iVOD / 149948

Field Value
IVOD_ID 149948
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/149948
日期 2024-03-18
會議資料.會議代碼 委員會-11-1-20-4
會議資料.會議代碼:str 第11屆第1會期財政委員會第4次全體委員會議
會議資料.屆 11
會議資料.會期 1
會議資料.會次 4
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第1會期財政委員會第4次全體委員會議
影片種類 Clip
開始時間 2024-03-18T09:58:15+08:00
結束時間 2024-03-18T10:12:09+08:00
影片長度 00:13:54
支援功能[0] ai-transcript
支援功能[1] gazette
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/14550b3f67fe733a2e2228bab706676b1b0cd19bcd66f1b3f8ba9b0039caa7a6e36a7e1fe41ef3ff5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 賴士葆
委員發言時間 09:58:15 - 10:12:09
會議時間 2024-03-18T09:00:00+08:00
會議名稱 立法院第11屆第1會期財政委員會第4次全體委員會議(事由:邀請金融監督管理委員會黃主任委員天牧率臺灣證券交易所股份有限公司林董事長修銘及財團法人中華民國證券櫃檯買賣中心陳董事長永誠、中央銀行分別就「從ETF熱賣看政府如何健全投資管道引導民間游資,避免熱錢過度投入房市」進行專題報告,並備質詢。 【3月18日及20日二天一次會】)
gazette.lineno 325
gazette.blocks[0][0] 賴委員士葆:(9時58分)謝謝主席以及各位先進。有請金管會黃主委。
gazette.blocks[1][0] 主席:有請黃主委。
gazette.blocks[2][0] 黃主任委員天牧:委員好。
gazette.blocks[3][0] 賴委員士葆:主委早。今天討論ETF,我等一下講我的感想。我們先看一下國發會在2月底有一份報告指出,臺灣的經濟自由度是全球排名第4名,相當自由,臺灣的經濟很活潑的,可是財務自由度只有第40名、投資自由度是第39名,這代表我們的財務、我們的投資不自由。我們的經濟很自由,我們的投資很不自由,你看,在全世界的排名是第40名啊!大家都知道臺灣的經貿實力,雖然臺灣小,但是很粗略地講,我們臺灣的經貿實力在全世界排名大概是第15、16、17左右,是相當前面的,結果自由度掉到40,這個講起來很丟臉啊!這裡面跟我們金管會有太多的禁止、管這個、管那個有關係喔!你要不要對這個做一個回應?
gazette.blocks[4][0] 黃主任委員天牧:委員,如果您是說圖中間那邊講我們禁止,目前不允許複委託買比特幣現貨……
gazette.blocks[5][0] 賴委員士葆:不是,我還沒講到那個,我現在跟你講的是自由度,你要不要回應一下?就是人家說我們這裡投資自由度39、財務自由度40。
gazette.blocks[6][0] 黃主任委員天牧:這個不見得講金管會啊!
gazette.blocks[7][0] 賴委員士葆:你當然有關啊!因為這代表我們的投資不自由啊!
gazette.blocks[8][0] 黃主任委員天牧:不會啊!我剛才跟你報告,我們今天報告提到,現在的複委託,國人要透過券商複委託或是直接投資都……
gazette.blocks[9][0] 賴委員士葆:好,你既然講複委託,我就跟你講一個……
gazette.blocks[10][0] 黃主任委員天牧:央行也沒有不同意。
gazette.blocks[11][0] 賴委員士葆:好,1月20號你更新了喔!禁止透過複委託買成分有比特幣的ETF,請問你的理由是什麼?
gazette.blocks[12][0] 黃主任委員天牧:好,我跟您報告,第一個,美國證管會把比特幣當作有價證券,但是依臺灣的證交法,比特幣是不是有價證券?其實是不確定的。另外跟您報告,我為什麼剛才離開備詢臺?這份是1月10號美國證管會同意比特幣現貨交易的一個新聞稿,最後一段話是美國證管會主席Gary Gensler說,他同意它上市,那是因為法院駁回他不准它上市,並不表示他endorse或是他prove比特幣的性質。這是美國證管會的說明……
gazette.blocks[13][0] 賴委員士葆:好,我不跟你討論比特幣,你這次……
gazette.blocks[14][0] 黃主任委員天牧:我再跟你報告,南韓、新加坡、泰國都不准許投資人買比特幣……
gazette.blocks[15][0] 賴委員士葆:好,我不跟你討論比特幣的事情。
gazette.blocks[16][0] 黃主任委員天牧:這邊還有講,美國的Vanguard也不許交易。
gazette.blocks[17][0] 賴委員士葆:你不要那麼激動,來,我跟你講一個……
gazette.blocks[18][0] 黃主任委員天牧:我沒有激動,我只是跟您報告事實。
gazette.blocks[19][0] 賴委員士葆:你有很重要的理由,你今天一直沒有講這個東西,因為它沒有實體。
gazette.blocks[20][0] 黃主任委員天牧:它沒有內含價值。
gazette.blocks[21][0] 賴委員士葆:對,那我就問你,現在美國已經有未上市的、公開發行的,OpenAI已經快要上市了,請問OpenAI可不可以、你以後會不會禁止?OpenAI也沒有實體的、沒有具體內容的喔!OpenAI你要不要禁止?
gazette.blocks[22][0] 黃主任委員天牧:這兩個是類比,不太一樣吧!
gazette.blocks[23][0] 賴委員士葆:幾乎是一樣,因為你當初只是……你今天講得扯到旁邊去了,你用其他的文來endorse你的作法,但是你沒有講出來你當時候禁止的一個理由,是它沒有實體的東西、沒有內在的,這個很重要,我……
gazette.blocks[24][0] 黃主任委員天牧:委員,我跟您報告,1月初美國上市現貨ETF,證期局是請券商公會先不要接受這種買單、複委託,而是研擬配套措施,看可不可以有適當的措施,等到4月底以後再做決定。
gazette.blocks[25][0] 賴委員士葆:什麼時候決定?
gazette.blocks[26][0] 黃主任委員天牧:4月底以後。
gazette.blocks[27][0] 賴委員士葆:就決定……
gazette.blocks[28][0] 黃主任委員天牧:配套措施。
gazette.blocks[29][0] 賴委員士葆:ETF要不要包括比特幣,是不是?
gazette.blocks[30][0] 黃主任委員天牧:不是,是複委託要不要涵蓋美國現貨ETF的商品。
gazette.blocks[31][0] 賴委員士葆:那就是包括比特幣了。
gazette.blocks[32][0] 黃主任委員天牧:就是,對,沒錯。
gazette.blocks[33][0] 賴委員士葆:4月底,好。我們現在回到今天講的ETF,沒有,我覺得你要去查一下啦!國發會這樣的一個報告,你的認知居然跟我的認知完全不一樣,如果今天我是你,我一定會去檢討,金管會做了哪些事情,為什麼投資自由度這麼低?在全球排39名、財務自由度排40名。
gazette.blocks[33][1] 我們看到ETF,請問臺灣最早什麼時候發行ETF?最早,第一檔的ETF。
gazette.blocks[34][0] 黃主任委員天牧:ETF,臺灣是92年。
gazette.blocks[35][0] 賴委員士葆:2003年?
gazette.blocks[36][0] 黃主任委員天牧:對。
gazette.blocks[37][0] 賴委員士葆:美國最早什麼時候?
gazette.blocks[38][0] 黃主任委員天牧:82年吧!
gazette.blocks[39][0] 賴委員士葆:1992年,所以跟美國足足差了10年。
gazette.blocks[40][0] 黃主任委員天牧:對。
gazette.blocks[41][0] 賴委員士葆:我聽到的ETF,我們歷任的金管會主委都不斷地鼓勵大家多買ETF,因為風險分散、因為有專業的人幫你看啊!曾幾何時,ETF怎麼變成今天要排這個專案報告,我感覺ETF有點像過街老鼠一樣啊!曾幾何時,怎麼變成大家怕ETF怕成這樣子。主委,到底你是在管ETF,還是你就是管它的促銷手段?比如說網紅接廣告,到底是什麼?
gazette.blocks[42][0] 黃主任委員天牧:報告委員,其實您提的這個問題,我很感謝您問這個問題,這就是重點,我們從頭到尾、過去這個禮拜都沒有說要限制ETF,沒有,這是一個商品,適合國民去投資,如果它適合……
gazette.blocks[43][0] 賴委員士葆:鼓勵或不鼓勵?你告訴我。
gazette.blocks[44][0] 黃主任委員天牧:沒有什麼鼓勵或不鼓勵,我們……
gazette.blocks[45][0] 賴委員士葆:你發行就是鼓勵啊!我們在這裡我請教過你啊!我說應該來一個加薪50或者加薪100,鼓勵這些上市公司加薪的就給它放進來,大家來買這個股票。
gazette.blocks[46][0] 黃主任委員天牧:我們有類似的指數啦!
gazette.blocks[47][0] 賴委員士葆:對不對?
gazette.blocks[48][0] 黃主任委員天牧:有類似的指數。
gazette.blocks[49][0] 賴委員士葆:它有ESG,你沒有加薪100啊!有嗎?
gazette.blocks[50][0] 黃主任委員天牧:有,那種薪酬的好像高薪100有,高薪100的……
gazette.blocks[51][0] 賴委員士葆:不是高薪100,是加薪100,你講的是絕對值,我講的是……
gazette.blocks[52][0] 黃主任委員天牧:加薪其實很難去……那是一個……
gazette.blocks[53][0] 賴委員士葆:每年都加薪啊!你就跟他說我的加薪幅度是最高的,這不是高薪啊!高薪是另外一件事。好,我得到的訊息是,其實ETF本身沒有問題,它本身是幫老百姓、投資股民風險分散,幫他挑一些好的股、有特性的股,可是現在問題來了,因為這些網紅亂吹牛一通,還說一定有八點多%啦!然後每個月還要配息等等,所以為了配息,可能如果同時的話,有些的ETF沒有講好,但是有默契,大家都lock住那個股票,第一個,它助漲啊!或者以後助跌啊!就變成這個樣子啊!會不會?
gazette.blocks[54][0] 黃主任委員天牧:委員,您是專家,你講的是對的啊!就是它沒有充分揭露這個商品的風險,也在很多商品的條件上有誤導的情況,比方說把配息跟存款的利率做相比較,或者將過去的績效拿來預測未來也會如此,這是要提醒有這種……
gazette.blocks[55][0] 賴委員士葆:我問你最實際的,有網紅說可以把房子拿去抵押來買ETF,這樣的講法你認不認同?
gazette.blocks[56][0] 黃主任委員天牧:那是風險很高的,為什麼?因為ETF的成分股,漲跌也不是發行的投信能決定的啊!還是要看市場的機制,所以過去漲不表示未來一定會漲。
gazette.blocks[57][0] 賴委員士葆:我的時間快到了,我還有一個重點要問,副總裁一起來好不好?
gazette.blocks[58][0] 主席:有請副總裁。
gazette.blocks[59][0] 賴委員士葆:公平會在去年2月已經對網紅的廣告不實要罰5萬到2,500萬,因為網紅不是賣家,他是代言人,要負責任的。結果金管會現在,你可以看喔!對投信管得很嚴格,可是對網紅你們好像沒有任何皮條,會不會?對於網紅這一部分,來,主委。
gazette.blocks[60][0] 黃主任委員天牧:報告委員……
gazette.blocks[61][0] 賴委員士葆:網紅推薦買ETF,到處都是,你們有沒有處置辦法?
gazette.blocks[62][0] 黃主任委員天牧:報告委員,如果我說錯了,你可以指導我,好像是3月8號才規範的,不是去年2月。
gazette.blocks[63][0] 賴委員士葆:沒有,去年2月就規範了。
gazette.blocks[64][0] 黃主任委員天牧:好,沒關係,我們有再……
gazette.blocks[65][0] 賴委員士葆:沒關係,去年有,也許這個是再修正。
gazette.blocks[66][0] 黃主任委員天牧:我們111年就有規範要加註警語,實踐上面可能有些公司並沒有真正照公會的廣告規範……
gazette.blocks[67][0] 賴委員士葆:你們要不要去取締這些話講得誇大的網紅?有沒有這個工具?
gazette.blocks[68][0] 黃主任委員天牧:我們正在思考,公平會雖然有祭出這個高額罰款的罰則,但還是要有一個機制看要怎麼去檢舉,也要有事證,這部分我們想跟公會再去做一個溝通,現在我們報告中有寫到,6月底之前我們會把這個規範弄好。
gazette.blocks[69][0] 賴委員士葆:好,我請教央行的副總裁,日本結束負利率,外面的估算……因為日本央行明天開會,澳洲是明天(3月19日)開會,然後我們臺灣是21號開會,俄羅斯22號開會。現在全世界面對幾乎所有金融商品都在漲的情況之下,請問你,以現在來講,央行未來的利率走向是怎麼樣?
gazette.blocks[70][0] 嚴副總裁宗大:報告委員,因為傳統上我們每一次開會之前,都會針對當前的國內外經濟金融情勢以及未來的發展做評估,所以其實您提到的這些,不管是日本或者其他央行的貨幣政策是我們隨時在關注的。
gazette.blocks[71][0] 賴委員士葆:其他國家的央行現在利率是偏向漲還是跌?還是……
gazette.blocks[72][0] 嚴副總裁宗大:報告委員,因為各國的國情不一樣,所以我們很難用其他國家的例子來隱含說明我們……
gazette.blocks[73][0] 賴委員士葆:臺灣現在錢有太多嗎?
gazette.blocks[74][0] 嚴副總裁宗大:根據我們剛才的報告,銀行的那個資金,其實我們在整個NCD的操作或者是銀行的超額準備那邊,在銀行端我們看不到這樣的現象,而且我們內部也有一些指標在注意國內金融市場的變動情形。
gazette.blocks[75][0] 賴委員士葆:我們閒置的貨幣有三點多兆,不會太多?
gazette.blocks[76][0] 嚴副總裁宗大:我不曉得那個三點多兆您的意思是?
gazette.blocks[77][0] 賴委員士葆:以前是兩點多兆,現在變三點多兆了,超額儲蓄啦!會不會太多?
gazette.blocks[78][0] 嚴副總裁宗大:我還是不太瞭解委員那個數字講的是哪一個數據?
gazette.blocks[79][0] 賴委員士葆:沒有這個事嗎?那你告訴我現在超額儲蓄有多少,臺灣現在的超額儲蓄有多少錢?
gazette.blocks[80][0] 嚴副總裁宗大:我們這邊有一個圖,應該……
gazette.blocks[81][0] 賴委員士葆:有多少?你講,因為我時間到了,你趕快講。
gazette.blocks[82][0] 嚴副總裁宗大:三點……
gazette.blocks[83][0] 賴委員士葆:3.8?
gazette.blocks[84][0] 嚴副總裁宗大:我們這邊是3.3。
gazette.blocks[85][0] 賴委員士葆:我跟你說是三點多,你又說不是,奇怪!我剛才一直講,你又說不是,結果現在說三點多,你也是……
gazette.blocks[86][0] 嚴副總裁宗大:報告委員,因為那個……
gazette.blocks[87][0] 賴委員士葆:好,你不要再講了,我時間到了。再來,熱錢有多少?
gazette.blocks[88][0] 嚴副總裁宗大:熱錢,我們並沒有……
gazette.blocks[89][0] 賴委員士葆:統計?
gazette.blocks[90][0] 嚴副總裁宗大:我們並沒有定義所謂的熱錢,熱錢是金融機構之間的資金流動和調動。
gazette.blocks[91][0] 賴委員士葆:黃主委,熱錢有多少?外資進來的。
gazette.blocks[92][0] 黃主任委員天牧:流量的部分可能只有央行知道。
gazette.blocks[93][0] 賴委員士葆:央行知道啊,怎麼不知道!來,副總裁跟我講一下,我就跟主席換。
gazette.blocks[94][0] 嚴副總裁宗大:熱錢,我們過去……
gazette.blocks[95][0] 賴委員士葆:就是你出去多少、進來多少,然後這些短時間流入在這裡,股票買一買就出去,這個叫熱錢,你不知道?
gazette.blocks[96][0] 嚴副總裁宗大:我們所謂的熱錢是外資賣完股票,有一段時間停留在臺灣的數字。
gazette.blocks[97][0] 賴委員士葆:對,那個是多少?How much?
gazette.blocks[98][0] 嚴副總裁宗大:我印象中大概都是一千多億而已。
gazette.blocks[99][0] 賴委員士葆:美金還是臺幣?
gazette.blocks[100][0] 嚴副總裁宗大:臺幣。
gazette.blocks[101][0] 賴委員士葆:臺幣一千多億,到現在為止嘛,這個其實……
gazette.blocks[102][0] 嚴副總裁宗大:我再補充一下,你講的那個3.3億的超額儲蓄其實是在銀行……
gazette.blocks[103][0] 賴委員士葆:3.3兆。
gazette.blocks[104][0] 嚴副總裁宗大:3.3兆,那個其實在銀行體系、金融體系裡面,散布在各個金融機構資金的運用情形。
gazette.blocks[105][0] 主席:好,謝謝賴士葆委員的質詢。
gazette.blocks[106][0] 黃主任委員天牧:謝謝委員。
gazette.blocks[107][0] 主席(賴士葆委員代):現在我們請郭國文委員質詢。
gazette.agenda.page_end 214
gazette.agenda.meet_id 委員會-11-1-20-4
gazette.agenda.speakers[0] 郭國文
gazette.agenda.speakers[1] 林德福
gazette.agenda.speakers[2] 吳秉叡
gazette.agenda.speakers[3] 李彥秀
gazette.agenda.speakers[4] 賴士葆
gazette.agenda.speakers[5] 賴惠員
gazette.agenda.speakers[6] 羅明才
gazette.agenda.speakers[7] 黃珊珊
gazette.agenda.speakers[8] 顏寬恒
gazette.agenda.speakers[9] 伍麗華Saidhai‧Tahovecahe
gazette.agenda.speakers[10] 王鴻薇
gazette.agenda.speakers[11] 陳玉珍
gazette.agenda.speakers[12] 李坤城
gazette.agenda.speakers[13] 洪孟楷
gazette.agenda.speakers[14] 王世堅
gazette.agenda.speakers[15] 林楚茵
gazette.agenda.speakers[16] 牛煦庭
gazette.agenda.speakers[17] 徐巧芯
gazette.agenda.page_start 147
gazette.agenda.meetingDate[0] 2024-03-18
gazette.agenda.gazette_id 1131601
gazette.agenda.agenda_lcidc_ids[0] 1131601_00004
gazette.agenda.meet_name 立法院第11屆第1會期財政委員會第4次全體委員會議紀錄
gazette.agenda.content 邀請金融監督管理委員會黃主任委員天牧率臺灣證券交易所股份有限公司林董事長修銘及財團法 人中華民國證券櫃檯買賣中心陳董事長永誠、中央銀行分別就「從 ETF 熱賣看政府如何健全投資 管道引導民間游資,避免熱錢過度投入房市」進行專題報告,並備質詢
gazette.agenda.agenda_id 1131601_00003
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 9.29534375
transcript.pyannote[0].end 11.60721875
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 11.99534375
transcript.pyannote[1].end 14.07096875
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 14.29034375
transcript.pyannote[2].end 14.89784375
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 18.01971875
transcript.pyannote[3].end 18.84659375
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 19.82534375
transcript.pyannote[4].end 21.10784375
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 22.15409375
transcript.pyannote[5].end 22.64346875
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 23.26784375
transcript.pyannote[6].end 25.93409375
transcript.pyannote[7].speaker SPEAKER_02
transcript.pyannote[7].start 26.98034375
transcript.pyannote[7].end 29.20784375
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 30.42284375
transcript.pyannote[8].end 31.60409375
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 32.51534375
transcript.pyannote[9].end 33.32534375
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 33.52784375
transcript.pyannote[10].end 33.84846875
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 34.37159375
transcript.pyannote[11].end 35.41784375
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 36.26159375
transcript.pyannote[12].end 37.22346875
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 37.47659375
transcript.pyannote[13].end 38.75909375
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 39.48471875
transcript.pyannote[14].end 41.99909375
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 42.72471875
transcript.pyannote[15].end 44.44596875
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 45.08721875
transcript.pyannote[16].end 46.18409375
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 47.06159375
transcript.pyannote[17].end 49.00221875
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 49.55909375
transcript.pyannote[18].end 50.01471875
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 50.28471875
transcript.pyannote[19].end 52.47846875
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 53.25471875
transcript.pyannote[20].end 53.96346875
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 54.63846875
transcript.pyannote[21].end 56.02221875
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 56.19096875
transcript.pyannote[22].end 57.37221875
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 59.11034375
transcript.pyannote[23].end 62.08034375
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 62.24909375
transcript.pyannote[24].end 64.96596875
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 66.14721875
transcript.pyannote[25].end 68.47596875
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 69.21846875
transcript.pyannote[26].end 70.02846875
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 70.63596875
transcript.pyannote[27].end 73.08284375
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 73.53846875
transcript.pyannote[28].end 73.96034375
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 75.39471875
transcript.pyannote[29].end 76.89659375
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 77.84159375
transcript.pyannote[30].end 80.30534375
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 80.49096875
transcript.pyannote[31].end 83.27534375
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 84.32159375
transcript.pyannote[32].end 85.46909375
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 85.85721875
transcript.pyannote[33].end 88.11846875
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 89.43471875
transcript.pyannote[34].end 92.15159375
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 92.42159375
transcript.pyannote[35].end 93.83909375
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 94.46346875
transcript.pyannote[36].end 96.82596875
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 97.88909375
transcript.pyannote[37].end 98.73284375
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 100.25159375
transcript.pyannote[38].end 101.63534375
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 103.42409375
transcript.pyannote[39].end 105.06096875
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 105.65159375
transcript.pyannote[40].end 110.88284375
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 110.88284375
transcript.pyannote[41].end 112.84034375
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 113.21159375
transcript.pyannote[42].end 115.20284375
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 115.70909375
transcript.pyannote[43].end 116.62034375
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 116.97471875
transcript.pyannote[44].end 118.44284375
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 118.76346875
transcript.pyannote[45].end 121.02471875
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 121.04159375
transcript.pyannote[46].end 122.47596875
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 123.06659375
transcript.pyannote[47].end 124.60221875
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 126.50909375
transcript.pyannote[48].end 128.02784375
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 128.24721875
transcript.pyannote[49].end 129.61409375
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 129.61409375
transcript.pyannote[50].end 140.86971875
transcript.pyannote[51].speaker SPEAKER_02
transcript.pyannote[51].start 139.03034375
transcript.pyannote[51].end 140.98784375
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 140.98784375
transcript.pyannote[52].end 141.19034375
transcript.pyannote[53].speaker SPEAKER_02
transcript.pyannote[53].start 141.19034375
transcript.pyannote[53].end 141.30846875
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 141.30846875
transcript.pyannote[54].end 141.44346875
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 141.44346875
transcript.pyannote[55].end 141.46034375
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 142.59096875
transcript.pyannote[56].end 144.73409375
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 145.20659375
transcript.pyannote[57].end 147.41721875
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 147.97409375
transcript.pyannote[58].end 150.23534375
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 151.51784375
transcript.pyannote[59].end 152.39534375
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 152.39534375
transcript.pyannote[60].end 152.41221875
transcript.pyannote[61].speaker SPEAKER_02
transcript.pyannote[61].start 152.64846875
transcript.pyannote[61].end 152.96909375
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 152.96909375
transcript.pyannote[62].end 153.00284375
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 153.35721875
transcript.pyannote[63].end 154.47096875
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 155.01096875
transcript.pyannote[64].end 155.55096875
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 157.17096875
transcript.pyannote[65].end 169.40534375
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 169.92846875
transcript.pyannote[66].end 173.20221875
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 173.60721875
transcript.pyannote[67].end 177.04971875
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 177.89346875
transcript.pyannote[68].end 178.80471875
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 179.39534375
transcript.pyannote[69].end 181.70721875
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 182.17971875
transcript.pyannote[70].end 207.20534375
transcript.pyannote[71].speaker SPEAKER_02
transcript.pyannote[71].start 192.59159375
transcript.pyannote[71].end 194.22846875
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 194.48159375
transcript.pyannote[72].end 195.42659375
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 198.48096875
transcript.pyannote[73].end 200.67471875
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 201.94034375
transcript.pyannote[74].end 202.63221875
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 203.00346875
transcript.pyannote[75].end 204.42096875
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 204.45471875
transcript.pyannote[76].end 204.47159375
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 204.48846875
transcript.pyannote[77].end 207.17159375
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 207.20534375
transcript.pyannote[78].end 209.28096875
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 207.37409375
transcript.pyannote[79].end 208.03221875
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 210.59721875
transcript.pyannote[80].end 211.96409375
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 211.91346875
transcript.pyannote[81].end 213.82034375
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 214.07346875
transcript.pyannote[82].end 216.28409375
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 216.55409375
transcript.pyannote[83].end 218.91659375
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 219.50721875
transcript.pyannote[84].end 221.44784375
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 222.03846875
transcript.pyannote[85].end 224.58659375
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 225.80159375
transcript.pyannote[86].end 227.13471875
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 227.33721875
transcript.pyannote[87].end 228.58596875
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 228.94034375
transcript.pyannote[88].end 230.17221875
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 230.49284375
transcript.pyannote[89].end 232.48409375
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 232.48409375
transcript.pyannote[90].end 240.44909375
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 240.83721875
transcript.pyannote[91].end 244.24596875
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 244.33034375
transcript.pyannote[92].end 248.09346875
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 248.46471875
transcript.pyannote[93].end 249.59534375
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 249.59534375
transcript.pyannote[94].end 251.28284375
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 251.70471875
transcript.pyannote[95].end 252.34596875
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 252.53159375
transcript.pyannote[96].end 255.95721875
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 256.59846875
transcript.pyannote[97].end 269.86221875
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 266.95971875
transcript.pyannote[98].end 267.65159375
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 269.92971875
transcript.pyannote[99].end 272.05596875
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 270.94221875
transcript.pyannote[100].end 272.25846875
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 272.25846875
transcript.pyannote[101].end 272.66346875
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 272.66346875
transcript.pyannote[102].end 272.68034375
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 272.68034375
transcript.pyannote[103].end 278.06346875
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 272.78159375
transcript.pyannote[104].end 273.64221875
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 278.68784375
transcript.pyannote[105].end 279.14346875
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 279.14346875
transcript.pyannote[106].end 279.88596875
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 280.47659375
transcript.pyannote[107].end 281.59034375
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 281.89409375
transcript.pyannote[108].end 282.90659375
transcript.pyannote[109].speaker SPEAKER_02
transcript.pyannote[109].start 283.37909375
transcript.pyannote[109].end 286.26471875
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 286.58534375
transcript.pyannote[110].end 288.18846875
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 288.93096875
transcript.pyannote[111].end 291.25971875
transcript.pyannote[112].speaker SPEAKER_02
transcript.pyannote[112].start 292.39034375
transcript.pyannote[112].end 294.49971875
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 295.64721875
transcript.pyannote[113].end 298.02659375
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 298.27971875
transcript.pyannote[114].end 302.38034375
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 302.86971875
transcript.pyannote[115].end 304.50659375
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 304.60784375
transcript.pyannote[116].end 306.41346875
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 306.78471875
transcript.pyannote[117].end 307.67909375
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 307.78034375
transcript.pyannote[118].end 308.57346875
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 309.70409375
transcript.pyannote[119].end 310.46346875
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 310.73346875
transcript.pyannote[120].end 312.53909375
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 312.69096875
transcript.pyannote[121].end 313.09596875
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 313.72034375
transcript.pyannote[122].end 314.07471875
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 315.54284375
transcript.pyannote[123].end 315.88034375
transcript.pyannote[124].speaker SPEAKER_02
transcript.pyannote[124].start 316.21784375
transcript.pyannote[124].end 317.02784375
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 318.15846875
transcript.pyannote[125].end 319.55909375
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 321.92159375
transcript.pyannote[126].end 322.91721875
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 323.64284375
transcript.pyannote[127].end 326.84909375
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 325.51596875
transcript.pyannote[128].end 325.95471875
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 327.76034375
transcript.pyannote[129].end 330.25784375
transcript.pyannote[130].speaker SPEAKER_02
transcript.pyannote[130].start 329.43096875
transcript.pyannote[130].end 332.70471875
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 332.80596875
transcript.pyannote[131].end 333.07596875
transcript.pyannote[132].speaker SPEAKER_02
transcript.pyannote[132].start 333.75096875
transcript.pyannote[132].end 336.63659375
transcript.pyannote[133].speaker SPEAKER_02
transcript.pyannote[133].start 337.24409375
transcript.pyannote[133].end 339.84284375
transcript.pyannote[134].speaker SPEAKER_02
transcript.pyannote[134].start 340.55159375
transcript.pyannote[134].end 343.03221875
transcript.pyannote[135].speaker SPEAKER_02
transcript.pyannote[135].start 343.82534375
transcript.pyannote[135].end 345.09096875
transcript.pyannote[136].speaker SPEAKER_02
transcript.pyannote[136].start 345.31034375
transcript.pyannote[136].end 346.98096875
transcript.pyannote[137].speaker SPEAKER_02
transcript.pyannote[137].start 348.46596875
transcript.pyannote[137].end 350.52471875
transcript.pyannote[138].speaker SPEAKER_02
transcript.pyannote[138].start 351.35159375
transcript.pyannote[138].end 354.03471875
transcript.pyannote[139].speaker SPEAKER_02
transcript.pyannote[139].start 354.30471875
transcript.pyannote[139].end 355.53659375
transcript.pyannote[140].speaker SPEAKER_02
transcript.pyannote[140].start 355.90784375
transcript.pyannote[140].end 356.98784375
transcript.pyannote[141].speaker SPEAKER_02
transcript.pyannote[141].start 357.47721875
transcript.pyannote[141].end 359.63721875
transcript.pyannote[142].speaker SPEAKER_02
transcript.pyannote[142].start 360.98721875
transcript.pyannote[142].end 362.01659375
transcript.pyannote[143].speaker SPEAKER_02
transcript.pyannote[143].start 362.59034375
transcript.pyannote[143].end 363.06284375
transcript.pyannote[144].speaker SPEAKER_02
transcript.pyannote[144].start 363.68721875
transcript.pyannote[144].end 365.52659375
transcript.pyannote[145].speaker SPEAKER_02
transcript.pyannote[145].start 365.81346875
transcript.pyannote[145].end 368.09159375
transcript.pyannote[146].speaker SPEAKER_02
transcript.pyannote[146].start 368.42909375
transcript.pyannote[146].end 371.33159375
transcript.pyannote[147].speaker SPEAKER_00
transcript.pyannote[147].start 368.85096875
transcript.pyannote[147].end 369.42471875
transcript.pyannote[148].speaker SPEAKER_00
transcript.pyannote[148].start 370.65659375
transcript.pyannote[148].end 371.12909375
transcript.pyannote[149].speaker SPEAKER_00
transcript.pyannote[149].start 371.51721875
transcript.pyannote[149].end 384.22409375
transcript.pyannote[150].speaker SPEAKER_02
transcript.pyannote[150].start 383.49846875
transcript.pyannote[150].end 385.15221875
transcript.pyannote[151].speaker SPEAKER_00
transcript.pyannote[151].start 384.29159375
transcript.pyannote[151].end 385.13534375
transcript.pyannote[152].speaker SPEAKER_00
transcript.pyannote[152].start 385.15221875
transcript.pyannote[152].end 385.16909375
transcript.pyannote[153].speaker SPEAKER_02
transcript.pyannote[153].start 385.16909375
transcript.pyannote[153].end 385.18596875
transcript.pyannote[154].speaker SPEAKER_00
transcript.pyannote[154].start 385.18596875
transcript.pyannote[154].end 385.25346875
transcript.pyannote[155].speaker SPEAKER_00
transcript.pyannote[155].start 385.38846875
transcript.pyannote[155].end 387.04221875
transcript.pyannote[156].speaker SPEAKER_02
transcript.pyannote[156].start 387.04221875
transcript.pyannote[156].end 394.23096875
transcript.pyannote[157].speaker SPEAKER_00
transcript.pyannote[157].start 387.05909375
transcript.pyannote[157].end 388.03784375
transcript.pyannote[158].speaker SPEAKER_00
transcript.pyannote[158].start 388.08846875
transcript.pyannote[158].end 388.96596875
transcript.pyannote[159].speaker SPEAKER_02
transcript.pyannote[159].start 394.55159375
transcript.pyannote[159].end 395.68221875
transcript.pyannote[160].speaker SPEAKER_02
transcript.pyannote[160].start 396.30659375
transcript.pyannote[160].end 401.41971875
transcript.pyannote[161].speaker SPEAKER_00
transcript.pyannote[161].start 400.35659375
transcript.pyannote[161].end 403.95096875
transcript.pyannote[162].speaker SPEAKER_02
transcript.pyannote[162].start 402.28034375
transcript.pyannote[162].end 405.43596875
transcript.pyannote[163].speaker SPEAKER_00
transcript.pyannote[163].start 404.05221875
transcript.pyannote[163].end 404.37284375
transcript.pyannote[164].speaker SPEAKER_00
transcript.pyannote[164].start 405.73971875
transcript.pyannote[164].end 406.11096875
transcript.pyannote[165].speaker SPEAKER_00
transcript.pyannote[165].start 406.75221875
transcript.pyannote[165].end 408.45659375
transcript.pyannote[166].speaker SPEAKER_00
transcript.pyannote[166].start 408.89534375
transcript.pyannote[166].end 411.27471875
transcript.pyannote[167].speaker SPEAKER_02
transcript.pyannote[167].start 411.27471875
transcript.pyannote[167].end 413.09721875
transcript.pyannote[168].speaker SPEAKER_00
transcript.pyannote[168].start 413.09721875
transcript.pyannote[168].end 413.11409375
transcript.pyannote[169].speaker SPEAKER_02
transcript.pyannote[169].start 413.38409375
transcript.pyannote[169].end 414.73409375
transcript.pyannote[170].speaker SPEAKER_00
transcript.pyannote[170].start 413.77221875
transcript.pyannote[170].end 417.06284375
transcript.pyannote[171].speaker SPEAKER_02
transcript.pyannote[171].start 416.45534375
transcript.pyannote[171].end 421.06221875
transcript.pyannote[172].speaker SPEAKER_00
transcript.pyannote[172].start 417.65346875
transcript.pyannote[172].end 417.72096875
transcript.pyannote[173].speaker SPEAKER_00
transcript.pyannote[173].start 417.83909375
transcript.pyannote[173].end 417.85596875
transcript.pyannote[174].speaker SPEAKER_02
transcript.pyannote[174].start 421.19721875
transcript.pyannote[174].end 422.66534375
transcript.pyannote[175].speaker SPEAKER_02
transcript.pyannote[175].start 422.69909375
transcript.pyannote[175].end 423.12096875
transcript.pyannote[176].speaker SPEAKER_02
transcript.pyannote[176].start 423.93096875
transcript.pyannote[176].end 425.82096875
transcript.pyannote[177].speaker SPEAKER_02
transcript.pyannote[177].start 426.74909375
transcript.pyannote[177].end 427.37346875
transcript.pyannote[178].speaker SPEAKER_02
transcript.pyannote[178].start 428.06534375
transcript.pyannote[178].end 428.82471875
transcript.pyannote[179].speaker SPEAKER_02
transcript.pyannote[179].start 429.58409375
transcript.pyannote[179].end 430.63034375
transcript.pyannote[180].speaker SPEAKER_02
transcript.pyannote[180].start 431.50784375
transcript.pyannote[180].end 434.08971875
transcript.pyannote[181].speaker SPEAKER_02
transcript.pyannote[181].start 434.51159375
transcript.pyannote[181].end 437.09346875
transcript.pyannote[182].speaker SPEAKER_02
transcript.pyannote[182].start 437.58284375
transcript.pyannote[182].end 439.82721875
transcript.pyannote[183].speaker SPEAKER_02
transcript.pyannote[183].start 440.36721875
transcript.pyannote[183].end 440.80596875
transcript.pyannote[184].speaker SPEAKER_02
transcript.pyannote[184].start 441.75096875
transcript.pyannote[184].end 442.67909375
transcript.pyannote[185].speaker SPEAKER_02
transcript.pyannote[185].start 442.89846875
transcript.pyannote[185].end 443.91096875
transcript.pyannote[186].speaker SPEAKER_02
transcript.pyannote[186].start 444.29909375
transcript.pyannote[186].end 444.94034375
transcript.pyannote[187].speaker SPEAKER_02
transcript.pyannote[187].start 445.14284375
transcript.pyannote[187].end 451.11659375
transcript.pyannote[188].speaker SPEAKER_02
transcript.pyannote[188].start 451.55534375
transcript.pyannote[188].end 453.02346875
transcript.pyannote[189].speaker SPEAKER_02
transcript.pyannote[189].start 453.20909375
transcript.pyannote[189].end 454.89659375
transcript.pyannote[190].speaker SPEAKER_02
transcript.pyannote[190].start 455.41971875
transcript.pyannote[190].end 455.87534375
transcript.pyannote[191].speaker SPEAKER_02
transcript.pyannote[191].start 456.63471875
transcript.pyannote[191].end 458.00159375
transcript.pyannote[192].speaker SPEAKER_02
transcript.pyannote[192].start 458.23784375
transcript.pyannote[192].end 460.02659375
transcript.pyannote[193].speaker SPEAKER_02
transcript.pyannote[193].start 460.75221875
transcript.pyannote[193].end 461.10659375
transcript.pyannote[194].speaker SPEAKER_02
transcript.pyannote[194].start 461.30909375
transcript.pyannote[194].end 462.10221875
transcript.pyannote[195].speaker SPEAKER_02
transcript.pyannote[195].start 462.54096875
transcript.pyannote[195].end 464.78534375
transcript.pyannote[196].speaker SPEAKER_02
transcript.pyannote[196].start 465.10596875
transcript.pyannote[196].end 465.12284375
transcript.pyannote[197].speaker SPEAKER_00
transcript.pyannote[197].start 465.12284375
transcript.pyannote[197].end 465.39284375
transcript.pyannote[198].speaker SPEAKER_02
transcript.pyannote[198].start 465.39284375
transcript.pyannote[198].end 465.40971875
transcript.pyannote[199].speaker SPEAKER_00
transcript.pyannote[199].start 465.40971875
transcript.pyannote[199].end 465.42659375
transcript.pyannote[200].speaker SPEAKER_00
transcript.pyannote[200].start 465.96659375
transcript.pyannote[200].end 468.26159375
transcript.pyannote[201].speaker SPEAKER_00
transcript.pyannote[201].start 469.03784375
transcript.pyannote[201].end 472.32846875
transcript.pyannote[202].speaker SPEAKER_00
transcript.pyannote[202].start 472.56471875
transcript.pyannote[202].end 476.66534375
transcript.pyannote[203].speaker SPEAKER_00
transcript.pyannote[203].start 477.17159375
transcript.pyannote[203].end 479.85471875
transcript.pyannote[204].speaker SPEAKER_00
transcript.pyannote[204].start 480.31034375
transcript.pyannote[204].end 484.51221875
transcript.pyannote[205].speaker SPEAKER_02
transcript.pyannote[205].start 484.51221875
transcript.pyannote[205].end 493.99596875
transcript.pyannote[206].speaker SPEAKER_00
transcript.pyannote[206].start 495.46409375
transcript.pyannote[206].end 504.03659375
transcript.pyannote[207].speaker SPEAKER_00
transcript.pyannote[207].start 504.10409375
transcript.pyannote[207].end 506.01096875
transcript.pyannote[208].speaker SPEAKER_00
transcript.pyannote[208].start 506.44971875
transcript.pyannote[208].end 509.08221875
transcript.pyannote[209].speaker SPEAKER_02
transcript.pyannote[209].start 509.08221875
transcript.pyannote[209].end 513.85784375
transcript.pyannote[210].speaker SPEAKER_02
transcript.pyannote[210].start 515.00534375
transcript.pyannote[210].end 516.70971875
transcript.pyannote[211].speaker SPEAKER_02
transcript.pyannote[211].start 518.80221875
transcript.pyannote[211].end 521.60346875
transcript.pyannote[212].speaker SPEAKER_02
transcript.pyannote[212].start 522.26159375
transcript.pyannote[212].end 523.91534375
transcript.pyannote[213].speaker SPEAKER_02
transcript.pyannote[213].start 524.53971875
transcript.pyannote[213].end 527.79659375
transcript.pyannote[214].speaker SPEAKER_02
transcript.pyannote[214].start 528.31971875
transcript.pyannote[214].end 531.64409375
transcript.pyannote[215].speaker SPEAKER_02
transcript.pyannote[215].start 531.88034375
transcript.pyannote[215].end 533.43284375
transcript.pyannote[216].speaker SPEAKER_02
transcript.pyannote[216].start 533.92221875
transcript.pyannote[216].end 535.77846875
transcript.pyannote[217].speaker SPEAKER_02
transcript.pyannote[217].start 536.11596875
transcript.pyannote[217].end 539.00159375
transcript.pyannote[218].speaker SPEAKER_02
transcript.pyannote[218].start 539.94659375
transcript.pyannote[218].end 541.24596875
transcript.pyannote[219].speaker SPEAKER_02
transcript.pyannote[219].start 541.97159375
transcript.pyannote[219].end 542.25846875
transcript.pyannote[220].speaker SPEAKER_02
transcript.pyannote[220].start 543.40596875
transcript.pyannote[220].end 546.51096875
transcript.pyannote[221].speaker SPEAKER_02
transcript.pyannote[221].start 546.64596875
transcript.pyannote[221].end 548.35034375
transcript.pyannote[222].speaker SPEAKER_00
transcript.pyannote[222].start 549.76784375
transcript.pyannote[222].end 556.29846875
transcript.pyannote[223].speaker SPEAKER_02
transcript.pyannote[223].start 556.29846875
transcript.pyannote[223].end 556.33221875
transcript.pyannote[224].speaker SPEAKER_02
transcript.pyannote[224].start 556.87221875
transcript.pyannote[224].end 558.05346875
transcript.pyannote[225].speaker SPEAKER_00
transcript.pyannote[225].start 558.40784375
transcript.pyannote[225].end 560.48346875
transcript.pyannote[226].speaker SPEAKER_02
transcript.pyannote[226].start 559.63971875
transcript.pyannote[226].end 562.62659375
transcript.pyannote[227].speaker SPEAKER_00
transcript.pyannote[227].start 561.10784375
transcript.pyannote[227].end 561.58034375
transcript.pyannote[228].speaker SPEAKER_00
transcript.pyannote[228].start 565.12409375
transcript.pyannote[228].end 573.52784375
transcript.pyannote[229].speaker SPEAKER_02
transcript.pyannote[229].start 573.15659375
transcript.pyannote[229].end 577.61159375
transcript.pyannote[230].speaker SPEAKER_02
transcript.pyannote[230].start 578.23596875
transcript.pyannote[230].end 579.02909375
transcript.pyannote[231].speaker SPEAKER_00
transcript.pyannote[231].start 579.29909375
transcript.pyannote[231].end 589.39034375
transcript.pyannote[232].speaker SPEAKER_00
transcript.pyannote[232].start 589.89659375
transcript.pyannote[232].end 598.28346875
transcript.pyannote[233].speaker SPEAKER_02
transcript.pyannote[233].start 599.39721875
transcript.pyannote[233].end 601.20284375
transcript.pyannote[234].speaker SPEAKER_02
transcript.pyannote[234].start 602.21534375
transcript.pyannote[234].end 604.49346875
transcript.pyannote[235].speaker SPEAKER_02
transcript.pyannote[235].start 605.48909375
transcript.pyannote[235].end 607.73346875
transcript.pyannote[236].speaker SPEAKER_02
transcript.pyannote[236].start 607.90221875
transcript.pyannote[236].end 609.30284375
transcript.pyannote[237].speaker SPEAKER_02
transcript.pyannote[237].start 609.72471875
transcript.pyannote[237].end 610.16346875
transcript.pyannote[238].speaker SPEAKER_02
transcript.pyannote[238].start 611.00721875
transcript.pyannote[238].end 611.61471875
transcript.pyannote[239].speaker SPEAKER_02
transcript.pyannote[239].start 611.83409375
transcript.pyannote[239].end 612.59346875
transcript.pyannote[240].speaker SPEAKER_02
transcript.pyannote[240].start 613.72409375
transcript.pyannote[240].end 614.01096875
transcript.pyannote[241].speaker SPEAKER_02
transcript.pyannote[241].start 614.82096875
transcript.pyannote[241].end 615.59721875
transcript.pyannote[242].speaker SPEAKER_02
transcript.pyannote[242].start 616.05284375
transcript.pyannote[242].end 616.62659375
transcript.pyannote[243].speaker SPEAKER_02
transcript.pyannote[243].start 616.99784375
transcript.pyannote[243].end 618.65159375
transcript.pyannote[244].speaker SPEAKER_02
transcript.pyannote[244].start 618.82034375
transcript.pyannote[244].end 621.25034375
transcript.pyannote[245].speaker SPEAKER_02
transcript.pyannote[245].start 621.90846875
transcript.pyannote[245].end 627.35909375
transcript.pyannote[246].speaker SPEAKER_02
transcript.pyannote[246].start 627.74721875
transcript.pyannote[246].end 628.74284375
transcript.pyannote[247].speaker SPEAKER_02
transcript.pyannote[247].start 629.16471875
transcript.pyannote[247].end 631.35846875
transcript.pyannote[248].speaker SPEAKER_02
transcript.pyannote[248].start 632.60721875
transcript.pyannote[248].end 633.85596875
transcript.pyannote[249].speaker SPEAKER_01
transcript.pyannote[249].start 636.64034375
transcript.pyannote[249].end 636.89346875
transcript.pyannote[250].speaker SPEAKER_01
transcript.pyannote[250].start 637.70346875
transcript.pyannote[250].end 646.09034375
transcript.pyannote[251].speaker SPEAKER_01
transcript.pyannote[251].start 646.56284375
transcript.pyannote[251].end 649.39784375
transcript.pyannote[252].speaker SPEAKER_01
transcript.pyannote[252].start 649.92096875
transcript.pyannote[252].end 651.62534375
transcript.pyannote[253].speaker SPEAKER_01
transcript.pyannote[253].start 652.01346875
transcript.pyannote[253].end 654.19034375
transcript.pyannote[254].speaker SPEAKER_02
transcript.pyannote[254].start 655.21971875
transcript.pyannote[254].end 657.26159375
transcript.pyannote[255].speaker SPEAKER_02
transcript.pyannote[255].start 657.98721875
transcript.pyannote[255].end 660.56909375
transcript.pyannote[256].speaker SPEAKER_02
transcript.pyannote[256].start 661.07534375
transcript.pyannote[256].end 661.53096875
transcript.pyannote[257].speaker SPEAKER_01
transcript.pyannote[257].start 661.53096875
transcript.pyannote[257].end 661.54784375
transcript.pyannote[258].speaker SPEAKER_01
transcript.pyannote[258].start 661.76721875
transcript.pyannote[258].end 666.76221875
transcript.pyannote[259].speaker SPEAKER_01
transcript.pyannote[259].start 667.30221875
transcript.pyannote[259].end 668.85471875
transcript.pyannote[260].speaker SPEAKER_01
transcript.pyannote[260].start 669.29346875
transcript.pyannote[260].end 670.42409375
transcript.pyannote[261].speaker SPEAKER_02
transcript.pyannote[261].start 670.10346875
transcript.pyannote[261].end 672.55034375
transcript.pyannote[262].speaker SPEAKER_01
transcript.pyannote[262].start 673.25909375
transcript.pyannote[262].end 682.57409375
transcript.pyannote[263].speaker SPEAKER_01
transcript.pyannote[263].start 683.01284375
transcript.pyannote[263].end 691.43346875
transcript.pyannote[264].speaker SPEAKER_02
transcript.pyannote[264].start 691.38284375
transcript.pyannote[264].end 696.68159375
transcript.pyannote[265].speaker SPEAKER_01
transcript.pyannote[265].start 698.03159375
transcript.pyannote[265].end 701.27159375
transcript.pyannote[266].speaker SPEAKER_02
transcript.pyannote[266].start 701.55846875
transcript.pyannote[266].end 703.93784375
transcript.pyannote[267].speaker SPEAKER_02
transcript.pyannote[267].start 704.27534375
transcript.pyannote[267].end 706.16534375
transcript.pyannote[268].speaker SPEAKER_02
transcript.pyannote[268].start 709.32096875
transcript.pyannote[268].end 709.87784375
transcript.pyannote[269].speaker SPEAKER_01
transcript.pyannote[269].start 711.31221875
transcript.pyannote[269].end 712.20659375
transcript.pyannote[270].speaker SPEAKER_01
transcript.pyannote[270].start 712.45971875
transcript.pyannote[270].end 716.20596875
transcript.pyannote[271].speaker SPEAKER_02
transcript.pyannote[271].start 715.76721875
transcript.pyannote[271].end 716.67846875
transcript.pyannote[272].speaker SPEAKER_02
transcript.pyannote[272].start 716.96534375
transcript.pyannote[272].end 717.16784375
transcript.pyannote[273].speaker SPEAKER_01
transcript.pyannote[273].start 717.16784375
transcript.pyannote[273].end 717.42096875
transcript.pyannote[274].speaker SPEAKER_02
transcript.pyannote[274].start 718.31534375
transcript.pyannote[274].end 719.86784375
transcript.pyannote[275].speaker SPEAKER_01
transcript.pyannote[275].start 720.96471875
transcript.pyannote[275].end 721.06596875
transcript.pyannote[276].speaker SPEAKER_02
transcript.pyannote[276].start 721.06596875
transcript.pyannote[276].end 721.25159375
transcript.pyannote[277].speaker SPEAKER_02
transcript.pyannote[277].start 722.61846875
transcript.pyannote[277].end 724.59284375
transcript.pyannote[278].speaker SPEAKER_01
transcript.pyannote[278].start 726.04409375
transcript.pyannote[278].end 726.63471875
transcript.pyannote[279].speaker SPEAKER_01
transcript.pyannote[279].start 726.76971875
transcript.pyannote[279].end 730.31346875
transcript.pyannote[280].speaker SPEAKER_02
transcript.pyannote[280].start 730.97159375
transcript.pyannote[280].end 731.44409375
transcript.pyannote[281].speaker SPEAKER_02
transcript.pyannote[281].start 732.15284375
transcript.pyannote[281].end 732.79409375
transcript.pyannote[282].speaker SPEAKER_02
transcript.pyannote[282].start 733.28346875
transcript.pyannote[282].end 734.68409375
transcript.pyannote[283].speaker SPEAKER_01
transcript.pyannote[283].start 736.23659375
transcript.pyannote[283].end 737.35034375
transcript.pyannote[284].speaker SPEAKER_01
transcript.pyannote[284].start 737.90721875
transcript.pyannote[284].end 738.78471875
transcript.pyannote[285].speaker SPEAKER_01
transcript.pyannote[285].start 741.92346875
transcript.pyannote[285].end 742.81784375
transcript.pyannote[286].speaker SPEAKER_01
transcript.pyannote[286].start 748.18409375
transcript.pyannote[286].end 749.23034375
transcript.pyannote[287].speaker SPEAKER_01
transcript.pyannote[287].start 750.19221875
transcript.pyannote[287].end 752.48721875
transcript.pyannote[288].speaker SPEAKER_02
transcript.pyannote[288].start 750.54659375
transcript.pyannote[288].end 750.59721875
transcript.pyannote[289].speaker SPEAKER_01
transcript.pyannote[289].start 752.87534375
transcript.pyannote[289].end 752.97659375
transcript.pyannote[290].speaker SPEAKER_02
transcript.pyannote[290].start 752.97659375
transcript.pyannote[290].end 759.30471875
transcript.pyannote[291].speaker SPEAKER_01
transcript.pyannote[291].start 753.66846875
transcript.pyannote[291].end 755.33909375
transcript.pyannote[292].speaker SPEAKER_01
transcript.pyannote[292].start 755.87909375
transcript.pyannote[292].end 756.89159375
transcript.pyannote[293].speaker SPEAKER_02
transcript.pyannote[293].start 759.81096875
transcript.pyannote[293].end 762.73034375
transcript.pyannote[294].speaker SPEAKER_02
transcript.pyannote[294].start 762.96659375
transcript.pyannote[294].end 763.70909375
transcript.pyannote[295].speaker SPEAKER_02
transcript.pyannote[295].start 763.91159375
transcript.pyannote[295].end 765.22784375
transcript.pyannote[296].speaker SPEAKER_01
transcript.pyannote[296].start 766.69596875
transcript.pyannote[296].end 767.05034375
transcript.pyannote[297].speaker SPEAKER_01
transcript.pyannote[297].start 767.75909375
transcript.pyannote[297].end 768.75471875
transcript.pyannote[298].speaker SPEAKER_01
transcript.pyannote[298].start 768.92346875
transcript.pyannote[298].end 769.83471875
transcript.pyannote[299].speaker SPEAKER_01
transcript.pyannote[299].start 770.18909375
transcript.pyannote[299].end 776.26409375
transcript.pyannote[300].speaker SPEAKER_01
transcript.pyannote[300].start 776.53409375
transcript.pyannote[300].end 776.56784375
transcript.pyannote[301].speaker SPEAKER_02
transcript.pyannote[301].start 776.56784375
transcript.pyannote[301].end 777.17534375
transcript.pyannote[302].speaker SPEAKER_01
transcript.pyannote[302].start 777.17534375
transcript.pyannote[302].end 777.20909375
transcript.pyannote[303].speaker SPEAKER_02
transcript.pyannote[303].start 777.20909375
transcript.pyannote[303].end 777.59721875
transcript.pyannote[304].speaker SPEAKER_01
transcript.pyannote[304].start 777.59721875
transcript.pyannote[304].end 777.91784375
transcript.pyannote[305].speaker SPEAKER_02
transcript.pyannote[305].start 777.91784375
transcript.pyannote[305].end 777.93471875
transcript.pyannote[306].speaker SPEAKER_02
transcript.pyannote[306].start 778.52534375
transcript.pyannote[306].end 778.86284375
transcript.pyannote[307].speaker SPEAKER_02
transcript.pyannote[307].start 779.26784375
transcript.pyannote[307].end 780.11159375
transcript.pyannote[308].speaker SPEAKER_02
transcript.pyannote[308].start 781.83284375
transcript.pyannote[308].end 783.33471875
transcript.pyannote[309].speaker SPEAKER_00
transcript.pyannote[309].start 782.84534375
transcript.pyannote[309].end 785.44409375
transcript.pyannote[310].speaker SPEAKER_02
transcript.pyannote[310].start 784.63409375
transcript.pyannote[310].end 789.64596875
transcript.pyannote[311].speaker SPEAKER_01
transcript.pyannote[311].start 787.08096875
transcript.pyannote[311].end 787.51971875
transcript.pyannote[312].speaker SPEAKER_00
transcript.pyannote[312].start 787.51971875
transcript.pyannote[312].end 787.67159375
transcript.pyannote[313].speaker SPEAKER_01
transcript.pyannote[313].start 787.67159375
transcript.pyannote[313].end 788.54909375
transcript.pyannote[314].speaker SPEAKER_01
transcript.pyannote[314].start 788.63346875
transcript.pyannote[314].end 789.67971875
transcript.pyannote[315].speaker SPEAKER_02
transcript.pyannote[315].start 789.67971875
transcript.pyannote[315].end 789.71346875
transcript.pyannote[316].speaker SPEAKER_01
transcript.pyannote[316].start 789.71346875
transcript.pyannote[316].end 789.73034375
transcript.pyannote[317].speaker SPEAKER_01
transcript.pyannote[317].start 791.33346875
transcript.pyannote[317].end 792.70034375
transcript.pyannote[318].speaker SPEAKER_01
transcript.pyannote[318].start 792.90284375
transcript.pyannote[318].end 792.91971875
transcript.pyannote[319].speaker SPEAKER_02
transcript.pyannote[319].start 792.91971875
transcript.pyannote[319].end 792.93659375
transcript.pyannote[320].speaker SPEAKER_01
transcript.pyannote[320].start 792.93659375
transcript.pyannote[320].end 795.50159375
transcript.pyannote[321].speaker SPEAKER_02
transcript.pyannote[321].start 792.97034375
transcript.pyannote[321].end 799.43346875
transcript.pyannote[322].speaker SPEAKER_01
transcript.pyannote[322].start 798.65721875
transcript.pyannote[322].end 807.22971875
transcript.pyannote[323].speaker SPEAKER_02
transcript.pyannote[323].start 805.49159375
transcript.pyannote[323].end 807.14534375
transcript.pyannote[324].speaker SPEAKER_02
transcript.pyannote[324].start 807.22971875
transcript.pyannote[324].end 807.48284375
transcript.pyannote[325].speaker SPEAKER_01
transcript.pyannote[325].start 807.92159375
transcript.pyannote[325].end 810.79034375
transcript.pyannote[326].speaker SPEAKER_02
transcript.pyannote[326].start 807.95534375
transcript.pyannote[326].end 808.54596875
transcript.pyannote[327].speaker SPEAKER_01
transcript.pyannote[327].start 810.92534375
transcript.pyannote[327].end 811.92096875
transcript.pyannote[328].speaker SPEAKER_01
transcript.pyannote[328].start 812.64659375
transcript.pyannote[328].end 813.11909375
transcript.pyannote[329].speaker SPEAKER_01
transcript.pyannote[329].start 813.18659375
transcript.pyannote[329].end 813.62534375
transcript.pyannote[330].speaker SPEAKER_01
transcript.pyannote[330].start 814.13159375
transcript.pyannote[330].end 814.14846875
transcript.pyannote[331].speaker SPEAKER_02
transcript.pyannote[331].start 814.14846875
transcript.pyannote[331].end 815.09346875
transcript.pyannote[332].speaker SPEAKER_02
transcript.pyannote[332].start 815.46471875
transcript.pyannote[332].end 816.32534375
transcript.pyannote[333].speaker SPEAKER_02
transcript.pyannote[333].start 817.03409375
transcript.pyannote[333].end 817.42221875
transcript.pyannote[334].speaker SPEAKER_01
transcript.pyannote[334].start 817.28721875
transcript.pyannote[334].end 830.14596875
transcript.pyannote[335].speaker SPEAKER_02
transcript.pyannote[335].start 817.43909375
transcript.pyannote[335].end 818.06346875
transcript.pyannote[336].speaker SPEAKER_02
transcript.pyannote[336].start 822.06284375
transcript.pyannote[336].end 823.49721875
transcript.pyannote[337].speaker SPEAKER_01
transcript.pyannote[337].start 831.05721875
transcript.pyannote[337].end 831.09096875
transcript.pyannote[338].speaker SPEAKER_02
transcript.pyannote[338].start 831.09096875
transcript.pyannote[338].end 831.36096875
transcript.pyannote[339].speaker SPEAKER_01
transcript.pyannote[339].start 831.36096875
transcript.pyannote[339].end 831.96846875
transcript.pyannote[340].speaker SPEAKER_02
transcript.pyannote[340].start 831.96846875
transcript.pyannote[340].end 832.96409375
transcript.whisperx[0].start 9.872
transcript.whisperx[0].end 14.796
transcript.whisperx[0].text 謝謝主席以及各位先進有請金管委的黃主委有請黃主委是委員好主委早那麼這個今天討論ETF其實我再講我的感想我先看一下在國發會二月底
transcript.whisperx[1].start 34.417
transcript.whisperx[1].end 56.464
transcript.whisperx[1].text 有一份的一個報告講出來臺灣的經濟自由度全球排名第4名相當自由這個很活潑的臺灣的經濟可是財務自由度只有40第40名投資自由度39名
transcript.whisperx[2].start 59.121
transcript.whisperx[2].end 87.49
transcript.whisperx[2].text 就代表我們的財務我們的投資不自由我們經濟很自由我們的投資很不自由在全世界你看排名第40名啊大家都知道臺灣的經貿實力雖然臺灣很小但是很粗略的講我們臺灣的經貿實力在全世界排名大概第15、16、17左右是相當前面的結果自由度掉到40啊
transcript.whisperx[3].start 89.965
transcript.whisperx[3].end 101.514
transcript.whisperx[3].text 這個講起來很丟臉喔這裡面跟我們軍管會有太多的禁止這個管這個管那個有關係喔你要不要對這個做個回應呢
transcript.whisperx[4].start 103.459
transcript.whisperx[4].end 122.305
transcript.whisperx[4].text 委員如果您是說中間那邊講我們禁止目前不允許副委託買比特幣現貨我先跟你講這個還沒講到這個我先跟你講自由度你要不要回應一下人家說我們這裡投資自由度稍微高財務自由度細佔這個不見得講金管會
transcript.whisperx[5].start 126.633
transcript.whisperx[5].end 128.635
transcript.whisperx[5].text 好 我跟您報告第一個
transcript.whisperx[6].start 157.233
transcript.whisperx[6].end 176.873
transcript.whisperx[6].text 美國證管會把比特幣當作有價證券但是臺灣的證交法比特幣是不是有價證券其實是不確定的那另外跟您報告我為什麼剛剛離開備質詢臺這份是美國1月10號美國證管會他同意比特幣現貨交易的一個新聞稿
transcript.whisperx[7].start 177.952
transcript.whisperx[7].end 193.407
transcript.whisperx[7].text 最後一段話美國的政委會主席Gary Gensler說我同意他上市那是因為法院駁回他不准他上市並不表示我indose或是我prove比特幣的性質這是美國政委會的說明我再跟你報告
transcript.whisperx[8].start 194.828
transcript.whisperx[8].end 203.373
transcript.whisperx[8].text 南韓、新加坡、泰國都不允許投資人買比特幣不允許交易不要那麼激動來 我跟你講一個你的很重要的理由當初你今天一直沒有講這個東西因為它沒有實體
transcript.whisperx[9].start 210.626
transcript.whisperx[9].end 224.508
transcript.whisperx[9].text 他沒有含價值對對好那我就問你現在美國已經有被上市的公開發行的OpenAI已經快要上市了請問OpenAI你可不可以以後會不會禁止
transcript.whisperx[10].start 225.828
transcript.whisperx[10].end 247.896
transcript.whisperx[10].text オープンエア沒有實體的喔沒有具體內容的喔オープンエア你要不要禁止這兩個是類比不太一樣吧幾乎是一樣因為你當初你只是你今天一個報獎扯到旁邊去了喔你用你其他的文來引導是你做法但是你沒有講出來你當時候禁止的一個理由是它沒有實體的東西沒有內在的
transcript.whisperx[11].start 248.696
transcript.whisperx[11].end 277.873
transcript.whisperx[11].text 這個很重要委員我跟您報告我們1月初美國上市現貨ETF政企局是請券商公會先不要接受這種買單付委託而是嚴厲配套措施看可不可以有適當的措施等到4月底以後再做決定什麼時候決定4月底以後就決定配套措施ETF要不要包括比特幣是不是不是付委託要不要涵蓋美國的現貨ETF的商品
transcript.whisperx[12].start 278.7
transcript.whisperx[12].end 281.203
transcript.whisperx[12].text 國發會這樣的一個報告你的認知居然跟我認知完全不一樣
transcript.whisperx[13].start 295.694
transcript.whisperx[13].end 316.967
transcript.whisperx[13].text 如果今天我是你啊我一定要去檢討為什麼我進口做了哪些事情為什麼投資自由度這麼低在全球排39名財務自由度排40名我們看到ETF我記得我請問ETF最早什麼時候發行臺灣最早第一檔的ETFETF92年臺灣92年
transcript.whisperx[14].start 325.061
transcript.whisperx[14].end 346.755
transcript.whisperx[14].text 2003年美國最早什麼時候82年吧1992所以跟美國足足差了10年對ETF我聽到的ETF是我們歷任的金管會主委都不斷的鼓勵大家都買ETF因為風險分散啊因為有專業人幫你看啊
transcript.whisperx[15].start 348.496
transcript.whisperx[15].end 359.193
transcript.whisperx[15].text 曾幾何時什麼變ETF變成今天拍這個專案報告都感覺ETF有點像過街老鼠一樣啊怎麼曾幾何時變成大家怕ETF怕到這個樣子
transcript.whisperx[16].start 361.035
transcript.whisperx[16].end 383.033
transcript.whisperx[16].text 那個那個主委啊到底是管ETF還是你就是管他的促銷手段比如說網紅接廣告到底是什麼今天您這個問題我很感謝您問這個問題這就是重點我們從頭到尾過去這個禮拜都沒有說要限制ETF沒有這是一個商品適合國民去投資鼓勵不鼓勵你告訴我
transcript.whisperx[17].start 385.535
transcript.whisperx[17].end 400.919
transcript.whisperx[17].text 沒有什麼鼓勵鼓勵你發行就鼓勵啊我們也有來一個我們在這裡我請教過你啊我說應該來一個加薪50或者加薪100鼓勵這些上市公司加薪的我就給你放進來我們有類似的指數有類似的指數你沒有加薪100啊有嗎
transcript.whisperx[18].start 406.806
transcript.whisperx[18].end 409.667
transcript.whisperx[18].text 我得到的訊息是其實ETF它本身沒有問題
transcript.whisperx[19].start 431.658
transcript.whisperx[19].end 455.67
transcript.whisperx[19].text 本事是幫老百姓當投資股民風險分散幫你挑一些好的股物有特性的股可是現在問題來了因為這些網紅啊亂吹牛一通哦 還一定有8點多趴啦然後呢每個月還配息等等的所以為了配息可能如果同時的話ETF 有些的ETF沒有
transcript.whisperx[20].start 456.67
transcript.whisperx[20].end 463.887
transcript.whisperx[20].text 沒有講好但是有默契大家都lock住那個股票第一個他駐倉啊或者又駐地啊變成這個樣子啊會不會
transcript.whisperx[21].start 466.047
transcript.whisperx[21].end 493.468
transcript.whisperx[21].text 委員您是專家你講的是對的就是他沒有充分揭露這個商品的風險也在很多商品的條件上有誤導的情況比方說把配息跟存款的利率銹相比較或者說過去的跡象拿來預測未來也會如此這是要提醒我我我你最實際的有網絡說你可以把你的房子拿去抵押來來買ETF這樣的講法你認不認同
transcript.whisperx[22].start 495.489
transcript.whisperx[22].end 516.581
transcript.whisperx[22].text 那是很風險很高的為什麼因為ETF的成分股漲跌也不是發行的投信能決定的還是要看市場的機制所以過去漲不表示未來一定會漲我的時間快到了趕快把重點那個副總裁一起來好不好這個時間暫停一下來有請副總裁
transcript.whisperx[23].start 518.817
transcript.whisperx[23].end 545.008
transcript.whisperx[23].text 公平會在去年2月已經對網紅的廣告不時要罰5萬到2500萬因為網紅不是賣家他是代言人要負責任的結果金管會現在你可以看到對投信的管理很嚴格可是對網紅你們好像沒有皮條啊會不會對網紅這一部分來來來主委網紅推薦買ETF到處都是你們有沒有處置辦法
transcript.whisperx[24].start 549.793
transcript.whisperx[24].end 559.519
transcript.whisperx[24].text 拜委員我可不可以 如果我說錯了你可以指導我好像是3月8號才規範的 不是去年2月吧沒有 去年2月就規範的好 沒關係 沒關係
transcript.whisperx[25].start 565.168
transcript.whisperx[25].end 588.895
transcript.whisperx[25].text 我們111年就有規範要加注警語那這樣實踐上面可能有些公司並沒有真正照那個廣告公會的廣告你們要不要去取締一些講這些話講得誇大的網紅有沒有這工具我們正在思考那公平會雖然有一個寄出這個高額罰款的這個但是還是要有一個機制怎麼去檢舉那要有事證
transcript.whisperx[26].start 589.955
transcript.whisperx[26].end 612.104
transcript.whisperx[26].text 那這部分我們想跟公會再去做一個溝通現在我們報告中有寫到6月底之前我們會把這個規範弄好我請教央行的副總裁日本結束負利率外面的估算因為日本央行明天開會澳洲後天開會
transcript.whisperx[27].start 614.847
transcript.whisperx[27].end 633.549
transcript.whisperx[27].text 澳洲是明天3月19然後臺灣我們是21號開會俄羅斯21號開會全世界現在面對到幾乎所有金融商品都在漲的情況之下請問你啊現在現在來講央行未來的利率走向是怎麼樣
transcript.whisperx[28].start 637.738
transcript.whisperx[28].end 654.099
transcript.whisperx[28].text 報告委員因為傳統上我們每一次開會之前我們都會針對當前的國內外經濟金融情勢以及未來的發展做評估所以其實您提到這些不管是它的日本或者其他央行的貨幣政策是我們隨時在關注的
transcript.whisperx[29].start 655.287
transcript.whisperx[29].end 671.168
transcript.whisperx[29].text 其他國家的央行現在就是利率他們是偏要漲還是要跌還是那個那個報告委員因為各國的國情不一樣所以我們很難用其他國家例子來銀行台灣現在錢有太多嗎錢有太多嗎
transcript.whisperx[30].start 673.305
transcript.whisperx[30].end 696.528
transcript.whisperx[30].text 根據我們剛才的報告銀行的那個資金其實我們在整個NCD的操作或者是銀行的那個超額準備那邊其實是在銀行端其實我們看不到這樣的現象而且我們其實內部也有一些指標在注意到國內金融市場的變動情形所以我們閒置的貨幣有3點多兆不會太多
transcript.whisperx[31].start 698.452
transcript.whisperx[31].end 705.935
transcript.whisperx[31].text 呃 我不曉得那個3點多兆您的意思是以前是2點多兆 現在變3點多兆了啊我看 超額儲蓄啦 超額儲蓄會不會太多呃 我還是不太了解委員那個數字是自講的是哪一個沒有這個事嗎那你告訴我現在超額儲蓄多少你臺灣的現在超額儲蓄有多少錢
transcript.whisperx[32].start 726.101
transcript.whisperx[32].end 749.684
transcript.whisperx[32].text 3.8%
transcript.whisperx[33].start 750.202
transcript.whisperx[33].end 757.19
transcript.whisperx[33].text 我們這邊是3點3啦我跟你說3點多你又說不是啦 奇怪我剛才一直講你又說不是啦 現在說3點多你也是那個報告委員不要再講 我時間到了再來就是熱錢多少 熱錢熱錢
transcript.whisperx[34].start 768.196
transcript.whisperx[34].end 789.471
transcript.whisperx[34].text 熱錢我們我們並沒有我們並沒有定義所謂的熱錢熱錢是金融機構他之間的那個資金的流動和調動那個黃主委熱情的這個那個流量部分可能只有央行央行知道啊怎麼不知道你來副總裁跟我講一下我就跟主席換一下來
transcript.whisperx[35].start 791.763
transcript.whisperx[35].end 815.652
transcript.whisperx[35].text 熱錢我們過去就是你出去多少金買多少然後這些短時間留了在這裡股票買買就出去這個熱錢我們所謂的熱錢就是外資在還沒有賣完股票之間有一段時間停留在台灣的數字那個是多少那個我印象中大概都是一千多億而已你現在是台幣啊台幣台幣一千多億到現在為止
transcript.whisperx[36].start 817.663
transcript.whisperx[36].end 831.997
transcript.whisperx[36].text 我再補充一下您講的那個3.3億的超額出去其實是在銀行3.3兆那其實在銀行體系金融體系裡面散佈在各個金融機構的那個資金的運用情形好 謝謝賴思寶委員的質詢