whisperx[20].end 460.231
transcript.whisperx[20].text 法定人數不足
IVOD_ID 157913
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/157913
日期 2024-12-05
會議資料.會議代碼 委員會-11-2-36-18
會議資料.屆 11
會議資料.會期 2
會議資料.會次 18
會議資料.種類 委員會
會議資料.委員會代碼[0] 36
會議資料.標題 第11屆第2會期司法及法制委員會第18次全體委員會議
影片種類 Clip
開始時間 2024-12-05T14:59:36+08:00
結束時間 2024-12-05T15:07:18+08:00
支援功能[0] ai-transcript