IVOD_ID |
149388 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/149388 |
日期 |
2024-03-06 |
會議資料.會議代碼 |
委員會-11-1-26-3 |
會議資料.會議代碼:str |
第11屆第1會期社會福利及衛生環境委員會第3次全體委員會議 |
會議資料.屆 |
11 |
會議資料.會期 |
1 |
會議資料.會次 |
3 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
26 |
會議資料.委員會代碼:str[0] |
社會福利及衛生環境委員會 |
會議資料.標題 |
第11屆第1會期社會福利及衛生環境委員會第3次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2024-03-06T11:19:35+08:00 |
結束時間 |
2024-03-06T11:29:22+08:00 |
影片長度 |
00:09:47 |
支援功能[0] |
ai-transcript |
支援功能[1] |
gazette |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/aa454a369d2b172fd0f02046d4c71a461e2be856f0c9cef9f8ba9b0039caa7a6ea2fa0b0c1a4ccb95ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
楊曜 |
委員發言時間 |
11:19:35 - 11:29:22 |
會議時間 |
2024-03-06T09:00:00+08:00 |
會議名稱 |
立法院第11屆第1會期社會福利及衛生環境委員會第3次全體委員會議(事由:邀請勞動部部長、外交部、勞動力發展署、衛生福利部、內政部、國家安全局就「我國開放印度移工對本國勞工就業市場之衝擊」進行專題報告,並備質詢。) |
gazette.lineno |
971 |
gazette.blocks[0][0] |
楊委員曜:(11時19分)好,謝謝主席。主席,請一下許部長。 |
gazette.blocks[1][0] |
主席:好,部長請。 |
gazette.blocks[2][0] |
許部長銘春:楊委員好。 |
gazette.blocks[3][0] |
楊委員曜:部長好。部長,現在外籍移工的政策,我們的勞動政策是補充性的勞動力,對不對? |
gazette.blocks[4][0] |
許部長銘春:是。 |
gazette.blocks[5][0] |
楊委員曜:並不是替代性的。這個到底是補充還是替代,有很多模糊的地帶。我直接這樣講好了,譬如說這幾年政府都有超預算徵收稅款,我就直接大膽假設,多數企業其實是有賺錢的,對不對?才會有那麼多稅款可以收。 |
gazette.blocks[6][0] |
許部長銘春:稅收。 |
gazette.blocks[7][0] |
楊委員曜:假如我們還缺工那麼厲害,有沒有一種可能,是因為受薪階級的薪資並沒有隨著經濟的成長而增加,這個有沒有可能? |
gazette.blocks[8][0] |
許部長銘春:也是有可能。 |
gazette.blocks[9][0] |
楊委員曜:站在勞動部的立場,部長做過什麼還是有什麼你可以做的?你說有可能嘛,對不對? |
gazette.blocks[10][0] |
許部長銘春:對。 |
gazette.blocks[11][0] |
楊委員曜:勞動部站在保護勞工的立場,就加薪的部分,有沒有做跨部會的溝通協調? |
gazette.blocks[12][0] |
許部長銘春:有,報告委員,像疫情疫後旅宿業的房務清潔人員缺工的問題,基本上就是薪資太低,但是它又缺工,我們希望能夠導入本國勞工到缺工的行業去,所以我們跟交通部就雙管齊下,交通部補貼業者,由我們來獎勵勞工,除了薪資以外,我們獎勵勞工,它還可以增加收入,希望讓他的薪資未來能夠帶動提升起來。 |
gazette.blocks[13][0] |
楊委員曜:部長剛剛講的就是交通部來補助旅宿業者,然後你來補助勞工,對不對? |
gazette.blocks[14][0] |
許部長銘春:對。 |
gazette.blocks[15][0] |
楊委員曜:除了這個以外,到底政府有沒有辦法去跟企業主做溝通?如他加薪的話,你們就減稅或是怎麼樣。 |
gazette.blocks[16][0] |
許部長銘春:現在經濟部關於加薪減稅的措施,他們好像希望再延長,就是跨部會,像薪資的部分,我們每年調整基本工資,也呼籲雇主能夠跟進,經濟部也透過加薪減稅的措施讓薪資能夠成長,就是跨部會來做。 |
gazette.blocks[17][0] |
楊委員曜:我為什麼先提這個問題?因為薪資跟消費指數差太大的話,就會讓所有勞動力都變成補充性的,懂我的意思嗎? |
gazette.blocks[18][0] |
許部長銘春:補充性的…… |
gazette.blocks[19][0] |
楊委員曜:懂我的意思嗎? |
gazette.blocks[20][0] |
許部長銘春:是。 |
gazette.blocks[21][0] |
楊委員曜:並不是臺灣的人力不夠,我不是說整體的,我是說部分的行業跟職缺。 |
gazette.blocks[22][0] |
許部長銘春:如果薪資太低也吸引不到人。 |
gazette.blocks[23][0] |
楊委員曜:對,如果薪資低到他沒有辦法過活,當然就招不到工嘛。 |
gazette.blocks[24][0] |
許部長銘春:跟委員報告,我們也一直在跟企業主呼籲,它一方面在喊缺工、缺才,我們也提醒他,你的薪資條件是否合理?你的勞動條件是不是OK?還有就是企業的整個發展會不會讓勞工有願景?這都是勞工要不要去你的公司上班所要思考的。所以就是各方面大家都要去做努力,不是你喊缺工,但是什麼都不做,我再怎麼努力,勞工不願意去,我也沒辦法。 |
gazette.blocks[25][0] |
楊委員曜:對,你一直用那麼低的薪資…… |
gazette.blocks[26][0] |
許部長銘春:是啊! |
gazette.blocks[27][0] |
楊委員曜:不過我還是要講,對勞工最大的保障就是企業要穩定的成長,看起來這幾年國內的企業是賺錢的,連帶地國家的稅收多嘛。 |
gazette.blocks[28][0] |
許部長銘春:對。 |
gazette.blocks[29][0] |
楊委員曜:企業賺錢沒有回饋給受僱的勞工,這個自然會產生缺工的狀況。 |
gazette.blocks[30][0] |
許部長銘春:委員您講得沒有錯,企業有賺錢,這就是我們在講的,經濟果實要跟勞工分享。 |
gazette.blocks[31][0] |
楊委員曜:對。我覺得這個問題,臺灣政府必須要正視,而且要努力地去把它處理好。 |
gazette.blocks[32][0] |
許部長銘春:好。 |
gazette.blocks[33][0] |
楊委員曜:部長,我問一下,我們現在要引進印度的勞工嘛。 |
gazette.blocks[34][0] |
許部長銘春:對。 |
gazette.blocks[35][0] |
楊委員曜:臺灣因為高齡化,我們剛才講的那個問題也是缺工的一個現象,最主要的就是高齡化跟少子化,少子化就是工作年齡人口跟勞動力會下降,高齡化則可能會產生高齡者的照顧需求者眾。我們現在主要移工來源國只有4個國家,我看韓國、日本大概都有10個,都有超過10個以上。 |
gazette.blocks[36][0] |
許部長銘春:15個,都有15個,10個以上。 |
gazette.blocks[37][0] |
楊委員曜:來源國少,存在的風險是不是比較大? |
gazette.blocks[38][0] |
許部長銘春:是。 |
gazette.blocks[39][0] |
楊委員曜:這也就是為什麼我們要積極引進印度移工的原因嘛,對不對? |
gazette.blocks[40][0] |
許部長銘春:對。 |
gazette.blocks[41][0] |
楊委員曜:為什麼我們沒有辦法多找一些國家來簽訂協定? |
gazette.blocks[42][0] |
許部長銘春:委員,其實過去發展署這邊也都很努力去找一些東南亞的國家,但有些因為他們的意願或條件,甚至有些政治因素的考量等等,都是造成我們一直沒有辦法順利找到適合的移工來源國的原因。 |
gazette.blocks[43][0] |
楊委員曜:政治因素我倒是比較可以理解,可是其他的原因,我不覺得我們跟日本、韓國現在在經濟的發展等各方面有很大的差異,假如是政治的因素我是可以接受,因為臺灣畢竟是比較困難的一個地方。 |
gazette.blocks[44][0] |
許部長銘春:是。 |
gazette.blocks[45][0] |
楊委員曜:我最後問一個問題,旅宿業其實現在缺工也缺得很厲害,有沒有打算要開放旅宿業者的…… |
gazette.blocks[46][0] |
許部長銘春:報告委員,這個議題,觀光署有提評估報告出來,我們也開過專家學者的會議,2月1號有開過,因為它的報告還有一些內容,因為它之前只有針對觀光旅館而已,沒有包括民宿的部分…… |
gazette.blocks[47][0] |
楊委員曜:對,我現在要問的就是這個。 |
gazette.blocks[48][0] |
許部長銘春:所以專家學者有要求他們,要各業,不只觀光旅館,包括民宿等等,他們的缺工情況還有工作負荷要求等等,薪資還有薪資所占的成本比例、有沒有可能使用中高齡、高齡者就業,還有自動化,都要他們再補足。 |
gazette.blocks[49][0] |
楊委員曜:因為民宿比較特殊,它很難去符合本外勞的比例,以澎湖的旅宿發展來講,其實民宿發展速度是比旅館飯店要快得多且多得多。 |
gazette.blocks[50][0] |
許部長銘春:對。 |
gazette.blocks[51][0] |
楊委員曜:所以這個在討論時,請部長這邊注意一下,就是各地區的發展特殊性也一併考慮一下。 |
gazette.blocks[52][0] |
許部長銘春:好。委員,這個部分因為會由觀光署來提案評估報告,我會轉給他們,提醒他們這個部分要特別去瞭解。 |
gazette.blocks[53][0] |
楊委員曜:好,謝謝部長。謝謝主席。 |
gazette.blocks[54][0] |
許部長銘春:謝謝。 |
gazette.blocks[55][0] |
主席:謝謝楊曜委員的質詢。 |
gazette.blocks[55][1] |
接下來我們請劉建國委員進行質詢。 |
gazette.agenda.page_end |
214 |
gazette.agenda.meet_id |
委員會-11-1-26-3 |
gazette.agenda.speakers[0] |
王育敏 |
gazette.agenda.speakers[1] |
蘇清泉 |
gazette.agenda.speakers[2] |
林月琴 |
gazette.agenda.speakers[3] |
陳昭姿 |
gazette.agenda.speakers[4] |
陳菁徽 |
gazette.agenda.speakers[5] |
涂權吉 |
gazette.agenda.speakers[6] |
邱鎮軍 |
gazette.agenda.speakers[7] |
王正旭 |
gazette.agenda.speakers[8] |
廖偉翔 |
gazette.agenda.speakers[9] |
黃秀芳 |
gazette.agenda.speakers[10] |
盧縣一 |
gazette.agenda.speakers[11] |
楊曜 |
gazette.agenda.speakers[12] |
劉建國 |
gazette.agenda.speakers[13] |
林淑芬 |
gazette.agenda.speakers[14] |
謝衣鳯 |
gazette.agenda.speakers[15] |
李彥秀 |
gazette.agenda.speakers[16] |
楊瓊瓔 |
gazette.agenda.speakers[17] |
吳思瑤 |
gazette.agenda.speakers[18] |
洪申翰 |
gazette.agenda.speakers[19] |
游顥 |
gazette.agenda.speakers[20] |
洪孟楷 |
gazette.agenda.speakers[21] |
蔡易餘 |
gazette.agenda.speakers[22] |
羅智強 |
gazette.agenda.speakers[23] |
陳瑩 |
gazette.agenda.speakers[24] |
王鴻薇 |
gazette.agenda.speakers[25] |
陳冠廷 |
gazette.agenda.page_start |
125 |
gazette.agenda.meetingDate[0] |
2024-03-06 |
gazette.agenda.gazette_id |
1130701 |
gazette.agenda.agenda_lcidc_ids[0] |
1130701_00004 |
gazette.agenda.meet_name |
立法院第11屆第1會期社會福利及衛生環境委員會第3次全體委員會議紀錄 |
gazette.agenda.content |
邀請勞動部部長、外交部、勞動力發展署、衛生福利部、內政部、國家安全局就「我國開放印度
移工對本國勞工就業市場之衝擊」進行專題報告,並備質詢 |
gazette.agenda.agenda_id |
1130701_00003 |
transcript.pyannote[0].speaker |
SPEAKER_00 |
transcript.pyannote[0].start |
0.08159375 |
transcript.pyannote[0].end |
1.22909375 |
transcript.pyannote[1].speaker |
SPEAKER_01 |
transcript.pyannote[1].start |
6.73034375 |
transcript.pyannote[1].end |
7.55721875 |
transcript.pyannote[2].speaker |
SPEAKER_01 |
transcript.pyannote[2].start |
7.94534375 |
transcript.pyannote[2].end |
9.04221875 |
transcript.pyannote[3].speaker |
SPEAKER_00 |
transcript.pyannote[3].start |
10.47659375 |
transcript.pyannote[3].end |
11.28659375 |
transcript.pyannote[4].speaker |
SPEAKER_01 |
transcript.pyannote[4].start |
15.15096875 |
transcript.pyannote[4].end |
15.74159375 |
transcript.pyannote[5].speaker |
SPEAKER_01 |
transcript.pyannote[5].start |
15.91034375 |
transcript.pyannote[5].end |
16.60221875 |
transcript.pyannote[6].speaker |
SPEAKER_01 |
transcript.pyannote[6].start |
17.54721875 |
transcript.pyannote[6].end |
19.30221875 |
transcript.pyannote[7].speaker |
SPEAKER_01 |
transcript.pyannote[7].start |
20.43284375 |
transcript.pyannote[7].end |
37.84784375 |
transcript.pyannote[8].speaker |
SPEAKER_01 |
transcript.pyannote[8].start |
39.06284375 |
transcript.pyannote[8].end |
41.22284375 |
transcript.pyannote[9].speaker |
SPEAKER_01 |
transcript.pyannote[9].start |
41.79659375 |
transcript.pyannote[9].end |
42.42096875 |
transcript.pyannote[10].speaker |
SPEAKER_01 |
transcript.pyannote[10].start |
43.19721875 |
transcript.pyannote[10].end |
44.83409375 |
transcript.pyannote[11].speaker |
SPEAKER_01 |
transcript.pyannote[11].start |
46.11659375 |
transcript.pyannote[11].end |
47.29784375 |
transcript.pyannote[12].speaker |
SPEAKER_01 |
transcript.pyannote[12].start |
47.71971875 |
transcript.pyannote[12].end |
50.11596875 |
transcript.pyannote[13].speaker |
SPEAKER_01 |
transcript.pyannote[13].start |
50.53784375 |
transcript.pyannote[13].end |
55.27971875 |
transcript.pyannote[14].speaker |
SPEAKER_01 |
transcript.pyannote[14].start |
55.41471875 |
transcript.pyannote[14].end |
55.73534375 |
transcript.pyannote[15].speaker |
SPEAKER_01 |
transcript.pyannote[15].start |
56.30909375 |
transcript.pyannote[15].end |
56.95034375 |
transcript.pyannote[16].speaker |
SPEAKER_01 |
transcript.pyannote[16].start |
57.32159375 |
transcript.pyannote[16].end |
57.87846875 |
transcript.pyannote[17].speaker |
SPEAKER_01 |
transcript.pyannote[17].start |
58.51971875 |
transcript.pyannote[17].end |
59.27909375 |
transcript.pyannote[18].speaker |
SPEAKER_01 |
transcript.pyannote[18].start |
60.30846875 |
transcript.pyannote[18].end |
61.86096875 |
transcript.pyannote[19].speaker |
SPEAKER_01 |
transcript.pyannote[19].start |
62.29971875 |
transcript.pyannote[19].end |
65.20221875 |
transcript.pyannote[20].speaker |
SPEAKER_01 |
transcript.pyannote[20].start |
65.94471875 |
transcript.pyannote[20].end |
68.86409375 |
transcript.pyannote[21].speaker |
SPEAKER_00 |
transcript.pyannote[21].start |
66.68721875 |
transcript.pyannote[21].end |
66.80534375 |
transcript.pyannote[22].speaker |
SPEAKER_01 |
transcript.pyannote[22].start |
69.30284375 |
transcript.pyannote[22].end |
70.39971875 |
transcript.pyannote[23].speaker |
SPEAKER_01 |
transcript.pyannote[23].start |
71.27721875 |
transcript.pyannote[23].end |
72.82971875 |
transcript.pyannote[24].speaker |
SPEAKER_01 |
transcript.pyannote[24].start |
75.51284375 |
transcript.pyannote[24].end |
77.35221875 |
transcript.pyannote[25].speaker |
SPEAKER_01 |
transcript.pyannote[25].start |
77.74034375 |
transcript.pyannote[25].end |
85.53659375 |
transcript.pyannote[26].speaker |
SPEAKER_01 |
transcript.pyannote[26].start |
87.54471875 |
transcript.pyannote[26].end |
88.06784375 |
transcript.pyannote[27].speaker |
SPEAKER_00 |
transcript.pyannote[27].start |
88.40534375 |
transcript.pyannote[27].end |
88.52346875 |
transcript.pyannote[28].speaker |
SPEAKER_01 |
transcript.pyannote[28].start |
88.52346875 |
transcript.pyannote[28].end |
89.26596875 |
transcript.pyannote[29].speaker |
SPEAKER_00 |
transcript.pyannote[29].start |
90.26159375 |
transcript.pyannote[29].end |
90.51471875 |
transcript.pyannote[30].speaker |
SPEAKER_00 |
transcript.pyannote[30].start |
90.85221875 |
transcript.pyannote[30].end |
91.78034375 |
transcript.pyannote[31].speaker |
SPEAKER_00 |
transcript.pyannote[31].start |
92.33721875 |
transcript.pyannote[31].end |
92.37096875 |
transcript.pyannote[32].speaker |
SPEAKER_01 |
transcript.pyannote[32].start |
92.37096875 |
transcript.pyannote[32].end |
92.94471875 |
transcript.pyannote[33].speaker |
SPEAKER_00 |
transcript.pyannote[33].start |
92.38784375 |
transcript.pyannote[33].end |
92.45534375 |
transcript.pyannote[34].speaker |
SPEAKER_00 |
transcript.pyannote[34].start |
92.92784375 |
transcript.pyannote[34].end |
93.41721875 |
transcript.pyannote[35].speaker |
SPEAKER_01 |
transcript.pyannote[35].start |
93.92346875 |
transcript.pyannote[35].end |
96.20159375 |
transcript.pyannote[36].speaker |
SPEAKER_01 |
transcript.pyannote[36].start |
96.92721875 |
transcript.pyannote[36].end |
97.58534375 |
transcript.pyannote[37].speaker |
SPEAKER_01 |
transcript.pyannote[37].start |
98.51346875 |
transcript.pyannote[37].end |
98.98596875 |
transcript.pyannote[38].speaker |
SPEAKER_01 |
transcript.pyannote[38].start |
99.47534375 |
transcript.pyannote[38].end |
100.80846875 |
transcript.pyannote[39].speaker |
SPEAKER_01 |
transcript.pyannote[39].start |
101.12909375 |
transcript.pyannote[39].end |
102.42846875 |
transcript.pyannote[40].speaker |
SPEAKER_00 |
transcript.pyannote[40].start |
104.82471875 |
transcript.pyannote[40].end |
105.07784375 |
transcript.pyannote[41].speaker |
SPEAKER_01 |
transcript.pyannote[41].start |
105.11159375 |
transcript.pyannote[41].end |
106.71471875 |
transcript.pyannote[42].speaker |
SPEAKER_01 |
transcript.pyannote[42].start |
107.35596875 |
transcript.pyannote[42].end |
110.56221875 |
transcript.pyannote[43].speaker |
SPEAKER_00 |
transcript.pyannote[43].start |
110.46096875 |
transcript.pyannote[43].end |
110.81534375 |
transcript.pyannote[44].speaker |
SPEAKER_01 |
transcript.pyannote[44].start |
111.05159375 |
transcript.pyannote[44].end |
111.70971875 |
transcript.pyannote[45].speaker |
SPEAKER_01 |
transcript.pyannote[45].start |
111.91221875 |
transcript.pyannote[45].end |
115.28721875 |
transcript.pyannote[46].speaker |
SPEAKER_00 |
transcript.pyannote[46].start |
115.89471875 |
transcript.pyannote[46].end |
116.21534375 |
transcript.pyannote[47].speaker |
SPEAKER_01 |
transcript.pyannote[47].start |
116.21534375 |
transcript.pyannote[47].end |
118.30784375 |
transcript.pyannote[48].speaker |
SPEAKER_00 |
transcript.pyannote[48].start |
116.55284375 |
transcript.pyannote[48].end |
116.99159375 |
transcript.pyannote[49].speaker |
SPEAKER_00 |
transcript.pyannote[49].start |
118.03784375 |
transcript.pyannote[49].end |
118.40909375 |
transcript.pyannote[50].speaker |
SPEAKER_00 |
transcript.pyannote[50].start |
118.47659375 |
transcript.pyannote[50].end |
122.93159375 |
transcript.pyannote[51].speaker |
SPEAKER_00 |
transcript.pyannote[51].start |
123.30284375 |
transcript.pyannote[51].end |
141.42659375 |
transcript.pyannote[52].speaker |
SPEAKER_00 |
transcript.pyannote[52].start |
142.00034375 |
transcript.pyannote[52].end |
143.58659375 |
transcript.pyannote[53].speaker |
SPEAKER_00 |
transcript.pyannote[53].start |
143.82284375 |
transcript.pyannote[53].end |
144.19409375 |
transcript.pyannote[54].speaker |
SPEAKER_00 |
transcript.pyannote[54].start |
144.51471875 |
transcript.pyannote[54].end |
147.13034375 |
transcript.pyannote[55].speaker |
SPEAKER_00 |
transcript.pyannote[55].start |
147.56909375 |
transcript.pyannote[55].end |
150.48846875 |
transcript.pyannote[56].speaker |
SPEAKER_00 |
transcript.pyannote[56].start |
150.99471875 |
transcript.pyannote[56].end |
152.80034375 |
transcript.pyannote[57].speaker |
SPEAKER_00 |
transcript.pyannote[57].start |
153.10409375 |
transcript.pyannote[57].end |
158.57159375 |
transcript.pyannote[58].speaker |
SPEAKER_01 |
transcript.pyannote[58].start |
158.57159375 |
transcript.pyannote[58].end |
163.07721875 |
transcript.pyannote[59].speaker |
SPEAKER_01 |
transcript.pyannote[59].start |
163.31346875 |
transcript.pyannote[59].end |
165.76034375 |
transcript.pyannote[60].speaker |
SPEAKER_00 |
transcript.pyannote[60].start |
165.65909375 |
transcript.pyannote[60].end |
165.99659375 |
transcript.pyannote[61].speaker |
SPEAKER_01 |
transcript.pyannote[61].start |
165.86159375 |
transcript.pyannote[61].end |
168.37596875 |
transcript.pyannote[62].speaker |
SPEAKER_00 |
transcript.pyannote[62].start |
167.85284375 |
transcript.pyannote[62].end |
167.97096875 |
transcript.pyannote[63].speaker |
SPEAKER_00 |
transcript.pyannote[63].start |
168.32534375 |
transcript.pyannote[63].end |
168.74721875 |
transcript.pyannote[64].speaker |
SPEAKER_01 |
transcript.pyannote[64].start |
168.64596875 |
transcript.pyannote[64].end |
170.46846875 |
transcript.pyannote[65].speaker |
SPEAKER_01 |
transcript.pyannote[65].start |
170.92409375 |
transcript.pyannote[65].end |
174.82221875 |
transcript.pyannote[66].speaker |
SPEAKER_01 |
transcript.pyannote[66].start |
175.54784375 |
transcript.pyannote[66].end |
176.03721875 |
transcript.pyannote[67].speaker |
SPEAKER_01 |
transcript.pyannote[67].start |
176.34096875 |
transcript.pyannote[67].end |
177.06659375 |
transcript.pyannote[68].speaker |
SPEAKER_01 |
transcript.pyannote[68].start |
177.53909375 |
transcript.pyannote[68].end |
178.24784375 |
transcript.pyannote[69].speaker |
SPEAKER_01 |
transcript.pyannote[69].start |
178.82159375 |
transcript.pyannote[69].end |
184.93034375 |
transcript.pyannote[70].speaker |
SPEAKER_00 |
transcript.pyannote[70].start |
182.92221875 |
transcript.pyannote[70].end |
183.15846875 |
transcript.pyannote[71].speaker |
SPEAKER_00 |
transcript.pyannote[71].start |
184.89659375 |
transcript.pyannote[71].end |
185.33534375 |
transcript.pyannote[72].speaker |
SPEAKER_00 |
transcript.pyannote[72].start |
185.77409375 |
transcript.pyannote[72].end |
194.00909375 |
transcript.pyannote[73].speaker |
SPEAKER_00 |
transcript.pyannote[73].start |
194.44784375 |
transcript.pyannote[73].end |
198.27846875 |
transcript.pyannote[74].speaker |
SPEAKER_00 |
transcript.pyannote[74].start |
198.61596875 |
transcript.pyannote[74].end |
199.78034375 |
transcript.pyannote[75].speaker |
SPEAKER_00 |
transcript.pyannote[75].start |
199.98284375 |
transcript.pyannote[75].end |
209.23034375 |
transcript.pyannote[76].speaker |
SPEAKER_01 |
transcript.pyannote[76].start |
206.47971875 |
transcript.pyannote[76].end |
206.90159375 |
transcript.pyannote[77].speaker |
SPEAKER_01 |
transcript.pyannote[77].start |
209.29784375 |
transcript.pyannote[77].end |
214.71471875 |
transcript.pyannote[78].speaker |
SPEAKER_01 |
transcript.pyannote[78].start |
215.62596875 |
transcript.pyannote[78].end |
216.77346875 |
transcript.pyannote[79].speaker |
SPEAKER_01 |
transcript.pyannote[79].start |
217.63409375 |
transcript.pyannote[79].end |
221.73471875 |
transcript.pyannote[80].speaker |
SPEAKER_01 |
transcript.pyannote[80].start |
221.97096875 |
transcript.pyannote[80].end |
223.72596875 |
transcript.pyannote[81].speaker |
SPEAKER_01 |
transcript.pyannote[81].start |
224.38409375 |
transcript.pyannote[81].end |
224.87346875 |
transcript.pyannote[82].speaker |
SPEAKER_01 |
transcript.pyannote[82].start |
225.43034375 |
transcript.pyannote[82].end |
226.74659375 |
transcript.pyannote[83].speaker |
SPEAKER_01 |
transcript.pyannote[83].start |
226.98284375 |
transcript.pyannote[83].end |
227.91096875 |
transcript.pyannote[84].speaker |
SPEAKER_01 |
transcript.pyannote[84].start |
228.23159375 |
transcript.pyannote[84].end |
230.32409375 |
transcript.pyannote[85].speaker |
SPEAKER_01 |
transcript.pyannote[85].start |
230.98221875 |
transcript.pyannote[85].end |
231.62346875 |
transcript.pyannote[86].speaker |
SPEAKER_00 |
transcript.pyannote[86].start |
233.31096875 |
transcript.pyannote[86].end |
233.88471875 |
transcript.pyannote[87].speaker |
SPEAKER_01 |
transcript.pyannote[87].start |
233.61471875 |
transcript.pyannote[87].end |
237.00659375 |
transcript.pyannote[88].speaker |
SPEAKER_01 |
transcript.pyannote[88].start |
238.39034375 |
transcript.pyannote[88].end |
242.54159375 |
transcript.pyannote[89].speaker |
SPEAKER_00 |
transcript.pyannote[89].start |
241.32659375 |
transcript.pyannote[89].end |
241.73159375 |
transcript.pyannote[90].speaker |
SPEAKER_00 |
transcript.pyannote[90].start |
242.38971875 |
transcript.pyannote[90].end |
245.76471875 |
transcript.pyannote[91].speaker |
SPEAKER_01 |
transcript.pyannote[91].start |
243.82409375 |
transcript.pyannote[91].end |
250.57409375 |
transcript.pyannote[92].speaker |
SPEAKER_00 |
transcript.pyannote[92].start |
246.00096875 |
transcript.pyannote[92].end |
246.76034375 |
transcript.pyannote[93].speaker |
SPEAKER_00 |
transcript.pyannote[93].start |
247.92471875 |
transcript.pyannote[93].end |
248.38034375 |
transcript.pyannote[94].speaker |
SPEAKER_00 |
transcript.pyannote[94].start |
248.92034375 |
transcript.pyannote[94].end |
249.25784375 |
transcript.pyannote[95].speaker |
SPEAKER_00 |
transcript.pyannote[95].start |
249.59534375 |
transcript.pyannote[95].end |
249.93284375 |
transcript.pyannote[96].speaker |
SPEAKER_00 |
transcript.pyannote[96].start |
250.54034375 |
transcript.pyannote[96].end |
272.95034375 |
transcript.pyannote[97].speaker |
SPEAKER_01 |
transcript.pyannote[97].start |
260.71596875 |
transcript.pyannote[97].end |
260.95221875 |
transcript.pyannote[98].speaker |
SPEAKER_01 |
transcript.pyannote[98].start |
272.95034375 |
transcript.pyannote[98].end |
273.30471875 |
transcript.pyannote[99].speaker |
SPEAKER_00 |
transcript.pyannote[99].start |
273.30471875 |
transcript.pyannote[99].end |
282.36659375 |
transcript.pyannote[100].speaker |
SPEAKER_00 |
transcript.pyannote[100].start |
282.50159375 |
transcript.pyannote[100].end |
284.07096875 |
transcript.pyannote[101].speaker |
SPEAKER_01 |
transcript.pyannote[101].start |
283.90221875 |
transcript.pyannote[101].end |
286.65284375 |
transcript.pyannote[102].speaker |
SPEAKER_00 |
transcript.pyannote[102].start |
286.31534375 |
transcript.pyannote[102].end |
286.77096875 |
transcript.pyannote[103].speaker |
SPEAKER_01 |
transcript.pyannote[103].start |
286.93971875 |
transcript.pyannote[103].end |
287.71596875 |
transcript.pyannote[104].speaker |
SPEAKER_01 |
transcript.pyannote[104].start |
288.03659375 |
transcript.pyannote[104].end |
301.18221875 |
transcript.pyannote[105].speaker |
SPEAKER_00 |
transcript.pyannote[105].start |
293.43659375 |
transcript.pyannote[105].end |
294.17909375 |
transcript.pyannote[106].speaker |
SPEAKER_00 |
transcript.pyannote[106].start |
297.65534375 |
transcript.pyannote[106].end |
298.09409375 |
transcript.pyannote[107].speaker |
SPEAKER_00 |
transcript.pyannote[107].start |
298.31346875 |
transcript.pyannote[107].end |
298.88721875 |
transcript.pyannote[108].speaker |
SPEAKER_00 |
transcript.pyannote[108].start |
300.77721875 |
transcript.pyannote[108].end |
301.57034375 |
transcript.pyannote[109].speaker |
SPEAKER_01 |
transcript.pyannote[109].start |
301.57034375 |
transcript.pyannote[109].end |
309.72096875 |
transcript.pyannote[110].speaker |
SPEAKER_00 |
transcript.pyannote[110].start |
307.79721875 |
transcript.pyannote[110].end |
307.81409375 |
transcript.pyannote[111].speaker |
SPEAKER_00 |
transcript.pyannote[111].start |
309.63659375 |
transcript.pyannote[111].end |
309.99096875 |
transcript.pyannote[112].speaker |
SPEAKER_01 |
transcript.pyannote[112].start |
309.99096875 |
transcript.pyannote[112].end |
314.53034375 |
transcript.pyannote[113].speaker |
SPEAKER_00 |
transcript.pyannote[113].start |
314.17596875 |
transcript.pyannote[113].end |
319.87971875 |
transcript.pyannote[114].speaker |
SPEAKER_01 |
transcript.pyannote[114].start |
318.73221875 |
transcript.pyannote[114].end |
334.18971875 |
transcript.pyannote[115].speaker |
SPEAKER_00 |
transcript.pyannote[115].start |
320.14971875 |
transcript.pyannote[115].end |
320.43659375 |
transcript.pyannote[116].speaker |
SPEAKER_00 |
transcript.pyannote[116].start |
330.66284375 |
transcript.pyannote[116].end |
331.05096875 |
transcript.pyannote[117].speaker |
SPEAKER_00 |
transcript.pyannote[117].start |
333.37971875 |
transcript.pyannote[117].end |
333.70034375 |
transcript.pyannote[118].speaker |
SPEAKER_01 |
transcript.pyannote[118].start |
340.95659375 |
transcript.pyannote[118].end |
341.36159375 |
transcript.pyannote[119].speaker |
SPEAKER_01 |
transcript.pyannote[119].start |
343.20096875 |
transcript.pyannote[119].end |
344.60159375 |
transcript.pyannote[120].speaker |
SPEAKER_01 |
transcript.pyannote[120].start |
345.12471875 |
transcript.pyannote[120].end |
348.07784375 |
transcript.pyannote[121].speaker |
SPEAKER_01 |
transcript.pyannote[121].start |
348.53346875 |
transcript.pyannote[121].end |
350.08596875 |
transcript.pyannote[122].speaker |
SPEAKER_00 |
transcript.pyannote[122].start |
350.60909375 |
transcript.pyannote[122].end |
350.77784375 |
transcript.pyannote[123].speaker |
SPEAKER_01 |
transcript.pyannote[123].start |
350.77784375 |
transcript.pyannote[123].end |
354.87846875 |
transcript.pyannote[124].speaker |
SPEAKER_00 |
transcript.pyannote[124].start |
350.84534375 |
transcript.pyannote[124].end |
350.89596875 |
transcript.pyannote[125].speaker |
SPEAKER_00 |
transcript.pyannote[125].start |
352.56659375 |
transcript.pyannote[125].end |
353.02221875 |
transcript.pyannote[126].speaker |
SPEAKER_00 |
transcript.pyannote[126].start |
353.03909375 |
transcript.pyannote[126].end |
353.19096875 |
transcript.pyannote[127].speaker |
SPEAKER_01 |
transcript.pyannote[127].start |
356.59971875 |
transcript.pyannote[127].end |
361.12221875 |
transcript.pyannote[128].speaker |
SPEAKER_01 |
transcript.pyannote[128].start |
361.59471875 |
transcript.pyannote[128].end |
380.41034375 |
transcript.pyannote[129].speaker |
SPEAKER_01 |
transcript.pyannote[129].start |
381.87846875 |
transcript.pyannote[129].end |
383.21159375 |
transcript.pyannote[130].speaker |
SPEAKER_00 |
transcript.pyannote[130].start |
382.87409375 |
transcript.pyannote[130].end |
382.95846875 |
transcript.pyannote[131].speaker |
SPEAKER_01 |
transcript.pyannote[131].start |
383.61659375 |
transcript.pyannote[131].end |
385.70909375 |
transcript.pyannote[132].speaker |
SPEAKER_01 |
transcript.pyannote[132].start |
387.07596875 |
transcript.pyannote[132].end |
402.61784375 |
transcript.pyannote[133].speaker |
SPEAKER_00 |
transcript.pyannote[133].start |
391.69971875 |
transcript.pyannote[133].end |
391.90221875 |
transcript.pyannote[134].speaker |
SPEAKER_00 |
transcript.pyannote[134].start |
398.92221875 |
transcript.pyannote[134].end |
400.59284375 |
transcript.pyannote[135].speaker |
SPEAKER_00 |
transcript.pyannote[135].start |
401.13284375 |
transcript.pyannote[135].end |
401.85846875 |
transcript.pyannote[136].speaker |
SPEAKER_01 |
transcript.pyannote[136].start |
403.52909375 |
transcript.pyannote[136].end |
404.65971875 |
transcript.pyannote[137].speaker |
SPEAKER_01 |
transcript.pyannote[137].start |
405.84096875 |
transcript.pyannote[137].end |
407.79846875 |
transcript.pyannote[138].speaker |
SPEAKER_01 |
transcript.pyannote[138].start |
407.96721875 |
transcript.pyannote[138].end |
410.12721875 |
transcript.pyannote[139].speaker |
SPEAKER_00 |
transcript.pyannote[139].start |
410.12721875 |
transcript.pyannote[139].end |
410.39721875 |
transcript.pyannote[140].speaker |
SPEAKER_01 |
transcript.pyannote[140].start |
410.39721875 |
transcript.pyannote[140].end |
410.41409375 |
transcript.pyannote[141].speaker |
SPEAKER_01 |
transcript.pyannote[141].start |
410.73471875 |
transcript.pyannote[141].end |
416.64096875 |
transcript.pyannote[142].speaker |
SPEAKER_00 |
transcript.pyannote[142].start |
415.76346875 |
transcript.pyannote[142].end |
416.13471875 |
transcript.pyannote[143].speaker |
SPEAKER_01 |
transcript.pyannote[143].start |
417.43409375 |
transcript.pyannote[143].end |
417.78846875 |
transcript.pyannote[144].speaker |
SPEAKER_01 |
transcript.pyannote[144].start |
417.95721875 |
transcript.pyannote[144].end |
418.73346875 |
transcript.pyannote[145].speaker |
SPEAKER_01 |
transcript.pyannote[145].start |
419.23971875 |
transcript.pyannote[145].end |
420.96096875 |
transcript.pyannote[146].speaker |
SPEAKER_01 |
transcript.pyannote[146].start |
422.27721875 |
transcript.pyannote[146].end |
426.51284375 |
transcript.pyannote[147].speaker |
SPEAKER_00 |
transcript.pyannote[147].start |
426.76596875 |
transcript.pyannote[147].end |
427.06971875 |
transcript.pyannote[148].speaker |
SPEAKER_01 |
transcript.pyannote[148].start |
426.83346875 |
transcript.pyannote[148].end |
427.77846875 |
transcript.pyannote[149].speaker |
SPEAKER_00 |
transcript.pyannote[149].start |
427.64346875 |
transcript.pyannote[149].end |
429.46596875 |
transcript.pyannote[150].speaker |
SPEAKER_00 |
transcript.pyannote[150].start |
429.60096875 |
transcript.pyannote[150].end |
434.47784375 |
transcript.pyannote[151].speaker |
SPEAKER_01 |
transcript.pyannote[151].start |
433.92096875 |
transcript.pyannote[151].end |
434.02221875 |
transcript.pyannote[152].speaker |
SPEAKER_00 |
transcript.pyannote[152].start |
434.62971875 |
transcript.pyannote[152].end |
435.86159375 |
transcript.pyannote[153].speaker |
SPEAKER_00 |
transcript.pyannote[153].start |
436.26659375 |
transcript.pyannote[153].end |
439.01721875 |
transcript.pyannote[154].speaker |
SPEAKER_00 |
transcript.pyannote[154].start |
439.40534375 |
transcript.pyannote[154].end |
439.69221875 |
transcript.pyannote[155].speaker |
SPEAKER_00 |
transcript.pyannote[155].start |
440.13096875 |
transcript.pyannote[155].end |
446.18909375 |
transcript.pyannote[156].speaker |
SPEAKER_00 |
transcript.pyannote[156].start |
446.50971875 |
transcript.pyannote[156].end |
448.92284375 |
transcript.pyannote[157].speaker |
SPEAKER_01 |
transcript.pyannote[157].start |
449.27721875 |
transcript.pyannote[157].end |
473.79659375 |
transcript.pyannote[158].speaker |
SPEAKER_01 |
transcript.pyannote[158].start |
474.53909375 |
transcript.pyannote[158].end |
475.72034375 |
transcript.pyannote[159].speaker |
SPEAKER_01 |
transcript.pyannote[159].start |
476.64846875 |
transcript.pyannote[159].end |
477.35721875 |
transcript.pyannote[160].speaker |
SPEAKER_01 |
transcript.pyannote[160].start |
478.82534375 |
transcript.pyannote[160].end |
479.98971875 |
transcript.pyannote[161].speaker |
SPEAKER_01 |
transcript.pyannote[161].start |
480.90096875 |
transcript.pyannote[161].end |
482.70659375 |
transcript.pyannote[162].speaker |
SPEAKER_01 |
transcript.pyannote[162].start |
483.16221875 |
transcript.pyannote[162].end |
484.12409375 |
transcript.pyannote[163].speaker |
SPEAKER_01 |
transcript.pyannote[163].start |
485.06909375 |
transcript.pyannote[163].end |
486.50346875 |
transcript.pyannote[164].speaker |
SPEAKER_01 |
transcript.pyannote[164].start |
488.02221875 |
transcript.pyannote[164].end |
490.09784375 |
transcript.pyannote[165].speaker |
SPEAKER_01 |
transcript.pyannote[165].start |
490.65471875 |
transcript.pyannote[165].end |
491.83596875 |
transcript.pyannote[166].speaker |
SPEAKER_00 |
transcript.pyannote[166].start |
492.30846875 |
transcript.pyannote[166].end |
493.13534375 |
transcript.pyannote[167].speaker |
SPEAKER_00 |
transcript.pyannote[167].start |
493.38846875 |
transcript.pyannote[167].end |
495.02534375 |
transcript.pyannote[168].speaker |
SPEAKER_01 |
transcript.pyannote[168].start |
494.29971875 |
transcript.pyannote[168].end |
494.73846875 |
transcript.pyannote[169].speaker |
SPEAKER_00 |
transcript.pyannote[169].start |
495.66659375 |
transcript.pyannote[169].end |
496.76346875 |
transcript.pyannote[170].speaker |
SPEAKER_00 |
transcript.pyannote[170].start |
497.06721875 |
transcript.pyannote[170].end |
497.99534375 |
transcript.pyannote[171].speaker |
SPEAKER_00 |
transcript.pyannote[171].start |
498.46784375 |
transcript.pyannote[171].end |
508.55909375 |
transcript.pyannote[172].speaker |
SPEAKER_01 |
transcript.pyannote[172].start |
499.49721875 |
transcript.pyannote[172].end |
499.88534375 |
transcript.pyannote[173].speaker |
SPEAKER_01 |
transcript.pyannote[173].start |
504.37409375 |
transcript.pyannote[173].end |
504.52596875 |
transcript.pyannote[174].speaker |
SPEAKER_00 |
transcript.pyannote[174].start |
509.20034375 |
transcript.pyannote[174].end |
514.51596875 |
transcript.pyannote[175].speaker |
SPEAKER_01 |
transcript.pyannote[175].start |
512.77784375 |
transcript.pyannote[175].end |
512.98034375 |
transcript.pyannote[176].speaker |
SPEAKER_01 |
transcript.pyannote[176].start |
514.51596875 |
transcript.pyannote[176].end |
516.01784375 |
transcript.pyannote[177].speaker |
SPEAKER_00 |
transcript.pyannote[177].start |
515.73096875 |
transcript.pyannote[177].end |
542.61284375 |
transcript.pyannote[178].speaker |
SPEAKER_01 |
transcript.pyannote[178].start |
543.11909375 |
transcript.pyannote[178].end |
550.49346875 |
transcript.pyannote[179].speaker |
SPEAKER_00 |
transcript.pyannote[179].start |
550.71284375 |
transcript.pyannote[179].end |
551.18534375 |
transcript.pyannote[180].speaker |
SPEAKER_01 |
transcript.pyannote[180].start |
551.10096875 |
transcript.pyannote[180].end |
574.67534375 |
transcript.pyannote[181].speaker |
SPEAKER_00 |
transcript.pyannote[181].start |
555.03284375 |
transcript.pyannote[181].end |
555.42096875 |
transcript.pyannote[182].speaker |
SPEAKER_00 |
transcript.pyannote[182].start |
561.88409375 |
transcript.pyannote[182].end |
562.28909375 |
transcript.pyannote[183].speaker |
SPEAKER_00 |
transcript.pyannote[183].start |
563.25096875 |
transcript.pyannote[183].end |
563.33534375 |
transcript.pyannote[184].speaker |
SPEAKER_00 |
transcript.pyannote[184].start |
568.26284375 |
transcript.pyannote[184].end |
568.63409375 |
transcript.pyannote[185].speaker |
SPEAKER_00 |
transcript.pyannote[185].start |
574.64159375 |
transcript.pyannote[185].end |
577.02096875 |
transcript.pyannote[186].speaker |
SPEAKER_01 |
transcript.pyannote[186].start |
577.02096875 |
transcript.pyannote[186].end |
577.27409375 |
transcript.pyannote[187].speaker |
SPEAKER_00 |
transcript.pyannote[187].start |
577.27409375 |
transcript.pyannote[187].end |
581.96534375 |
transcript.pyannote[188].speaker |
SPEAKER_01 |
transcript.pyannote[188].start |
578.77596875 |
transcript.pyannote[188].end |
579.09659375 |
transcript.pyannote[189].speaker |
SPEAKER_01 |
transcript.pyannote[189].start |
579.92346875 |
transcript.pyannote[189].end |
580.56471875 |
transcript.pyannote[190].speaker |
SPEAKER_01 |
transcript.pyannote[190].start |
582.10034375 |
transcript.pyannote[190].end |
583.51784375 |
transcript.pyannote[191].speaker |
SPEAKER_00 |
transcript.pyannote[191].start |
585.34034375 |
transcript.pyannote[191].end |
587.66909375 |
transcript.whisperx[0].start |
0.117 |
transcript.whisperx[0].end |
1.037 |
transcript.whisperx[0].text |
好來楊曜委員請謝謝主席主席請要許部長好部長請楊委員好部長好部長我們現在 |
transcript.whisperx[1].start |
20.455 |
transcript.whisperx[1].end |
44.17 |
transcript.whisperx[1].text |
外籍移工的政策我們的勞動政策是補充性的勞動力對不對是並不是替代性的可是這個到底是補充還是替代呢他有很多有很多有很多模糊的的替代也就是說假如說 |
transcript.whisperx[2].start |
46.155 |
transcript.whisperx[2].end |
71.377 |
transcript.whisperx[2].text |
我直接這樣子講好了比如說這幾年我們政府都有超預算徵收稅款這個我就直接大膽的假設是多數的企業其實是有賺錢的對不對才會有那麼多稅款可以收嘛那 |
transcript.whisperx[3].start |
75.56 |
transcript.whisperx[3].end |
102.282 |
transcript.whisperx[3].text |
假如說我們還缺工那麼厲害有沒有一種可能是因為受薪階級的薪資並沒有隨著經濟的成長增加?這個有沒有可能?有沒有可能?那正在勞動部的立場部長做過什麼還是有什麼你可以做的? |
transcript.whisperx[4].start |
105.178 |
transcript.whisperx[4].end |
114.864 |
transcript.whisperx[4].text |
你說有可能嘛對不對那勞動部站在保護勞工的立場就加薪的部分有沒有做跨部會 |
transcript.whisperx[5].start |
115.919 |
transcript.whisperx[5].end |
141.162 |
transcript.whisperx[5].text |
有,有,有,有,像,報告委,那個像我們那個疫情的醫後齁,那個旅宿業的那個房屋清潔人缺工的問題齁,那基本上他就是薪資太低啦,所以在這個時候,但是他又缺工,那我們希望能夠導入本國勞工願意到缺工行業去,所以就是我們跟交通部就雙管齊下,交通部他就 |
transcript.whisperx[6].start |
142.063 |
transcript.whisperx[6].end |
158.283 |
transcript.whisperx[6].text |
作為一個補貼業者由我來獎勵勞工讓他這個除了薪資以外我獎勵勞工他還可以增加收入希望就是說能夠讓他的薪資未來就是帶動提升起來 |
transcript.whisperx[7].start |
158.703 |
transcript.whisperx[7].end |
184.516 |
transcript.whisperx[7].text |
除了工部門做的部長剛剛講的就是交通部來補助哩數業者然後你來補助勞工對不對除了這個以外到底政府有沒有辦法去跟企業組做溝通或者我們從他加薪的話我們就減稅或者是怎麼樣 |
transcript.whisperx[8].start |
185.817 |
transcript.whisperx[8].end |
186.197 |
transcript.whisperx[8].text |
為什麼先提這個問題呢?因為這個問題會 |
transcript.whisperx[9].start |
215.663 |
transcript.whisperx[9].end |
236.576 |
transcript.whisperx[9].text |
你的薪資跟消費指數差太大的話就會讓所有的勞動力都變成補充性的懂我意思嗎?懂我意思嗎?並不是台灣的人力不夠 |
transcript.whisperx[10].start |
238.427 |
transcript.whisperx[10].end |
250.194 |
transcript.whisperx[10].text |
我不是說整體的我是說部分的行業跟職缺他如果薪資太低也吸引不到對他薪資低到他沒有辦法過活他當然招不到高碼 |
transcript.whisperx[11].start |
251.348 |
transcript.whisperx[11].end |
272.876 |
transcript.whisperx[11].text |
所以其實跟委員報告我們也一直在跟企業主呼籲他一方面在喊缺工缺財但我們也提醒他你的薪資條件是不是合理對你的勞動條件是不是OK還有就是說你的企業的整個發展會不會讓勞工有願景這個都是勞工要不要去你的公司上班的他要去思考的對 |
transcript.whisperx[12].start |
273.476 |
transcript.whisperx[12].end |
298.315 |
transcript.whisperx[12].text |
所以就是說各方面都是要去大家做努力啦不是說你喊缺工但是你什麼都不做那我再怎麼努力勞工不願意去我也沒辦法你一直用那麼低的薪資不過我還是要講啦就是說對勞工最大的保障還是要企業可以穩定的成長所以我們並不是說只是說看起來這幾年就是國內的企業是賺錢的 |
transcript.whisperx[13].start |
301.357 |
transcript.whisperx[13].end |
319.36 |
transcript.whisperx[13].text |
對. |
transcript.whisperx[14].start |
323.343 |
transcript.whisperx[14].end |
333.191 |
transcript.whisperx[14].text |
我覺得這個問題臺灣政府必須要很正式而且要努力的去把它處理好 |
transcript.whisperx[15].start |
343.272 |
transcript.whisperx[15].end |
350.719 |
transcript.whisperx[15].text |
部長我問一下我們現在就是要引進印度的勞工 |
transcript.whisperx[16].start |
356.79 |
transcript.whisperx[16].end |
380.316 |
transcript.whisperx[16].text |
臺灣當然因為高齡化我們剛才講的那個問題是也是缺工的一個現象那最主要的就是高齡化跟少子化少子化當然就是工作年齡人口跟勞動力會下降那高齡化可能就是反而會產生高齡者的照顧需求者重我們現在 |
transcript.whisperx[17].start |
387.15 |
transcript.whisperx[17].end |
415.361 |
transcript.whisperx[17].text |
移工的主要來源國只有4個國家我看韓國、日本他們大概來源國都有10個差不多10個以上那來源國少存在的風險是不是比較大?是是嗎?這個也就是為什麼我們積極跟印度的一個原因嗎? |
transcript.whisperx[18].start |
417.486 |
transcript.whisperx[18].end |
420.636 |
transcript.whisperx[18].text |
那為什麼我們沒有辦法 |
transcript.whisperx[19].start |
422.318 |
transcript.whisperx[19].end |
448.636 |
transcript.whisperx[19].text |
多找一些國家來簽訂協定其實委員過去像發展署這邊也都很努力去找一些東南亞的國家但是有些譬如說他們意願或條件或政治因素的考量等等這個都造成我們一直沒有辦法順利找到適合的移工來源國的原因 |
transcript.whisperx[20].start |
449.372 |
transcript.whisperx[20].end |
475.225 |
transcript.whisperx[20].text |
政治因素我倒是比較可以理解可是其他的原因我不覺得我們跟日本韓國現在在經濟的發展各方面有很大的差異假如說是政治的因素我是可以接受因為台灣畢竟是比較困難的一個地方最後問一個問題就是 |
transcript.whisperx[21].start |
478.871 |
transcript.whisperx[21].end |
497.592 |
transcript.whisperx[21].text |
李樹葉李樹葉其實現在缺工也缺得很厲害那有沒有打算要開放李樹葉的報告委員這個議題那個觀光署有提提那個 |
transcript.whisperx[22].start |
498.73 |
transcript.whisperx[22].end |
518.26 |
transcript.whisperx[22].text |
評估過來報告我們也開過專家學者的會議2月1號有開過但因為他的報告還有一些內容包括因為他之前好像只有針對那個觀光旅館而已那包括民宿沒有所以我們就要求專家學者要求他們 |
transcript.whisperx[23].start |
519.24 |
transcript.whisperx[23].end |
542.236 |
transcript.whisperx[23].text |
要各頁不僅觀光旅館包括民宿等等他們的缺工情況還有他們的工作負荷的要求等等薪資還有你的薪資所佔的成本的比例還有你有沒有可能用使用中高齡高齡者來就業還有自動化都要他們再補足 |
transcript.whisperx[24].start |
543.188 |
transcript.whisperx[24].end |
559.974 |
transcript.whisperx[24].text |
因為民宿比較特殊他很難去符合本外勞的比例以澎湖的旅宿發展來講其實民宿的發展的速度是比旅館、飯店 |
transcript.whisperx[25].start |
560.994 |
transcript.whisperx[25].end |
561.134 |
transcript.whisperx[25].text |
我們謝謝楊曜委員的質詢 |