iVOD / 167341

Field Value
IVOD_ID 167341
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/167341
日期 2026-01-29
會議資料.會議代碼 委員會-11-4-26-22
會議資料.會議代碼:str 第11屆第4會期社會福利及衛生環境委員會第22次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 22
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.標題 第11屆第4會期社會福利及衛生環境委員會第22次全體委員會議
影片種類 Clip
開始時間 2026-01-29T12:17:36+08:00
結束時間 2026-01-29T12:23:21+08:00
影片長度 00:05:45
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/58229044bac95a88f5640ff24f1e5adb52fd623850d83d5bb6e897797ecb76ba02a28a74111475595ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 鄭天財Sra Kacaw
委員發言時間 12:17:36 - 12:23:21
會議時間 2026-01-29T09:00:00+08:00
會議名稱 立法院第11屆第4會期社會福利及衛生環境委員會第22次全體委員會議(事由:邀請衛生福利部就「春節急診醫療人力調度與跨院協調機制之現況與精進作為」暨「假日及連續假期急重症分級醫療政策之執行成效與改進方向」進行專題報告,並備質詢。 討論事項 審查 一、 委員何欣純等17人擬具「國民年金法第五十四條之一及第五十五條條文修正草案」案。 二、 委員邱鎮軍等17人擬具「國民年金法第十五條及第五十四條之一條文修正草案」案。 三、 委員王美惠等18人擬具「國民年金法第五十四條之一條文修正草案」案。 四、 委員劉建國等16人擬具「國民年金法第五十四條之一條文修正草案」案。 五、 委員馬文君等20人擬具「國民年金法第五十四條之一條文修正草案」案。 六、 委員徐巧芯等18人擬具「國民年金法第五十四條之一條文修正草案」案。 七、 台灣民眾黨黨團擬具「國民年金法第五十四條之一條文修正草案」案。 八、 委員邱鎮軍等21人擬具「國民年金法第十五條及第五十條條文修正草案」案。 九、 委員陳俊宇等29人擬具「國民年金法第五十四條之一條文修正草案」案。 十、 台灣民眾黨黨團擬具「國民年金法第十五條及第五十條條文修正草案」案。 十一、 委員黃秀芳等21人擬具「國民年金法第五十四條之一條文修正草案」案。 十二、 委員羅廷瑋等16人擬具「國民年金法第五十四條之一條文修正草案」案。 十三、 民進黨黨團擬具「國民年金法部分條文修正草案」案。 十四、 委員蔡易餘等17人擬具「國民年金法部分條文修正草案」案。 十五、 委員吳思瑤等18人擬具「國民年金法部分條文修正草案」案。 十六、 委員郭國文等17人擬具「國民年金法第五十四條之一條文修正草案」案。 十七、 委員王美惠等22人擬具「國民年金法部分條文修正草案」案。 十八、 委員徐富癸等18人擬具「國民年金法第五十四條之一條文修正草案」案。 十九、 委員陳亭妃等16人擬具「國民年金法部分條文修正草案」案。 【專題報告與討論事項綜合詢答,討論事項僅詢答】)
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 9.88596875
transcript.pyannote[0].end 11.96159375
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 12.63659375
transcript.pyannote[1].end 13.36221875
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 16.50096875
transcript.pyannote[2].end 18.69471875
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 19.26846875
transcript.pyannote[3].end 27.53721875
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 22.30596875
transcript.pyannote[4].end 22.50846875
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 27.09846875
transcript.pyannote[5].end 27.18284375
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 27.75659375
transcript.pyannote[6].end 33.86534375
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 30.43971875
transcript.pyannote[7].end 30.49034375
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 30.52409375
transcript.pyannote[8].end 30.79409375
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 35.06346875
transcript.pyannote[9].end 39.07971875
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 39.31596875
transcript.pyannote[10].end 41.57721875
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 41.88096875
transcript.pyannote[11].end 43.68659375
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 43.75409375
transcript.pyannote[12].end 46.47096875
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 46.82534375
transcript.pyannote[13].end 48.02346875
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 48.64784375
transcript.pyannote[14].end 49.17096875
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 49.76159375
transcript.pyannote[15].end 52.42784375
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 53.10284375
transcript.pyannote[16].end 56.20784375
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 57.15284375
transcript.pyannote[17].end 64.59471875
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 66.63659375
transcript.pyannote[18].end 69.80909375
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 70.87221875
transcript.pyannote[19].end 72.05346875
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 72.77909375
transcript.pyannote[20].end 76.94721875
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 77.43659375
transcript.pyannote[21].end 78.90471875
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 79.51221875
transcript.pyannote[22].end 81.73971875
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 82.56659375
transcript.pyannote[23].end 88.86096875
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 87.44346875
transcript.pyannote[24].end 87.56159375
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 89.51909375
transcript.pyannote[25].end 93.97409375
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 95.05409375
transcript.pyannote[26].end 105.83721875
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 97.93971875
transcript.pyannote[27].end 98.02409375
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 106.52909375
transcript.pyannote[28].end 115.65846875
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 116.72159375
transcript.pyannote[29].end 119.32034375
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 119.32034375
transcript.pyannote[30].end 119.80971875
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 119.80971875
transcript.pyannote[31].end 121.07534375
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 122.12159375
transcript.pyannote[32].end 123.87659375
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 124.77096875
transcript.pyannote[33].end 126.07034375
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 126.59346875
transcript.pyannote[34].end 128.55096875
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 130.32284375
transcript.pyannote[35].end 131.14971875
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 131.74034375
transcript.pyannote[36].end 133.22534375
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 134.42346875
transcript.pyannote[37].end 135.60471875
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 135.97596875
transcript.pyannote[38].end 136.34721875
transcript.pyannote[39].speaker SPEAKER_01
transcript.pyannote[39].start 137.19096875
transcript.pyannote[39].end 137.41034375
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 138.03471875
transcript.pyannote[40].end 140.73471875
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 141.84846875
transcript.pyannote[41].end 142.74284375
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 143.08034375
transcript.pyannote[42].end 143.60346875
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 143.87346875
transcript.pyannote[43].end 144.85221875
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 145.22346875
transcript.pyannote[44].end 145.47659375
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 146.18534375
transcript.pyannote[45].end 150.10034375
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 150.58971875
transcript.pyannote[46].end 151.85534375
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 152.00721875
transcript.pyannote[47].end 152.12534375
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 153.05346875
transcript.pyannote[48].end 154.53846875
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 155.56784375
transcript.pyannote[49].end 156.83346875
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 157.42409375
transcript.pyannote[50].end 158.99346875
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 159.55034375
transcript.pyannote[51].end 161.17034375
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 159.76971875
transcript.pyannote[52].end 159.98909375
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 161.38971875
transcript.pyannote[53].end 162.25034375
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 163.39784375
transcript.pyannote[54].end 164.02221875
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 164.89971875
transcript.pyannote[55].end 167.36346875
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 167.85284375
transcript.pyannote[56].end 174.29909375
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 174.97409375
transcript.pyannote[57].end 175.83471875
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 175.86846875
transcript.pyannote[58].end 179.44596875
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 180.40784375
transcript.pyannote[59].end 180.77909375
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 181.23471875
transcript.pyannote[60].end 182.90534375
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 183.39471875
transcript.pyannote[61].end 184.44096875
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 184.94721875
transcript.pyannote[62].end 185.85846875
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 186.58409375
transcript.pyannote[63].end 190.16159375
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 190.49909375
transcript.pyannote[64].end 192.89534375
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 193.38471875
transcript.pyannote[65].end 195.19034375
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 195.57846875
transcript.pyannote[66].end 196.96221875
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 197.41784375
transcript.pyannote[67].end 213.55034375
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 213.98909375
transcript.pyannote[68].end 217.33034375
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 217.75221875
transcript.pyannote[69].end 219.97971875
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 220.70534375
transcript.pyannote[70].end 221.97096875
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 222.34221875
transcript.pyannote[71].end 223.10159375
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 223.60784375
transcript.pyannote[72].end 225.53159375
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 226.47659375
transcript.pyannote[73].end 232.24784375
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 232.21409375
transcript.pyannote[74].end 232.23096875
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 232.24784375
transcript.pyannote[75].end 232.82159375
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 232.72034375
transcript.pyannote[76].end 236.02784375
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 236.02784375
transcript.pyannote[77].end 237.00659375
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 237.00659375
transcript.pyannote[78].end 237.02346875
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 237.02346875
transcript.pyannote[79].end 240.56721875
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 240.78659375
transcript.pyannote[80].end 241.64721875
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 241.84971875
transcript.pyannote[81].end 250.20284375
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 250.25346875
transcript.pyannote[82].end 258.23534375
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 258.28596875
transcript.pyannote[83].end 286.02846875
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 286.50096875
transcript.pyannote[84].end 300.77721875
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 300.77721875
transcript.pyannote[85].end 301.85721875
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 302.44784375
transcript.pyannote[86].end 303.67971875
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 305.41784375
transcript.pyannote[87].end 311.15534375
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 311.74596875
transcript.pyannote[88].end 312.89346875
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 312.13409375
transcript.pyannote[89].end 312.75846875
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 312.89346875
transcript.pyannote[90].end 313.43346875
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 313.43346875
transcript.pyannote[91].end 320.85846875
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 313.65284375
transcript.pyannote[92].end 314.09159375
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 314.49659375
transcript.pyannote[93].end 315.37409375
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 317.11221875
transcript.pyannote[94].end 317.97284375
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 318.78284375
transcript.pyannote[95].end 319.12034375
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 319.37346875
transcript.pyannote[96].end 336.75471875
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 324.62159375
transcript.pyannote[97].end 325.98846875
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 326.76471875
transcript.pyannote[98].end 326.95034375
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 328.92471875
transcript.pyannote[99].end 328.99221875
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 330.98346875
transcript.pyannote[100].end 332.35034375
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 333.80159375
transcript.pyannote[101].end 334.84784375
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 335.97846875
transcript.pyannote[102].end 336.65346875
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 341.90159375
transcript.pyannote[103].end 345.78284375
transcript.whisperx[0].start 10.169
transcript.whisperx[0].end 33.185
transcript.whisperx[0].text 主席 各位委員 請部長 請時部長政委好 部長辛苦了今天談的國民年金法本席也有提案 禮拜五會附委到時候在逐條審查的時候我們再討論 希望也能夠支持
transcript.whisperx[1].start 35.114
transcript.whisperx[1].end 63.524
transcript.whisperx[1].text 那我們看這個國民現在另外講一個議題國民年金法53條原住民年滿55歲特別有這樣的一個規定因為有這個規定後來公務人員退休之前撫恤法原住民也可以降為55歲然後這個公立學校教職員退休之前撫恤條例原住民也可以降為55歲
transcript.whisperx[2].start 66.687
transcript.whisperx[2].end 93.103
transcript.whisperx[2].text 那現在就是問題出這個老人福利法仍然維持65歲原住民沒有降低為55歲那這個延伸的就很多的問題我們看這個衛福部在早期針對原住民的長者裝飾假牙也是55歲然後長照也是原住民也是55歲
transcript.whisperx[3].start 97.118
transcript.whisperx[3].end 120.527
transcript.whisperx[3].text 這個前任的部長現在政務委員當初在納入優先接種疫苗的時候演出名也是55歲相關的台南的老倫健保也是55歲新北的健保也是55歲尤其是這個敬老悠遊卡很多縣市都是55歲
transcript.whisperx[4].start 124.99
transcript.whisperx[4].end 150.08
transcript.whisperx[4].text 現在重點在哪裡呢 他們拿了這個敬老悠遊卡坐公車 他們的公司公車可以然後坐捷運可以結果去坐台鐵的七間車就不行了就產生這個 怎麼一國兩制同樣的一個台北台中市的七億 新北市的七億這樣的狀況
transcript.whisperx[5].start 153.5
transcript.whisperx[5].end 179.257
transcript.whisperx[5].text 就變成是這樣所以這個部分要怎麼樣能夠一致怎麼樣能夠一致事實上這個前任的院長蘇貞昌院長基於敬老以及嚴重於移民比較所以有降低那就一個標準現在是不同的標準他不必雙重標準
transcript.whisperx[6].start 181.8
transcript.whisperx[6].end 185.607
transcript.whisperx[6].text 蘇貞昌前院長他也認同本席的
transcript.whisperx[7].start 186.816
transcript.whisperx[7].end 213.131
transcript.whisperx[7].text 因為這個對一個老人家來講怎麼我坐公車可以坐捷運可以去坐火車就不行了因為常常那個那個七間車在同一個縣市的時候他坐七間車就不行鐵路的當然高鐵就是另外一個層面比較少會有這樣的一個狀況最主要就是鐵路的那個部分
transcript.whisperx[8].start 214.331
transcript.whisperx[8].end 239.182
transcript.whisperx[8].text 所以這個部分其實相關的支出也不會很多事實上怎麼樣能夠把它一致所以希望衛福部這邊也能夠檢討老人福利法那條條文能夠做修正跟委員說明就是說老人的定義
transcript.whisperx[9].start 242.403
transcript.whisperx[9].end 257.41
transcript.whisperx[9].text 國際上都有共同的定義啦就是這個年紀啦所以我們去調整齁這個老人的定義齁這個這個問題比較大不過呢在福利身份上應該要調整所以當時候因為就是考慮到
transcript.whisperx[10].start 258.45
transcript.whisperx[10].end 285.359
transcript.whisperx[10].text 原住民跟我們國人一般的愚民有大概10歲的落差所以才將各種的福利身份下降10歲所以從65到55但是隨著我們現在不斷地在努力改善這個差距也在縮短現在大概在8歲7點多這個年紀但是我們也沒有去調整它所以是不是要用用定義上把它完全
transcript.whisperx[11].start 286.619
transcript.whisperx[11].end 301.087
transcript.whisperx[11].text 固定下來還是說隨著福利身份上去調整我覺得我是比較favor後面的做法就是按照福利身份讓他不一樣可是老人的定義就是全世界大家都一樣這樣定我建議這個
transcript.whisperx[12].start 305.478
transcript.whisperx[12].end 334.497
transcript.whisperx[12].text 你們可以你們不修老人福利法但是你們可不可以去協調這個交通部好我們來協調交通部那個他鐵路的部分鐵路法就加一條就好了好我們來協調希望他參照我們的這個福利的標準參照其他的那個因為其他的福利的都是都是用55對好的好謝謝我們用年金的方式來對好謝謝好
transcript.whisperx[13].start 335.919
transcript.whisperx[13].end 345.095
transcript.whisperx[13].text 好 謝謝委員 謝謝謝謝鄭天才委員發言接下來請黃秀芳委員發言