iVOD / 151770

Field Value
IVOD_ID 151770
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/151770
日期 2024-04-25
會議資料.會議代碼 委員會-11-1-26-13
會議資料.會議代碼:str 第11屆第1會期社會福利及衛生環境委員會第13次全體委員會議
會議資料.屆 11
會議資料.會期 1
會議資料.會次 13
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.標題 第11屆第1會期社會福利及衛生環境委員會第13次全體委員會議
影片種類 Clip
開始時間 2024-04-25T12:49:55+08:00
結束時間 2024-04-25T13:03:31+08:00
影片長度 00:13:36
支援功能[0] ai-transcript
支援功能[1] gazette
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/37a05b44d500ce15c06efbac3b16afe0c97d93183120460dc68e374cd8c4bed03cfe12649b1131145ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 劉建國
委員發言時間 12:49:55 - 13:03:31
會議時間 2024-04-25T09:00:00+08:00
會議名稱 立法院第11屆第1會期社會福利及衛生環境委員會第13次全體委員會議(事由:邀請勞動部部長、法務部、原住民族委員會、內政部、衛生福利部就「就業服務法上路逾三十年,針對就業促進、歧視禁止、外國勞動力權益保障等面向進行全面檢視」進行專題報告,並備質詢。 【4月22日、24日及25日三天一次會】)
gazette.lineno 1263
gazette.blocks[0][0] 劉委員建國:(12時50分)謝謝主席,有請部長。
gazette.blocks[1][0] 主席:請許部長。
gazette.blocks[2][0] 許部長銘春:劉委員好。
gazette.blocks[3][0] 劉委員建國:部長好。部長要走了,有沒有什麼話要說?
gazette.blocks[4][0] 許部長銘春:謝謝啦!在衛環委員會,我在所有委員的指教跟支持下,也推動了很多政策跟法案,當然還有很多努力的空間,就留待下一位我們何部長來繼續努力,謝謝。
gazette.blocks[5][0] 劉委員建國:因為剩下時間已經不多了,想讓部長多講一些話,你既然這麼簡短,那我就還是要跟部長一起來為勞動的權利,還有勞工相關的一些事情,在最後僅剩的幾天裡面來做一些努力。部長看一下這個報導,這是昨天的報導,這應該是之前的事情。
gazette.blocks[6][0] 許部長銘春:之前那個五互集團的餐飲,捷利啦!
gazette.blocks[7][0] 劉委員建國:OK。它是在去年無預警宣布倒閉,旗下品牌相關在臺的門市將近三十間也突然結束營業,許多員工都是臨時收到通知,甚至員工上班上到一半被通知不用上班,總計大概有500名員工因此失業。根據勞動部回報本席的辦公室是說,相關的員工其實都已經有做妥適的安排與協助。
gazette.blocks[8][0] 許部長銘春:有,因為餐飲業很缺工,所以轉銜、轉業沒有問題。
gazette.blocks[9][0] 劉委員建國:好。
gazette.blocks[10][0] 許部長銘春:還有他的資遣費,其實我們有一些墊償,我們的墊償機制也都會保障他們……
gazette.blocks[11][0] 劉委員建國:我知道,這個有回復,我清楚,但是我現在想說,這個事情我們回過頭來看,就是說這個集團當時有申請大量解僱嗎?沒有嘛。
gazette.blocks[12][0] 許部長銘春:這個集團好像沒有,所以要處罰。
gazette.blocks[13][0] 劉委員建國:對,但是負責人已經不見了,因為負責人不見、消失了,所以你要處罰他也處罰不到。我現在回過頭來討論這個事情,是要提到預警機制,我們大解法裡面是有設預警機制,也就是說,僱用勞工30人以上之事業單位,有下列情形之一者,由相關單位或人員向主管機關通報,這裡面包括積欠工資、勞健保、全部或主要之營業部分停工、決議併購或最近二年曾發生重大勞資爭議,對不對?這個是我們在大解法裡面第十一條有設置這樣一個預警機制,但是它的一、二、三款跟剛剛我提的這個餐飲業龍頭的狀態有適用嗎?
gazette.blocks[14][0] 許部長銘春:它都沒有發生這個狀況。
gazette.blocks[15][0] 劉委員建國:對嘛!所以這個預警機制對這個事件來講是沒有作用的,應該是這麼說嘛,我是講第一個樣態,因為這家公司涉入吸金案,導致子公司受到影響,所以它走到這個地步,坦白講是不難預料,然後地方勞工局應該是啟動這個預警機制,它要啟動是依據我們的第十一條,但好像又沒有它這樣的一個樣態,要怎麼去啟動?再來,剛剛我特別提到負責人是逃逸後,整間公司直接倒閉,所以500人是秒失業,所以才有人上班上到一半被通知說不用上班了,那我也覺得很奇怪,是誰去通知他,叫他不用上班?所以應該公司底下還有相關負責的人嘛!
gazette.blocks[16][0] 許部長銘春:應該是主管啦!
gazette.blocks[17][0] 劉委員建國:對啦!主管是接受到誰的命令?
gazette.blocks[18][0] 許部長銘春:應該是接受到負責人的命令或……
gazette.blocks[19][0] 劉委員建國:我只是要提供這樣的一個樣態,等一下我會再提供一個樣態給部長跟司長做參考。我調出大量解僱勞工保護法的修法歷程,大量解僱勞工保護法最近一次修法是在104年,那個時候是配合組改,改名稱而已,勞委會變成勞動部,再來,離那一次再往前一次是民國97年,也就是說,從97年到現在已經將近16年,大量解僱勞工保護法並沒有做任何的修正,除了配合組改,改名稱而已,這個部分要請部長跟司長思考一下。
gazette.blocks[20][0] 許部長銘春:好。
gazette.blocks[21][0] 劉委員建國:同樣在這16年內,我們也遇到了109年的時候,包括COVID-19的疫情,當時有申請大量解僱的案件,從平均每年兩百多件,一口氣飆升到364件,將近70%的成長,然後通報解僱人數高達一萬四千五百多人。依據大解法第四條規定,事業單位大量解僱勞工時,應在60日前提出解僱計畫書,只有天災、事變或突發事件才能不受60日之限制。但是在109年疫情的時候,未依規定在60日前提出解僱計畫書而遭罰的案件就有43件,110年有32件,111年有22件,112年有30件,去年還有30件,但是我要請教部長,這個疫情到底算不算天災?到底算不算事變?到底算不算突發事件?
gazette.blocks[22][0] 許部長銘春:其實這個應該……我是覺得……
gazette.blocks[23][0] 劉委員建國:連你都要想這麼久,這個法律就有問題了。
gazette.blocks[24][0] 許部長銘春:司長跟我說不適用啦!我是覺得這個有問題。
gazette.blocks[25][0] 劉委員建國:對啊!司長講不屬於天災、事變、突發事件,部長你對法律也是有你的專業,有你的經驗,但是你看這個COVID-19的疫情,誰當時料想得到?
gazette.blocks[26][0] 許部長銘春:對啊!
gazette.blocks[27][0] 劉委員建國:誰料想得到它會多久?
gazette.blocks[28][0] 許部長銘春:是啊!
gazette.blocks[29][0] 劉委員建國:對不對?沒人想得到嘛,然後當時的船運又出了多大的問題,整個運輸又出了什麼樣的一個狀況?這個難道都不算在突發事件裡面嗎?這個沒人想得到啊!我再用一個例子給部長跟司長做參考,我這邊有個案例,嘉義縣有某經營家具外銷公司,主要是因為疫情,訂單減少以及臨時得知客戶無法付款屬突發事件,照理講,這應該不受60日前通報限制,但勞動部訴願委員會是這麼講的:全球疫情已持續一段時間,可事先預知訂單將會減少。這個怎麼預知?在疫情期間,很多產業是變相在成長,就像晶片。又說:相關營運及人事管理應有所準備,並非不可預見緊急事件,因此違反大解法第四條規定,處10到50萬罰鍰。我想這個個案判斷,我這邊要尊重勞動部訴願委員會的決定,我不是要探討這件事情實際上的裁決內容,但是我是強調說,當你要去做出這樣的裁決過程裡面,你敘明這樣的理由,我會覺得好像……
gazette.blocks[30][0] 許部長銘春:可以論述更完整一點啦!我是覺得這樣有點簡單。
gazette.blocks[31][0] 劉委員建國:你跟我都一樣啦!包含訴願委員會的委員都一樣,沒有人有辦法去預估怎麼會有這樣的疫情、這個疫情到底要延續多久,沒有一個人有辦法預見這個事情,那我們怎麼相對要要求業主,相對在產業界的這些人有辦法去預見這樣的事情?那是不可能的事情啊!所以我是要舉這兩個樣態,然後又16年沒有修這個大解法,是不是在部長要臨別秋去的時候,留下美麗的身影?
gazette.blocks[32][0] 許部長銘春:謝謝委員,我……
gazette.blocks[33][0] 劉委員建國:這個事情是不是可以在你畢業之前來思考發動?是不是來處理大量解僱勞工保護法?
gazette.blocks[34][0] 許部長銘春:看起來已經17年了,我覺得一個法律訂了這麼多年,是需要全盤再檢視一下。
gazette.blocks[35][0] 劉委員建國:是呀!
gazette.blocks[36][0] 許部長銘春:所以司長在這裡,我就當場指示他,我們全盤來檢視,該修就要來修。
gazette.blocks[37][0] 劉委員建國:OK,好,我又看到部長美麗的身影了,謝謝。
gazette.blocks[37][1] 第二題,403大地震讓花蓮成為重災區,花蓮縣府已經獲得2家旅宿業者申請大量解僱,分別申報83人及40人,共有120餘人要失業,但是同月23日又餘震,再增加1間花蓮的富凱飯店傾倒,預計兩週內就必須要拆除這個飯店的建築,我想這個飯店也一定符合大解法第四條所定的天災事變或突發事件。
gazette.blocks[38][0] 許部長銘春:是。
gazette.blocks[39][0] 劉委員建國:如果這家飯店再提出大量解僱的申請,花蓮就有三家了,花蓮這次地震掉了十億觀光的產值,可能還會再增加也不一定,接下來又是暑假的檔期,真的是非常不樂觀,所以可能會有相關連動性的業者也會去啟動大量解僱,這樣的狀況會陸續出現,我必須要講說,因為大量解僱而失業的員工透過勞動部就業服務的轉介,要在花蓮找到相同性質的工作,不簡單!
gazette.blocks[40][0] 許部長銘春:不容易。
gazette.blocks[41][0] 劉委員建國:對不對?有一定難度嘛?而且他是整個,他絕不是一個單一旅宿業的倒閉,而是整個花蓮區域性的產業問題,這個真的是會受到滿大的挑戰,我不曉得勞動部有沒有去預估未來一年內花蓮縣可能會有多少失業人口?那勞動部要怎麼做?有怎樣的因應跟輔導?
gazette.blocks[42][0] 許部長銘春:在人數上,我們可以預期一定會增加,但是到底增加多少我們要看狀況,重點是我現在有專人針對目前花蓮的整個狀況,包括勞工這些失業、就業需要幫忙的,我們有專人在處理,也隨時都有跟花蓮縣政府這邊保持聯繫,我們就是即時的援助,但是就像剛剛委員講的,畢竟他現在是整個觀光產業都受影響。
gazette.blocks[43][0] 劉委員建國:對啊!
gazette.blocks[44][0] 許部長銘春:有時候轉業可能不像在西部這麼方便,所以要跨域也會有困難,不過我們現在至少還有臨工措施或者失業給付,還可以撐一些時間,不過其他的產業部分,我們現在透過……雖然沒有辦法到那邊旅遊或什麼的,但其他產業我們用其他的方式,比如說用網購或什麼方式來支持,讓這些產業可能會增加用人的需求,然後能夠去解決這些問題,其實我們署長上個禮拜有先過去了,我叫他去現場瞭解,可能後續還有些問題我們要先有一些預先的規劃,要有前瞻的規劃,因為這個影響會持續一段相當的時間,看要怎麼幫忙,就像我們當初疫情是先做最壞的打算、做最好的準備,所以也謝謝委員提醒,我們都會全盤的關注。
gazette.blocks[45][0] 劉委員建國:對,所以剛才部長特別提到預先還是說預估、預防,包含剛才我特別提到大解法裡面的預警,其實預防勝於一切的治療,這個我們大家都很清楚。
gazette.blocks[46][0] 許部長銘春:對。
gazette.blocks[47][0] 劉委員建國:過去我們也有921這麼嚴重的大地震,比花蓮大地震更嚴重到N倍以上,當時怎麼去做因應、怎麼去預估、怎麼去做預先的一些事情,我想這個部分勞動部可能要協同交通部、協同經濟部。
gazette.blocks[48][0] 許部長銘春:對,這要跨部會,我們會跨部會來處理,行政院有召開相關的跨部會會議來協助。
gazette.blocks[49][0] 劉委員建國:當然也希望部長在僅剩的時間裡面能夠特別要求,是不是可以快速的在兩個禮拜內可以做出這樣一個預估、預先、預警的報告給我們委員會做參考。
gazette.blocks[50][0] 許部長銘春:好,可以。
gazette.blocks[51][0] 劉委員建國:好,謝謝主席。
gazette.blocks[52][0] 主席:謝謝劉建國委員發言。接下來請林倩綺委員發言。
gazette.agenda.page_end 424
gazette.agenda.meet_id 委員會-11-1-26-13
gazette.agenda.speakers[0] 黃秀芳
gazette.agenda.speakers[1] 陳昭姿
gazette.agenda.speakers[2] 林月琴
gazette.agenda.speakers[3] 王育敏
gazette.agenda.speakers[4] 陳菁徽
gazette.agenda.speakers[5] 邱鎮軍
gazette.agenda.speakers[6] 涂權吉
gazette.agenda.speakers[7] 王正旭
gazette.agenda.speakers[8] 蘇清泉
gazette.agenda.speakers[9] 鄭天財Sra Kacaw
gazette.agenda.speakers[10] 林淑芬
gazette.agenda.speakers[11] 黃國昌
gazette.agenda.speakers[12] 麥玉珍
gazette.agenda.speakers[13] 洪孟楷
gazette.agenda.speakers[14] 伍麗華Saidhai‧Tahovecahe
gazette.agenda.speakers[15] 牛煦庭
gazette.agenda.speakers[16] 張啓楷
gazette.agenda.speakers[17] 吳春城
gazette.agenda.speakers[18] 何欣純
gazette.agenda.speakers[19] 陳瑩
gazette.agenda.speakers[20] 劉建國
gazette.agenda.speakers[21] 林倩綺
gazette.agenda.speakers[22] 廖偉翔
gazette.agenda.speakers[23] 楊曜
gazette.agenda.speakers[24] 盧縣一
gazette.agenda.speakers[25] 翁曉玲
gazette.agenda.speakers[26] 羅智強
gazette.agenda.page_start 347
gazette.agenda.meetingDate[0] 2024-04-25
gazette.agenda.gazette_id 1133401
gazette.agenda.agenda_lcidc_ids[0] 1133401_00005
gazette.agenda.meet_name 立法院第11屆第1會期社會福利及衛生環境委員會第13次全體委員會議紀錄
gazette.agenda.content 邀請勞動部部長、法務部、原住民族委員會、內政部、衛生福利部就「就業服務法上路逾三十 年,針對就業促進、歧視禁止、外國勞動力權益保障等面向進行全面檢視」進行專題報告,並備 質詢
gazette.agenda.agenda_id 1133401_00004
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 0.03096875
transcript.pyannote[0].end 1.02659375
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 9.43034375
transcript.pyannote[1].end 11.03346875
transcript.pyannote[2].speaker SPEAKER_03
transcript.pyannote[2].start 11.33721875
transcript.pyannote[2].end 12.18096875
transcript.pyannote[3].speaker SPEAKER_03
transcript.pyannote[3].start 17.19284375
transcript.pyannote[3].end 17.78346875
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 17.78346875
transcript.pyannote[4].end 17.80034375
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 18.28971875
transcript.pyannote[5].end 18.72846875
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 19.13346875
transcript.pyannote[6].end 19.85909375
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 20.78721875
transcript.pyannote[7].end 21.74909375
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 22.96409375
transcript.pyannote[8].end 22.99784375
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 22.99784375
transcript.pyannote[9].end 23.06534375
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 23.06534375
transcript.pyannote[10].end 23.21721875
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 24.07784375
transcript.pyannote[11].end 24.43221875
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 24.78659375
transcript.pyannote[12].end 30.40596875
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 30.49034375
transcript.pyannote[13].end 32.34659375
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 32.80221875
transcript.pyannote[14].end 34.43909375
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 34.84409375
transcript.pyannote[15].end 36.73409375
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 37.20659375
transcript.pyannote[16].end 41.03721875
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 41.35784375
transcript.pyannote[17].end 43.51784375
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 43.73721875
transcript.pyannote[18].end 44.29409375
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 44.78346875
transcript.pyannote[19].end 46.26846875
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 46.43721875
transcript.pyannote[20].end 52.76534375
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 53.22096875
transcript.pyannote[21].end 54.06471875
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 54.09846875
transcript.pyannote[22].end 54.11534375
transcript.pyannote[23].speaker SPEAKER_03
transcript.pyannote[23].start 54.11534375
transcript.pyannote[23].end 54.92534375
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 54.57096875
transcript.pyannote[24].end 64.20659375
transcript.pyannote[25].speaker SPEAKER_03
transcript.pyannote[25].start 64.03784375
transcript.pyannote[25].end 64.34159375
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 64.69596875
transcript.pyannote[26].end 72.28971875
transcript.pyannote[27].speaker SPEAKER_03
transcript.pyannote[27].start 68.37471875
transcript.pyannote[27].end 68.39159375
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 68.39159375
transcript.pyannote[28].end 68.81346875
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 69.74159375
transcript.pyannote[29].end 70.14659375
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 71.09159375
transcript.pyannote[30].end 74.01096875
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 74.26409375
transcript.pyannote[31].end 76.45784375
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 74.29784375
transcript.pyannote[32].end 74.70284375
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 76.64346875
transcript.pyannote[33].end 77.06534375
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 77.06534375
transcript.pyannote[34].end 78.73596875
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 77.74034375
transcript.pyannote[35].end 78.55034375
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 79.42784375
transcript.pyannote[36].end 94.12596875
transcript.pyannote[37].speaker SPEAKER_03
transcript.pyannote[37].start 82.78596875
transcript.pyannote[37].end 82.93784375
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 82.93784375
transcript.pyannote[38].end 82.97159375
transcript.pyannote[39].speaker SPEAKER_03
transcript.pyannote[39].start 82.97159375
transcript.pyannote[39].end 83.14034375
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 94.42971875
transcript.pyannote[40].end 107.42346875
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 94.96971875
transcript.pyannote[41].end 96.04971875
transcript.pyannote[42].speaker SPEAKER_03
transcript.pyannote[42].start 96.04971875
transcript.pyannote[42].end 96.18471875
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 96.18471875
transcript.pyannote[43].end 96.31971875
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 106.59659375
transcript.pyannote[44].end 111.22034375
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 107.50784375
transcript.pyannote[45].end 108.04784375
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 109.17846875
transcript.pyannote[46].end 109.56659375
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 111.22034375
transcript.pyannote[47].end 111.40596875
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 111.40596875
transcript.pyannote[48].end 119.65784375
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 118.52721875
transcript.pyannote[49].end 129.44534375
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 130.76159375
transcript.pyannote[50].end 132.38159375
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 130.84596875
transcript.pyannote[51].end 131.23409375
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 131.99346875
transcript.pyannote[52].end 133.52909375
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 132.68534375
transcript.pyannote[53].end 134.69346875
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 134.69346875
transcript.pyannote[54].end 134.94659375
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 135.23346875
transcript.pyannote[55].end 135.38534375
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 135.38534375
transcript.pyannote[56].end 135.60471875
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 135.84096875
transcript.pyannote[57].end 137.22471875
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 138.01784375
transcript.pyannote[58].end 147.45096875
transcript.pyannote[59].speaker SPEAKER_03
transcript.pyannote[59].start 147.31596875
transcript.pyannote[59].end 147.95721875
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 147.56909375
transcript.pyannote[60].end 149.79659375
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 150.04971875
transcript.pyannote[61].end 152.85096875
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 152.96909375
transcript.pyannote[62].end 175.39596875
transcript.pyannote[63].speaker SPEAKER_03
transcript.pyannote[63].start 173.80971875
transcript.pyannote[63].end 174.40034375
transcript.pyannote[64].speaker SPEAKER_03
transcript.pyannote[64].start 175.09221875
transcript.pyannote[64].end 175.24409375
transcript.pyannote[65].speaker SPEAKER_03
transcript.pyannote[65].start 175.39596875
transcript.pyannote[65].end 175.42971875
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 175.91909375
transcript.pyannote[66].end 181.70721875
transcript.pyannote[67].speaker SPEAKER_03
transcript.pyannote[67].start 181.75784375
transcript.pyannote[67].end 182.16284375
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 182.16284375
transcript.pyannote[68].end 183.71534375
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 184.30596875
transcript.pyannote[69].end 186.80346875
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 187.24221875
transcript.pyannote[70].end 191.39346875
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 191.61284375
transcript.pyannote[71].end 192.40596875
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 193.28346875
transcript.pyannote[72].end 193.87409375
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 194.05971875
transcript.pyannote[73].end 195.64596875
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 195.64596875
transcript.pyannote[74].end 198.61596875
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 199.12221875
transcript.pyannote[75].end 200.08409375
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 200.92784375
transcript.pyannote[76].end 201.85596875
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 202.21034375
transcript.pyannote[77].end 203.10471875
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 203.79659375
transcript.pyannote[78].end 216.67221875
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 217.41471875
transcript.pyannote[79].end 220.26659375
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 220.51971875
transcript.pyannote[80].end 223.11846875
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 223.32096875
transcript.pyannote[81].end 225.16034375
transcript.pyannote[82].speaker SPEAKER_03
transcript.pyannote[82].start 225.48096875
transcript.pyannote[82].end 226.18971875
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 226.34159375
transcript.pyannote[83].end 227.30346875
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 227.75909375
transcript.pyannote[84].end 228.70409375
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 231.03284375
transcript.pyannote[85].end 231.75846875
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 232.16346875
transcript.pyannote[86].end 238.49159375
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 238.82909375
transcript.pyannote[87].end 245.02221875
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 245.68034375
transcript.pyannote[88].end 250.32096875
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 249.51096875
transcript.pyannote[89].end 251.70471875
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 250.48971875
transcript.pyannote[90].end 250.92846875
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 251.70471875
transcript.pyannote[91].end 254.50596875
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 254.28659375
transcript.pyannote[92].end 257.37471875
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 257.10471875
transcript.pyannote[93].end 257.52659375
transcript.pyannote[94].speaker SPEAKER_02
transcript.pyannote[94].start 257.66159375
transcript.pyannote[94].end 257.93159375
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 258.16784375
transcript.pyannote[95].end 273.25409375
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 274.06409375
transcript.pyannote[96].end 275.44784375
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 275.85284375
transcript.pyannote[97].end 282.95721875
transcript.pyannote[98].speaker SPEAKER_03
transcript.pyannote[98].start 276.78096875
transcript.pyannote[98].end 277.23659375
transcript.pyannote[99].speaker SPEAKER_03
transcript.pyannote[99].start 278.35034375
transcript.pyannote[99].end 278.63721875
transcript.pyannote[100].speaker SPEAKER_03
transcript.pyannote[100].start 283.68284375
transcript.pyannote[100].end 284.02034375
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 283.80096875
transcript.pyannote[101].end 288.12096875
transcript.pyannote[102].speaker SPEAKER_03
transcript.pyannote[102].start 288.98159375
transcript.pyannote[102].end 289.40346875
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 289.35284375
transcript.pyannote[103].end 300.60846875
transcript.pyannote[104].speaker SPEAKER_03
transcript.pyannote[104].start 291.10784375
transcript.pyannote[104].end 291.36096875
transcript.pyannote[105].speaker SPEAKER_03
transcript.pyannote[105].start 300.60846875
transcript.pyannote[105].end 300.92909375
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 300.91221875
transcript.pyannote[106].end 309.31596875
transcript.pyannote[107].speaker SPEAKER_03
transcript.pyannote[107].start 308.40471875
transcript.pyannote[107].end 308.48909375
transcript.pyannote[108].speaker SPEAKER_03
transcript.pyannote[108].start 309.26534375
transcript.pyannote[108].end 309.68721875
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 309.65346875
transcript.pyannote[109].end 332.83971875
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 333.09284375
transcript.pyannote[110].end 336.65346875
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 337.42971875
transcript.pyannote[111].end 342.67784375
transcript.pyannote[112].speaker SPEAKER_03
transcript.pyannote[112].start 342.67784375
transcript.pyannote[112].end 343.04909375
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 343.03221875
transcript.pyannote[113].end 356.71784375
transcript.pyannote[114].speaker SPEAKER_03
transcript.pyannote[114].start 356.71784375
transcript.pyannote[114].end 357.13971875
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 357.10596875
transcript.pyannote[115].end 360.00846875
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 360.59909375
transcript.pyannote[116].end 361.84784375
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 362.20221875
transcript.pyannote[117].end 363.50159375
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 365.91471875
transcript.pyannote[118].end 366.20159375
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 366.33659375
transcript.pyannote[119].end 366.65721875
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 367.45034375
transcript.pyannote[120].end 369.12096875
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 369.96471875
transcript.pyannote[121].end 373.98096875
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 370.03221875
transcript.pyannote[122].end 370.26846875
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 374.35221875
transcript.pyannote[123].end 375.83721875
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 376.44471875
transcript.pyannote[124].end 379.04346875
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 377.86221875
transcript.pyannote[125].end 378.80721875
transcript.pyannote[126].speaker SPEAKER_02
transcript.pyannote[126].start 379.61721875
transcript.pyannote[126].end 383.26221875
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 381.86159375
transcript.pyannote[127].end 382.41846875
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 383.34659375
transcript.pyannote[128].end 384.15659375
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 384.35909375
transcript.pyannote[129].end 385.75971875
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 386.16471875
transcript.pyannote[130].end 386.94096875
transcript.pyannote[131].speaker SPEAKER_01
transcript.pyannote[131].start 387.07596875
transcript.pyannote[131].end 387.29534375
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 387.63284375
transcript.pyannote[132].end 388.30784375
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 388.67909375
transcript.pyannote[133].end 390.13034375
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 389.06721875
transcript.pyannote[134].end 390.56909375
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 390.46784375
transcript.pyannote[135].end 390.87284375
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 391.59846875
transcript.pyannote[136].end 392.08784375
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 392.79659375
transcript.pyannote[137].end 400.96409375
transcript.pyannote[138].speaker SPEAKER_01
transcript.pyannote[138].start 400.87971875
transcript.pyannote[138].end 401.14971875
transcript.pyannote[139].speaker SPEAKER_03
transcript.pyannote[139].start 401.14971875
transcript.pyannote[139].end 401.16659375
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 402.33096875
transcript.pyannote[140].end 404.13659375
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 404.52471875
transcript.pyannote[141].end 404.64284375
transcript.pyannote[142].speaker SPEAKER_01
transcript.pyannote[142].start 405.68909375
transcript.pyannote[142].end 405.90846875
transcript.pyannote[143].speaker SPEAKER_00
transcript.pyannote[143].start 406.16159375
transcript.pyannote[143].end 406.56659375
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 407.02221875
transcript.pyannote[144].end 407.95034375
transcript.pyannote[145].speaker SPEAKER_01
transcript.pyannote[145].start 408.11909375
transcript.pyannote[145].end 408.30471875
transcript.pyannote[146].speaker SPEAKER_00
transcript.pyannote[146].start 408.43971875
transcript.pyannote[146].end 410.92034375
transcript.pyannote[147].speaker SPEAKER_03
transcript.pyannote[147].start 411.24096875
transcript.pyannote[147].end 411.25784375
transcript.pyannote[148].speaker SPEAKER_00
transcript.pyannote[148].start 411.25784375
transcript.pyannote[148].end 413.65409375
transcript.pyannote[149].speaker SPEAKER_03
transcript.pyannote[149].start 411.30846875
transcript.pyannote[149].end 411.37596875
transcript.pyannote[150].speaker SPEAKER_00
transcript.pyannote[150].start 414.14346875
transcript.pyannote[150].end 418.71659375
transcript.pyannote[151].speaker SPEAKER_03
transcript.pyannote[151].start 418.91909375
transcript.pyannote[151].end 419.20596875
transcript.pyannote[152].speaker SPEAKER_00
transcript.pyannote[152].start 419.37471875
transcript.pyannote[152].end 421.02846875
transcript.pyannote[153].speaker SPEAKER_03
transcript.pyannote[153].start 422.34471875
transcript.pyannote[153].end 422.63159375
transcript.pyannote[154].speaker SPEAKER_00
transcript.pyannote[154].start 422.63159375
transcript.pyannote[154].end 432.31784375
transcript.pyannote[155].speaker SPEAKER_03
transcript.pyannote[155].start 423.74534375
transcript.pyannote[155].end 424.16721875
transcript.pyannote[156].speaker SPEAKER_00
transcript.pyannote[156].start 432.70596875
transcript.pyannote[156].end 439.67534375
transcript.pyannote[157].speaker SPEAKER_00
transcript.pyannote[157].start 440.06346875
transcript.pyannote[157].end 445.81784375
transcript.pyannote[158].speaker SPEAKER_00
transcript.pyannote[158].start 445.96971875
transcript.pyannote[158].end 450.49221875
transcript.pyannote[159].speaker SPEAKER_00
transcript.pyannote[159].start 451.04909375
transcript.pyannote[159].end 455.90909375
transcript.pyannote[160].speaker SPEAKER_00
transcript.pyannote[160].start 456.46596875
transcript.pyannote[160].end 456.76971875
transcript.pyannote[161].speaker SPEAKER_00
transcript.pyannote[161].start 457.52909375
transcript.pyannote[161].end 459.25034375
transcript.pyannote[162].speaker SPEAKER_00
transcript.pyannote[162].start 459.95909375
transcript.pyannote[162].end 469.35846875
transcript.pyannote[163].speaker SPEAKER_00
transcript.pyannote[163].start 469.72971875
transcript.pyannote[163].end 477.05346875
transcript.pyannote[164].speaker SPEAKER_00
transcript.pyannote[164].start 477.96471875
transcript.pyannote[164].end 489.05159375
transcript.pyannote[165].speaker SPEAKER_00
transcript.pyannote[165].start 489.60846875
transcript.pyannote[165].end 493.65846875
transcript.pyannote[166].speaker SPEAKER_00
transcript.pyannote[166].start 494.06346875
transcript.pyannote[166].end 494.92409375
transcript.pyannote[167].speaker SPEAKER_00
transcript.pyannote[167].start 496.00409375
transcript.pyannote[167].end 497.01659375
transcript.pyannote[168].speaker SPEAKER_02
transcript.pyannote[168].start 498.34971875
transcript.pyannote[168].end 502.34909375
transcript.pyannote[169].speaker SPEAKER_00
transcript.pyannote[169].start 498.68721875
transcript.pyannote[169].end 500.08784375
transcript.pyannote[170].speaker SPEAKER_00
transcript.pyannote[170].start 500.30721875
transcript.pyannote[170].end 501.64034375
transcript.pyannote[171].speaker SPEAKER_00
transcript.pyannote[171].start 502.68659375
transcript.pyannote[171].end 502.78784375
transcript.pyannote[172].speaker SPEAKER_00
transcript.pyannote[172].start 503.29409375
transcript.pyannote[172].end 503.93534375
transcript.pyannote[173].speaker SPEAKER_00
transcript.pyannote[173].start 504.93096875
transcript.pyannote[173].end 516.94596875
transcript.pyannote[174].speaker SPEAKER_00
transcript.pyannote[174].start 517.23284375
transcript.pyannote[174].end 525.72096875
transcript.pyannote[175].speaker SPEAKER_00
transcript.pyannote[175].start 526.36221875
transcript.pyannote[175].end 527.64471875
transcript.pyannote[176].speaker SPEAKER_03
transcript.pyannote[176].start 527.59409375
transcript.pyannote[176].end 528.20159375
transcript.pyannote[177].speaker SPEAKER_00
transcript.pyannote[177].start 527.94846875
transcript.pyannote[177].end 533.38221875
transcript.pyannote[178].speaker SPEAKER_03
transcript.pyannote[178].start 533.38221875
transcript.pyannote[178].end 533.78721875
transcript.pyannote[179].speaker SPEAKER_00
transcript.pyannote[179].start 534.14159375
transcript.pyannote[179].end 534.88409375
transcript.pyannote[180].speaker SPEAKER_00
transcript.pyannote[180].start 535.25534375
transcript.pyannote[180].end 536.21721875
transcript.pyannote[181].speaker SPEAKER_00
transcript.pyannote[181].start 536.84159375
transcript.pyannote[181].end 539.40659375
transcript.pyannote[182].speaker SPEAKER_00
transcript.pyannote[182].start 539.60909375
transcript.pyannote[182].end 544.08096875
transcript.pyannote[183].speaker SPEAKER_03
transcript.pyannote[183].start 543.32159375
transcript.pyannote[183].end 543.42284375
transcript.pyannote[184].speaker SPEAKER_00
transcript.pyannote[184].start 544.16534375
transcript.pyannote[184].end 544.72221875
transcript.pyannote[185].speaker SPEAKER_00
transcript.pyannote[185].start 545.63346875
transcript.pyannote[185].end 546.67971875
transcript.pyannote[186].speaker SPEAKER_03
transcript.pyannote[186].start 546.67971875
transcript.pyannote[186].end 547.01721875
transcript.pyannote[187].speaker SPEAKER_00
transcript.pyannote[187].start 547.05096875
transcript.pyannote[187].end 547.86096875
transcript.pyannote[188].speaker SPEAKER_00
transcript.pyannote[188].start 548.14784375
transcript.pyannote[188].end 555.28596875
transcript.pyannote[189].speaker SPEAKER_03
transcript.pyannote[189].start 549.10971875
transcript.pyannote[189].end 550.22346875
transcript.pyannote[190].speaker SPEAKER_00
transcript.pyannote[190].start 555.31971875
transcript.pyannote[190].end 555.37034375
transcript.pyannote[191].speaker SPEAKER_02
transcript.pyannote[191].start 555.37034375
transcript.pyannote[191].end 565.34346875
transcript.pyannote[192].speaker SPEAKER_00
transcript.pyannote[192].start 555.38721875
transcript.pyannote[192].end 556.46721875
transcript.pyannote[193].speaker SPEAKER_00
transcript.pyannote[193].start 557.00721875
transcript.pyannote[193].end 557.81721875
transcript.pyannote[194].speaker SPEAKER_00
transcript.pyannote[194].start 561.47909375
transcript.pyannote[194].end 561.96846875
transcript.pyannote[195].speaker SPEAKER_03
transcript.pyannote[195].start 561.96846875
transcript.pyannote[195].end 562.03596875
transcript.pyannote[196].speaker SPEAKER_00
transcript.pyannote[196].start 562.03596875
transcript.pyannote[196].end 562.42409375
transcript.pyannote[197].speaker SPEAKER_03
transcript.pyannote[197].start 562.42409375
transcript.pyannote[197].end 562.49159375
transcript.pyannote[198].speaker SPEAKER_03
transcript.pyannote[198].start 563.89221875
transcript.pyannote[198].end 564.02721875
transcript.pyannote[199].speaker SPEAKER_00
transcript.pyannote[199].start 564.02721875
transcript.pyannote[199].end 564.28034375
transcript.pyannote[200].speaker SPEAKER_03
transcript.pyannote[200].start 564.28034375
transcript.pyannote[200].end 564.31409375
transcript.pyannote[201].speaker SPEAKER_00
transcript.pyannote[201].start 564.31409375
transcript.pyannote[201].end 564.33096875
transcript.pyannote[202].speaker SPEAKER_00
transcript.pyannote[202].start 565.34346875
transcript.pyannote[202].end 565.68096875
transcript.pyannote[203].speaker SPEAKER_02
transcript.pyannote[203].start 565.59659375
transcript.pyannote[203].end 567.77346875
transcript.pyannote[204].speaker SPEAKER_00
transcript.pyannote[204].start 567.73971875
transcript.pyannote[204].end 568.04346875
transcript.pyannote[205].speaker SPEAKER_02
transcript.pyannote[205].start 567.97596875
transcript.pyannote[205].end 569.17409375
transcript.pyannote[206].speaker SPEAKER_00
transcript.pyannote[206].start 569.17409375
transcript.pyannote[206].end 573.56159375
transcript.pyannote[207].speaker SPEAKER_03
transcript.pyannote[207].start 573.56159375
transcript.pyannote[207].end 573.64596875
transcript.pyannote[208].speaker SPEAKER_03
transcript.pyannote[208].start 574.48971875
transcript.pyannote[208].end 574.52346875
transcript.pyannote[209].speaker SPEAKER_00
transcript.pyannote[209].start 574.52346875
transcript.pyannote[209].end 575.82284375
transcript.pyannote[210].speaker SPEAKER_00
transcript.pyannote[210].start 576.21096875
transcript.pyannote[210].end 577.18971875
transcript.pyannote[211].speaker SPEAKER_00
transcript.pyannote[211].start 577.29096875
transcript.pyannote[211].end 589.18784375
transcript.pyannote[212].speaker SPEAKER_00
transcript.pyannote[212].start 589.55909375
transcript.pyannote[212].end 590.11596875
transcript.pyannote[213].speaker SPEAKER_00
transcript.pyannote[213].start 590.67284375
transcript.pyannote[213].end 591.93846875
transcript.pyannote[214].speaker SPEAKER_00
transcript.pyannote[214].start 592.59659375
transcript.pyannote[214].end 595.53284375
transcript.pyannote[215].speaker SPEAKER_03
transcript.pyannote[215].start 595.34721875
transcript.pyannote[215].end 595.75221875
transcript.pyannote[216].speaker SPEAKER_00
transcript.pyannote[216].start 595.56659375
transcript.pyannote[216].end 599.65034375
transcript.pyannote[217].speaker SPEAKER_00
transcript.pyannote[217].start 600.83159375
transcript.pyannote[217].end 606.83909375
transcript.pyannote[218].speaker SPEAKER_00
transcript.pyannote[218].start 607.14284375
transcript.pyannote[218].end 607.88534375
transcript.pyannote[219].speaker SPEAKER_00
transcript.pyannote[219].start 608.98221875
transcript.pyannote[219].end 612.50909375
transcript.pyannote[220].speaker SPEAKER_00
transcript.pyannote[220].start 612.77909375
transcript.pyannote[220].end 613.75784375
transcript.pyannote[221].speaker SPEAKER_00
transcript.pyannote[221].start 614.53409375
transcript.pyannote[221].end 615.74909375
transcript.pyannote[222].speaker SPEAKER_00
transcript.pyannote[222].start 616.55909375
transcript.pyannote[222].end 624.77721875
transcript.pyannote[223].speaker SPEAKER_03
transcript.pyannote[223].start 620.59221875
transcript.pyannote[223].end 620.92971875
transcript.pyannote[224].speaker SPEAKER_00
transcript.pyannote[224].start 625.14846875
transcript.pyannote[224].end 631.20659375
transcript.pyannote[225].speaker SPEAKER_03
transcript.pyannote[225].start 631.32471875
transcript.pyannote[225].end 631.69596875
transcript.pyannote[226].speaker SPEAKER_00
transcript.pyannote[226].start 631.59471875
transcript.pyannote[226].end 638.61471875
transcript.pyannote[227].speaker SPEAKER_00
transcript.pyannote[227].start 639.13784375
transcript.pyannote[227].end 646.22534375
transcript.pyannote[228].speaker SPEAKER_00
transcript.pyannote[228].start 646.90034375
transcript.pyannote[228].end 647.57534375
transcript.pyannote[229].speaker SPEAKER_02
transcript.pyannote[229].start 647.57534375
transcript.pyannote[229].end 648.14909375
transcript.pyannote[230].speaker SPEAKER_00
transcript.pyannote[230].start 648.11534375
transcript.pyannote[230].end 651.10221875
transcript.pyannote[231].speaker SPEAKER_00
transcript.pyannote[231].start 651.20346875
transcript.pyannote[231].end 657.98721875
transcript.pyannote[232].speaker SPEAKER_00
transcript.pyannote[232].start 658.57784375
transcript.pyannote[232].end 660.06284375
transcript.pyannote[233].speaker SPEAKER_00
transcript.pyannote[233].start 660.33284375
transcript.pyannote[233].end 660.78846875
transcript.pyannote[234].speaker SPEAKER_00
transcript.pyannote[234].start 661.44659375
transcript.pyannote[234].end 666.82971875
transcript.pyannote[235].speaker SPEAKER_00
transcript.pyannote[235].start 667.28534375
transcript.pyannote[235].end 669.91784375
transcript.pyannote[236].speaker SPEAKER_02
transcript.pyannote[236].start 668.85471875
transcript.pyannote[236].end 669.24284375
transcript.pyannote[237].speaker SPEAKER_02
transcript.pyannote[237].start 669.81659375
transcript.pyannote[237].end 689.96534375
transcript.pyannote[238].speaker SPEAKER_00
transcript.pyannote[238].start 673.22534375
transcript.pyannote[238].end 673.68096875
transcript.pyannote[239].speaker SPEAKER_02
transcript.pyannote[239].start 690.08346875
transcript.pyannote[239].end 690.84284375
transcript.pyannote[240].speaker SPEAKER_02
transcript.pyannote[240].start 691.19721875
transcript.pyannote[240].end 693.40784375
transcript.pyannote[241].speaker SPEAKER_02
transcript.pyannote[241].start 693.84659375
transcript.pyannote[241].end 695.97284375
transcript.pyannote[242].speaker SPEAKER_02
transcript.pyannote[242].start 696.24284375
transcript.pyannote[242].end 696.61409375
transcript.pyannote[243].speaker SPEAKER_02
transcript.pyannote[243].start 696.96846875
transcript.pyannote[243].end 699.24659375
transcript.pyannote[244].speaker SPEAKER_02
transcript.pyannote[244].start 699.65159375
transcript.pyannote[244].end 703.61721875
transcript.pyannote[245].speaker SPEAKER_03
transcript.pyannote[245].start 703.73534375
transcript.pyannote[245].end 704.12346875
transcript.pyannote[246].speaker SPEAKER_02
transcript.pyannote[246].start 703.93784375
transcript.pyannote[246].end 711.07596875
transcript.pyannote[247].speaker SPEAKER_02
transcript.pyannote[247].start 711.26159375
transcript.pyannote[247].end 728.23784375
transcript.pyannote[248].speaker SPEAKER_02
transcript.pyannote[248].start 728.47409375
transcript.pyannote[248].end 728.84534375
transcript.pyannote[249].speaker SPEAKER_02
transcript.pyannote[249].start 729.06471875
transcript.pyannote[249].end 738.85221875
transcript.pyannote[250].speaker SPEAKER_03
transcript.pyannote[250].start 732.77721875
transcript.pyannote[250].end 732.84471875
transcript.pyannote[251].speaker SPEAKER_00
transcript.pyannote[251].start 732.84471875
transcript.pyannote[251].end 732.89534375
transcript.pyannote[252].speaker SPEAKER_03
transcript.pyannote[252].start 737.04659375
transcript.pyannote[252].end 737.50221875
transcript.pyannote[253].speaker SPEAKER_03
transcript.pyannote[253].start 738.85221875
transcript.pyannote[253].end 739.10534375
transcript.pyannote[254].speaker SPEAKER_02
transcript.pyannote[254].start 739.10534375
transcript.pyannote[254].end 741.70409375
transcript.pyannote[255].speaker SPEAKER_02
transcript.pyannote[255].start 742.14284375
transcript.pyannote[255].end 746.69909375
transcript.pyannote[256].speaker SPEAKER_03
transcript.pyannote[256].start 744.35346875
transcript.pyannote[256].end 745.18034375
transcript.pyannote[257].speaker SPEAKER_02
transcript.pyannote[257].start 747.15471875
transcript.pyannote[257].end 761.31284375
transcript.pyannote[258].speaker SPEAKER_00
transcript.pyannote[258].start 750.98534375
transcript.pyannote[258].end 751.05284375
transcript.pyannote[259].speaker SPEAKER_00
transcript.pyannote[259].start 761.46471875
transcript.pyannote[259].end 770.64471875
transcript.pyannote[260].speaker SPEAKER_00
transcript.pyannote[260].start 770.96534375
transcript.pyannote[260].end 790.21971875
transcript.pyannote[261].speaker SPEAKER_01
transcript.pyannote[261].start 772.07909375
transcript.pyannote[261].end 772.99034375
transcript.pyannote[262].speaker SPEAKER_01
transcript.pyannote[262].start 777.15846875
transcript.pyannote[262].end 777.51284375
transcript.pyannote[263].speaker SPEAKER_01
transcript.pyannote[263].start 783.26721875
transcript.pyannote[263].end 783.30096875
transcript.pyannote[264].speaker SPEAKER_02
transcript.pyannote[264].start 783.30096875
transcript.pyannote[264].end 783.58784375
transcript.pyannote[265].speaker SPEAKER_02
transcript.pyannote[265].start 788.24534375
transcript.pyannote[265].end 788.48159375
transcript.pyannote[266].speaker SPEAKER_02
transcript.pyannote[266].start 788.71784375
transcript.pyannote[266].end 791.56971875
transcript.pyannote[267].speaker SPEAKER_00
transcript.pyannote[267].start 791.95784375
transcript.pyannote[267].end 792.34596875
transcript.pyannote[268].speaker SPEAKER_02
transcript.pyannote[268].start 792.10971875
transcript.pyannote[268].end 795.40034375
transcript.pyannote[269].speaker SPEAKER_00
transcript.pyannote[269].start 795.40034375
transcript.pyannote[269].end 807.34784375
transcript.pyannote[270].speaker SPEAKER_02
transcript.pyannote[270].start 802.97721875
transcript.pyannote[270].end 802.99409375
transcript.pyannote[271].speaker SPEAKER_03
transcript.pyannote[271].start 802.99409375
transcript.pyannote[271].end 803.58471875
transcript.pyannote[272].speaker SPEAKER_03
transcript.pyannote[272].start 804.44534375
transcript.pyannote[272].end 804.69846875
transcript.pyannote[273].speaker SPEAKER_03
transcript.pyannote[273].start 807.34784375
transcript.pyannote[273].end 807.76971875
transcript.pyannote[274].speaker SPEAKER_00
transcript.pyannote[274].start 807.38159375
transcript.pyannote[274].end 811.65096875
transcript.pyannote[275].speaker SPEAKER_03
transcript.pyannote[275].start 810.09846875
transcript.pyannote[275].end 812.15721875
transcript.pyannote[276].speaker SPEAKER_00
transcript.pyannote[276].start 812.15721875
transcript.pyannote[276].end 814.67159375
transcript.pyannote[277].speaker SPEAKER_03
transcript.pyannote[277].start 813.10221875
transcript.pyannote[277].end 814.09784375
transcript.pyannote[278].speaker SPEAKER_03
transcript.pyannote[278].start 814.67159375
transcript.pyannote[278].end 816.30846875
transcript.whisperx[0].start 0.85
transcript.whisperx[0].end 19.764
transcript.whisperx[0].text 好,謝謝主席。有請部長。請許部長。劉仁浩。部長喔。部長要走了。
transcript.whisperx[1].start 20.816
transcript.whisperx[1].end 41.936
transcript.whisperx[1].text 有沒有什麼話要說?謝謝啦 這個在衛福委員會我在所有的委員的這個指教跟支持下也推動了很多政策跟法案那當然還有很多努力的空間那就留待給下一位我們何部長來繼續努力 謝謝
transcript.whisperx[2].start 45.419
transcript.whisperx[2].end 47.761
transcript.whisperx[2].text 之前的那個五戶集團的那個
transcript.whisperx[3].start 74.613
transcript.whisperx[3].end 93.865
transcript.whisperx[3].text 應該是五五集團他們的餐飲。竭力啦。竭力。他是在去年的時候無預警的宣布倒閉嘛。那旗下品牌的相關在台的這個模式將近三十天也突然結束營業。那許多的這個員工都是臨時收到通知。是員工上班上到一半。
transcript.whisperx[4].start 94.865
transcript.whisperx[4].end 114.291
transcript.whisperx[4].text 被同事不用上班了。總計大概有500名員工因此失業嘛。那根據勞動部有回報本席的辦公室是說相關的員工其實都已經有做妥適的安排與協助。有,因為在餐飲業很缺工啦,所以那個轉閒轉業沒有問題。好。啊那個,如果他那個資遣費,其實我們有一些電廠,我們那個電廠機制也都會
transcript.whisperx[5].start 118.152
transcript.whisperx[5].end 123.899
transcript.whisperx[5].text 我知道我知道,這個有回復我清楚了齁,但是我現在想說這個是我們回過頭來看啦齁,就是說這個集團當時有申請大量解雇嗎?沒有,沒有嘛。對,但是負責人已經不見了啦。
transcript.whisperx[6].start 138.089
transcript.whisperx[6].end 150.26
transcript.whisperx[6].text 因為負責人不見消失了嘛,所以你要處罰他也處罰不到嘛。好,那我現在回過頭來討論這個事情,我現在要提到叫做預警機制嘛。我們大集會裡面是有設這個預警的機制。
transcript.whisperx[7].start 153.183
transcript.whisperx[7].end 173.595
transcript.whisperx[7].text 也就是說雇用勞工三十年以上的事業單位有下列情形者之一啦有相關單位或人員向主管機關通報嘛 對不對這其中裡面它包括123基建工資、勞健保、全部或主要營業之部分停工第三決議併購或最近兩年曾發生重大勞資爭議嘛 對不對好
transcript.whisperx[8].start 176.616
transcript.whisperx[8].end 193.602
transcript.whisperx[8].text 這個是我們在大型款裡面第11條有這個設置這樣的一個預警的一個機制但是他的123款裡面跟剛剛我提的這個這家的這個龍頭的這個餐飲業的狀態有適用嗎?他都沒有發生這個狀況對嘛對嘛所以這個預警機制對這個事件來講是沒有作用的應該是怎麼說嗎?
transcript.whisperx[9].start 203.997
transcript.whisperx[9].end 224.61
transcript.whisperx[9].text 我是講第一個樣態因為這家公司他涉入吸金案導致子公司受到影響所以他走到這個地步其實坦白講是不難預料是不難預料然後地方人勞工局應該是啟動這個預警機制他要啟動但是依據我們的第11條好像又沒有他這樣的一個樣態要怎麼去啟動然後再來
transcript.whisperx[10].start 231.092
transcript.whisperx[10].end 233.154
transcript.whisperx[10].text 應該是接受到負責人的命令或
transcript.whisperx[11].start 258.9
transcript.whisperx[11].end 285.098
transcript.whisperx[11].text 我是要去提供這樣的一個樣態等一下我再提供一個樣態給部長跟市長做參考我調出這個我們大量解僱勞工保護法裡面的一個修法歷程大量解僱勞工保護法其實最近一次修法是在104年那個時候是配有主改名稱改而已然後會變勞動部再來離那一次之後再往前一次是97年民國97年也就是說從97年到現在已經將近16年
transcript.whisperx[12].start 290.501
transcript.whisperx[12].end 304.114
transcript.whisperx[12].text 這個大量解雇勞工保護法並沒有去做任何的修正,除了一個主改,改名稱而已。這個部分要請部長思考,跟市長思考一下。同樣在這16年內,我們也遇到了這個109年的時候,
transcript.whisperx[13].start 306.256
transcript.whisperx[13].end 332.053
transcript.whisperx[13].text 爆發COVID-19的這個疫情當時有申請大量解雇的案件從平均每年200多件一口氣飆升到364件將近70%的成長然後通報解雇人數高達14500多人依據大解法的第4條規定社會單位大量解雇勞工時應在60日前提出解雇計畫書
transcript.whisperx[14].start 333.735
transcript.whisperx[14].end 344.515
transcript.whisperx[14].text 那只有天災、事變或突發事件天災、事變及突發事件才能不受60日的限制但是在109年的疫情
transcript.whisperx[15].start 345.171
transcript.whisperx[15].end 372.236
transcript.whisperx[15].text 未依規定60日前提出解雇計畫書遭罰的案件就有43件了。110年有32件、111有22件、12有30件、去年還有30件。但是我要請教部長,這個疫情到底算不算天災?到底算不算事變?到底算不算突發事件?不是,他現在是說疫情,其實這個應該我是覺得
transcript.whisperx[16].start 374.508
transcript.whisperx[16].end 375.157
transcript.whisperx[16].text 還不至於60天.
transcript.whisperx[17].start 376.505
transcript.whisperx[17].end 385.107
transcript.whisperx[17].text 市長講不屬於在、天災、事變、土豪事件。但是部長你對法律也是有你的專業、有你的經驗。但是你看這個COVID-19的疫情誰當時料想得到?誰料想得到它會多久?
transcript.whisperx[18].start 406.232
transcript.whisperx[18].end 418.361
transcript.whisperx[18].text 對不對?沒人想到啦。然後當時的船運又出了多大問題。整個運輸又出了什麼樣的一個狀況。這個難道都不算在突發事件裡面嗎?突發事件裡面嗎?
transcript.whisperx[19].start 422.886
transcript.whisperx[19].end 449.815
transcript.whisperx[19].text 這不人想會搞的啊好 那我再用一個例子給部長跟市長做參考嘛我這邊有個案例嘉義縣有某這個經營家具外銷公司主要是因為疫情訂單減少以及臨時得知客戶無法無法付款屬突發事件照理講他是應該不受60日前的這個通報限制的但勞動部書院委員會認為他是講他是這麼講說全球疫情已持續一段時間
transcript.whisperx[20].start 451.175
transcript.whisperx[20].end 457.739
transcript.whisperx[20].text 持續一段時間可事先預知訂單將會減少。相關的營運及人事管理應由所準備並非不可預見緊急事件也因此違反大清法第4條規定處時到50萬的罰款
transcript.whisperx[21].start 478.018
transcript.whisperx[21].end 500.648
transcript.whisperx[21].text 我想這個個案判斷我這邊要尊重勞動部的稅務委員會的決定我不是要探討這件事情的實際上採取的內容但是我是強調說當你要去做出這樣的採取過程裡面你所續名這樣的理由我會覺得我會覺得好像可以論述再更完整一點我是覺得這樣有點簡單因為
transcript.whisperx[22].start 505.02
transcript.whisperx[22].end 533.2
transcript.whisperx[22].text 你跟我都一樣吶吼,包含應該衆議院委員會的委員都一樣沒有人有辦法去預估怎麼會有這樣的疫情啊這個疫情到底要延續多久沒有一個人有辦法去把這個事情去預見那我們怎麼相對要求業主相對的在產業界的這些人他有辦法去預見這樣的事情那不可能的事啊所以我是要舉這兩個樣態然後又16年沒有修這個大街法
transcript.whisperx[23].start 534.272
transcript.whisperx[23].end 553.731
transcript.whisperx[23].text 是不是在部長要臨別秋去的時候,留下美麗的身影。這事情是不是可以在你要介於畢業之前,可以來思考、發動。是不是來處理當然解僱法,勞工保護法。當然解僱勞工的保護法。
transcript.whisperx[24].start 555.633
transcript.whisperx[24].end 555.753
transcript.whisperx[24].text 來,第二題齁
transcript.whisperx[25].start 577.441
transcript.whisperx[25].end 594.926
transcript.whisperx[25].text 403大地震濫這個花蓮成為重災區那花蓮縣府已經獲得兩家旅宿業者的申請大量解雇嘛分別申報83人及4人共有116人要失業但是同月4月23日又餘震再增加了一間花蓮的這個富凱飯店傾倒那預計兩週內就必須要拆除這個飯店的建築
transcript.whisperx[26].start 600.865
transcript.whisperx[26].end 615.263
transcript.whisperx[26].text 我想這個換天他也一定符合大計劃第4條所定的天災事變或突發事件嘛齁那如果這項換天再提出大量解雇的申請花園就有三家了啦花園就有三家我是要說
transcript.whisperx[27].start 616.604
transcript.whisperx[27].end 634.251
transcript.whisperx[27].text 花蓮這次地震掉了這個10億光光的產值那可能還會再增加也不一定那接下來又是暑假的檔期真的是非常不樂觀所以可能會有相關的聯動性的業者也會去啟動這個大量解雇的這樣的一個狀況會陸續出現那我必須要講說
transcript.whisperx[28].start 639.233
transcript.whisperx[28].end 656.383
transcript.whisperx[28].text 因為大量解雇和失業的員工,透過勞動部的就業服務的轉介,要在花蓮找到相同性質的工作,不簡單了,一定難度嘛,而且它是整個,它絕對不是一個單一的旅宿業的倒閉嘛,所以整個花蓮區域性的產業問題,這個真的是
transcript.whisperx[29].start 658.624
transcript.whisperx[29].end 659.024
transcript.whisperx[29].text 但是重點就是說我現在有專人
transcript.whisperx[30].start 679.398
transcript.whisperx[30].end 694.729
transcript.whisperx[30].text 正在目前花蓮的整個狀況包括勞工的這些失業、就業這些需要幫忙的我們有專人在處理那隨時也都跟花蓮縣政府這邊保持聯繫我們就是即時的援助就是說
transcript.whisperx[31].start 697.031
transcript.whisperx[31].end 718.613
transcript.whisperx[31].text 但是就像剛剛委員講的因為畢竟他現在整個是觀光產業都受影響有時候轉業因為可能不像說在西部這麼方便所以要跨域也會有困難不過現在是我們至少還有一個零工措施或者失業給付還可以撐一些時間不過其他的產業部分我們是現在透過
transcript.whisperx[32].start 719.594
transcript.whisperx[32].end 740.684
transcript.whisperx[32].text 就是說雖然沒有辦法到那邊去旅遊或什麼的那其他產業我們用其他的方式比如網購或什麼來支持那讓這些產業他可能會增加用人的需求然後能夠去解決這些問題那其實我那天也我們署長也上個禮拜先過去了我叫他去現場瞭解那可能要瞭解後續還有些問題我們要先
transcript.whisperx[33].start 742.525
transcript.whisperx[33].end 758.977
transcript.whisperx[33].text 要有一些預先的規劃要有前瞻的規劃因為這個影響是會持續到一段相當的時間看怎麼幫忙就像我們當初疫情先做最壞的打算做最好的準備所以也謝謝委員提醒我們這個都來全盤的關注
transcript.whisperx[34].start 761.679
transcript.whisperx[34].end 773.736
transcript.whisperx[34].text 對,所以剛才部長特別提到嘛,預先嘛齁,還是說預估嘛、預防嘛,包含剛才我特別提到大節晚裡面的預警嘛齁,這其實預防剩餘一些的證項嘛,這個我們大家都很清楚齁。
transcript.whisperx[35].start 774.383
transcript.whisperx[35].end 795.713
transcript.whisperx[35].text 那過去我們也有921的這麼嚴重的大跡象.比花蓮這個大跡象當然更嚴重到N倍以上當時怎麼去做因應、怎麼去預估、怎麼去做預宣的一些事情我想這個部分來不可能要協同交通部、協同經濟部對、對、對就跨部會我們跨部會來行政院有召開相關的跨部會會議來協助那當然希望部長在所謹慎的
transcript.whisperx[36].start 800.185
transcript.whisperx[36].end 800.325
transcript.whisperx[36].text 謝謝劉建國委員