iVOD / 166897

Field Value
IVOD_ID 166897
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/166897
日期 2026-01-07
會議資料.會議代碼 委員會-11-4-20-17
會議資料.會議代碼:str 第11屆第4會期財政委員會第17次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 17
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第4會期財政委員會第17次全體委員會議
影片種類 Clip
開始時間 2026-01-07T10:56:11+08:00
結束時間 2026-01-07T11:08:01+08:00
影片長度 00:11:50
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/8a4de0f3676b468ff1a5667d2a9bbfdb5d44f5a94e3adf355aa3b5816bd951efa3fa2fd90ac653ea5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 林思銘
委員發言時間 10:56:11 - 11:08:01
會議時間 2026-01-07T09:00:00+08:00
會議名稱 立法院第11屆第4會期財政委員會第17次全體委員會議(事由:邀請金融監督管理委員會主任委員彭金隆、財政部部長莊翠雲、國家發展委員會副主任委員就「如何引導國內資金擴大參與公共建設及策略性產業」進行專題報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 0.03096875
transcript.pyannote[0].end 2.93346875
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 7.62471875
transcript.pyannote[1].end 11.96159375
transcript.pyannote[2].speaker SPEAKER_02
transcript.pyannote[2].start 9.46409375
transcript.pyannote[2].end 9.68346875
transcript.pyannote[3].speaker SPEAKER_02
transcript.pyannote[3].start 12.46784375
transcript.pyannote[3].end 13.63221875
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 21.78284375
transcript.pyannote[4].end 22.32284375
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 22.32284375
transcript.pyannote[5].end 29.47784375
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 23.55471875
transcript.pyannote[6].end 24.01034375
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 29.71409375
transcript.pyannote[7].end 30.08534375
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 29.95034375
transcript.pyannote[8].end 34.25346875
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 34.82721875
transcript.pyannote[9].end 37.81409375
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 38.37096875
transcript.pyannote[10].end 47.04471875
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 47.65221875
transcript.pyannote[11].end 50.87534375
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 51.36471875
transcript.pyannote[12].end 55.04346875
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 55.48221875
transcript.pyannote[13].end 58.28346875
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 58.94159375
transcript.pyannote[14].end 59.70096875
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 59.09346875
transcript.pyannote[15].end 59.95409375
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 60.10596875
transcript.pyannote[16].end 60.57846875
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 60.78096875
transcript.pyannote[17].end 76.99784375
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 60.98346875
transcript.pyannote[18].end 61.23659375
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 69.96096875
transcript.pyannote[19].end 70.82159375
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 77.14971875
transcript.pyannote[20].end 128.98971875
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 78.56721875
transcript.pyannote[21].end 78.88784375
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 89.26596875
transcript.pyannote[22].end 90.21096875
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 109.11096875
transcript.pyannote[23].end 109.66784375
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 110.41034375
transcript.pyannote[24].end 110.46096875
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 126.98159375
transcript.pyannote[25].end 127.57221875
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 129.36096875
transcript.pyannote[26].end 137.96721875
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 135.04784375
transcript.pyannote[27].end 147.85596875
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 140.88659375
transcript.pyannote[28].end 141.24096875
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 148.36221875
transcript.pyannote[29].end 152.20971875
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 151.80471875
transcript.pyannote[30].end 152.14221875
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 152.83409375
transcript.pyannote[31].end 157.06971875
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 157.33971875
transcript.pyannote[32].end 161.13659375
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 161.32221875
transcript.pyannote[33].end 163.87034375
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 164.42721875
transcript.pyannote[34].end 165.99659375
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 166.04721875
transcript.pyannote[35].end 168.49409375
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 169.00034375
transcript.pyannote[36].end 173.94471875
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 174.43409375
transcript.pyannote[37].end 177.97784375
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 178.48409375
transcript.pyannote[38].end 224.38409375
transcript.pyannote[39].speaker SPEAKER_01
transcript.pyannote[39].start 182.43284375
transcript.pyannote[39].end 182.73659375
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 189.72284375
transcript.pyannote[40].end 190.31346875
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 196.94534375
transcript.pyannote[41].end 197.43471875
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 213.07784375
transcript.pyannote[42].end 213.31409375
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 213.97221875
transcript.pyannote[43].end 214.29284375
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 222.35909375
transcript.pyannote[44].end 226.51034375
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 225.00846875
transcript.pyannote[45].end 228.60284375
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 227.62409375
transcript.pyannote[46].end 239.26784375
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 229.49721875
transcript.pyannote[47].end 230.74596875
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 231.77534375
transcript.pyannote[48].end 232.60221875
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 239.43659375
transcript.pyannote[49].end 239.87534375
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 240.34784375
transcript.pyannote[50].end 243.11534375
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 243.50346875
transcript.pyannote[51].end 256.56471875
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 249.52784375
transcript.pyannote[52].end 249.86534375
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 257.05409375
transcript.pyannote[53].end 279.61596875
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 268.68096875
transcript.pyannote[54].end 269.15346875
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 279.27846875
transcript.pyannote[55].end 294.12846875
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 279.93659375
transcript.pyannote[56].end 281.72534375
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 285.96096875
transcript.pyannote[57].end 286.19721875
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 294.95534375
transcript.pyannote[58].end 295.81596875
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 295.03971875
transcript.pyannote[59].end 295.05659375
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 295.81596875
transcript.pyannote[60].end 296.45721875
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 295.83284375
transcript.pyannote[61].end 296.08596875
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 296.45721875
transcript.pyannote[62].end 296.55846875
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 296.55846875
transcript.pyannote[63].end 308.37096875
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 296.57534375
transcript.pyannote[64].end 299.17409375
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 306.78471875
transcript.pyannote[65].end 309.48471875
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 309.60284375
transcript.pyannote[66].end 313.61909375
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 312.18471875
transcript.pyannote[67].end 317.60159375
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 314.15909375
transcript.pyannote[68].end 315.00284375
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 316.06596875
transcript.pyannote[69].end 320.87534375
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 317.63534375
transcript.pyannote[70].end 334.96596875
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 321.66846875
transcript.pyannote[71].end 322.39409375
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 335.25284375
transcript.pyannote[72].end 338.39159375
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 338.57721875
transcript.pyannote[73].end 345.66471875
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 346.47471875
transcript.pyannote[74].end 347.84159375
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 348.43221875
transcript.pyannote[75].end 350.15346875
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 348.82034375
transcript.pyannote[76].end 349.47846875
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 350.45721875
transcript.pyannote[77].end 358.62471875
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 359.38409375
transcript.pyannote[78].end 368.51346875
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 368.51346875
transcript.pyannote[79].end 368.96909375
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 368.83409375
transcript.pyannote[80].end 373.79534375
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 371.39909375
transcript.pyannote[81].end 371.63534375
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 372.44534375
transcript.pyannote[82].end 405.85784375
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 385.75971875
transcript.pyannote[83].end 386.21534375
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 386.55284375
transcript.pyannote[84].end 387.44721875
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 404.67659375
transcript.pyannote[85].end 404.82846875
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 405.85784375
transcript.pyannote[86].end 407.12346875
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 405.89159375
transcript.pyannote[87].end 405.90846875
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 406.33034375
transcript.pyannote[88].end 412.40534375
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 409.24971875
transcript.pyannote[89].end 409.77284375
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 410.24534375
transcript.pyannote[90].end 411.05534375
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 412.67534375
transcript.pyannote[91].end 419.77971875
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 414.95346875
transcript.pyannote[92].end 416.43846875
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 417.33284375
transcript.pyannote[93].end 424.01534375
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 420.53909375
transcript.pyannote[94].end 421.18034375
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 421.65284375
transcript.pyannote[95].end 422.46284375
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 424.01534375
transcript.pyannote[96].end 425.07846875
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 425.23034375
transcript.pyannote[97].end 427.76159375
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 428.28471875
transcript.pyannote[98].end 429.04409375
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 431.54159375
transcript.pyannote[99].end 441.21096875
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 431.55846875
transcript.pyannote[100].end 431.96346875
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 441.46409375
transcript.pyannote[101].end 442.72971875
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 442.99971875
transcript.pyannote[102].end 446.79659375
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 447.10034375
transcript.pyannote[103].end 449.05784375
transcript.pyannote[104].speaker SPEAKER_01
transcript.pyannote[104].start 449.37846875
transcript.pyannote[104].end 453.79971875
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 452.07846875
transcript.pyannote[105].end 452.24721875
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 453.85034375
transcript.pyannote[106].end 457.41096875
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 457.90034375
transcript.pyannote[107].end 465.07221875
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 465.61221875
transcript.pyannote[108].end 470.72534375
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 470.80971875
transcript.pyannote[109].end 473.84721875
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 473.05409375
transcript.pyannote[110].end 473.15534375
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 474.28596875
transcript.pyannote[111].end 476.47971875
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 476.78346875
transcript.pyannote[112].end 479.04471875
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 479.28096875
transcript.pyannote[113].end 482.30159375
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 481.66034375
transcript.pyannote[114].end 483.02721875
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 482.77409375
transcript.pyannote[115].end 484.17471875
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 484.79909375
transcript.pyannote[116].end 489.25409375
transcript.pyannote[117].speaker SPEAKER_01
transcript.pyannote[117].start 489.67596875
transcript.pyannote[117].end 493.50659375
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 493.75971875
transcript.pyannote[118].end 496.49346875
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 496.88159375
transcript.pyannote[119].end 497.23596875
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 497.38784375
transcript.pyannote[120].end 502.51784375
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 502.70346875
transcript.pyannote[121].end 503.86784375
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 503.34471875
transcript.pyannote[122].end 506.77034375
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 505.48784375
transcript.pyannote[123].end 511.39409375
transcript.pyannote[124].speaker SPEAKER_02
transcript.pyannote[124].start 511.61346875
transcript.pyannote[124].end 526.44659375
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 512.15346875
transcript.pyannote[125].end 512.44034375
transcript.pyannote[126].speaker SPEAKER_02
transcript.pyannote[126].start 526.63221875
transcript.pyannote[126].end 539.79471875
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 532.57221875
transcript.pyannote[127].end 532.99409375
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 533.95596875
transcript.pyannote[128].end 534.27659375
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 539.76096875
transcript.pyannote[129].end 548.51909375
transcript.pyannote[130].speaker SPEAKER_02
transcript.pyannote[130].start 539.81159375
transcript.pyannote[130].end 539.82846875
transcript.pyannote[131].speaker SPEAKER_01
transcript.pyannote[131].start 548.95784375
transcript.pyannote[131].end 552.90659375
transcript.pyannote[132].speaker SPEAKER_02
transcript.pyannote[132].start 548.97471875
transcript.pyannote[132].end 549.73409375
transcript.pyannote[133].speaker SPEAKER_02
transcript.pyannote[133].start 553.22721875
transcript.pyannote[133].end 556.80471875
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 555.43784375
transcript.pyannote[134].end 562.64346875
transcript.pyannote[135].speaker SPEAKER_02
transcript.pyannote[135].start 561.64784375
transcript.pyannote[135].end 570.99659375
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 563.18346875
transcript.pyannote[136].end 563.60534375
transcript.pyannote[137].speaker SPEAKER_02
transcript.pyannote[137].start 571.14846875
transcript.pyannote[137].end 578.60721875
transcript.pyannote[138].speaker SPEAKER_01
transcript.pyannote[138].start 575.11409375
transcript.pyannote[138].end 575.21534375
transcript.pyannote[139].speaker SPEAKER_01
transcript.pyannote[139].start 577.22346875
transcript.pyannote[139].end 578.40471875
transcript.pyannote[140].speaker SPEAKER_01
transcript.pyannote[140].start 578.60721875
transcript.pyannote[140].end 578.65784375
transcript.pyannote[141].speaker SPEAKER_02
transcript.pyannote[141].start 578.65784375
transcript.pyannote[141].end 579.33284375
transcript.pyannote[142].speaker SPEAKER_01
transcript.pyannote[142].start 578.87721875
transcript.pyannote[142].end 582.52221875
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 582.55596875
transcript.pyannote[143].end 588.83346875
transcript.pyannote[144].speaker SPEAKER_02
transcript.pyannote[144].start 588.83346875
transcript.pyannote[144].end 602.58659375
transcript.pyannote[145].speaker SPEAKER_01
transcript.pyannote[145].start 602.09721875
transcript.pyannote[145].end 618.55034375
transcript.pyannote[146].speaker SPEAKER_02
transcript.pyannote[146].start 604.52721875
transcript.pyannote[146].end 605.28659375
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 618.83721875
transcript.pyannote[147].end 624.69284375
transcript.pyannote[148].speaker SPEAKER_02
transcript.pyannote[148].start 625.06409375
transcript.pyannote[148].end 633.83909375
transcript.pyannote[149].speaker SPEAKER_02
transcript.pyannote[149].start 634.07534375
transcript.pyannote[149].end 639.96471875
transcript.pyannote[150].speaker SPEAKER_01
transcript.pyannote[150].start 640.40346875
transcript.pyannote[150].end 647.22096875
transcript.pyannote[151].speaker SPEAKER_01
transcript.pyannote[151].start 647.62596875
transcript.pyannote[151].end 660.85596875
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 661.17659375
transcript.pyannote[152].end 671.77409375
transcript.pyannote[153].speaker SPEAKER_02
transcript.pyannote[153].start 671.77409375
transcript.pyannote[153].end 687.90659375
transcript.pyannote[154].speaker SPEAKER_01
transcript.pyannote[154].start 682.15221875
transcript.pyannote[154].end 689.17221875
transcript.pyannote[155].speaker SPEAKER_01
transcript.pyannote[155].start 689.64471875
transcript.pyannote[155].end 694.97721875
transcript.pyannote[156].speaker SPEAKER_02
transcript.pyannote[156].start 694.97721875
transcript.pyannote[156].end 695.07846875
transcript.pyannote[157].speaker SPEAKER_01
transcript.pyannote[157].start 695.07846875
transcript.pyannote[157].end 695.97284375
transcript.pyannote[158].speaker SPEAKER_02
transcript.pyannote[158].start 695.97284375
transcript.pyannote[158].end 696.02346875
transcript.pyannote[159].speaker SPEAKER_01
transcript.pyannote[159].start 696.02346875
transcript.pyannote[159].end 696.05721875
transcript.pyannote[160].speaker SPEAKER_02
transcript.pyannote[160].start 696.05721875
transcript.pyannote[160].end 697.60971875
transcript.pyannote[161].speaker SPEAKER_01
transcript.pyannote[161].start 696.17534375
transcript.pyannote[161].end 696.95159375
transcript.pyannote[162].speaker SPEAKER_02
transcript.pyannote[162].start 698.23409375
transcript.pyannote[162].end 699.51659375
transcript.pyannote[163].speaker SPEAKER_01
transcript.pyannote[163].start 699.51659375
transcript.pyannote[163].end 699.65159375
transcript.pyannote[164].speaker SPEAKER_02
transcript.pyannote[164].start 699.65159375
transcript.pyannote[164].end 708.88221875
transcript.pyannote[165].speaker SPEAKER_01
transcript.pyannote[165].start 699.73596875
transcript.pyannote[165].end 700.14096875
transcript.pyannote[166].speaker SPEAKER_01
transcript.pyannote[166].start 701.76096875
transcript.pyannote[166].end 702.09846875
transcript.pyannote[167].speaker SPEAKER_01
transcript.pyannote[167].start 704.81534375
transcript.pyannote[167].end 707.70096875
transcript.pyannote[168].speaker SPEAKER_00
transcript.pyannote[168].start 707.70096875
transcript.pyannote[168].end 707.80221875
transcript.pyannote[169].speaker SPEAKER_00
transcript.pyannote[169].start 708.88221875
transcript.pyannote[169].end 708.89909375
transcript.pyannote[170].speaker SPEAKER_02
transcript.pyannote[170].start 708.89909375
transcript.pyannote[170].end 708.96659375
transcript.pyannote[171].speaker SPEAKER_00
transcript.pyannote[171].start 708.96659375
transcript.pyannote[171].end 710.97471875
transcript.whisperx[0].start 0.049
transcript.whisperx[0].end 1.351
transcript.whisperx[0].text 謝謝主席我先請我們國發會高副主委請高副主委
transcript.whisperx[1].start 22.306
transcript.whisperx[1].end 46.665
transcript.whisperx[1].text 好 副主委早副主委 這個政府啟動了兆元投資國家發展方案這樣一個重大的政策號稱要引導民間資金投資國家建設以及策略性的產業有三大策略創新促進的機制 優化投融的融資條件增加相關的金融商品
transcript.whisperx[2].start 47.711
transcript.whisperx[2].end 76.542
transcript.whisperx[2].text 所以我首先要請教副主委你們的兆元投資方案現在推動已經一年多了三大策略到底帶來多少的實質投資有沒有統計有跟委員報告一下比如說我們的那個初餐的專案裡面大概今年簽約的大概會有3300億元然後呢我們那個永續債的相關的發行也到2000多億
transcript.whisperx[3].start 77.422
transcript.whisperx[3].end 101.4
transcript.whisperx[3].text 兩千九百多億然後呢其實我們還鬆綁了相關的一些法令的規範比如說是我們希望工建型PE跟VC他們可以那個我們降低他的RVC然後我們也請各主管機關主動函示公共建設屬於策略性產業的比如說AI算力中心啊節人等等他可以適用比較好的
transcript.whisperx[4].start 102.581
transcript.whisperx[4].end 128.414
transcript.whisperx[4].text 這些風險係數可是它引發多少投資那個我們就沒有在做估算然後我們國家融資考證機制有6成提高到8成也增加了很多的綠能的投資的案件等等的我想我們這個方案其實最重要的精神在於我們要創新新的機制因為走老的路到不了新的地方所以我們希望透過
transcript.whisperx[5].start 129.874
transcript.whisperx[5].end 149.811
transcript.whisperx[5].text 機制的創新法規的鬆綁等等的我們引導我們的國內的這些奏顯業的資金政策的指向我們非常清楚是了解這一年內你推出之後剛才你講到說簽約金有3300億大概就是150件對不對是150件對
transcript.whisperx[6].start 152.873
transcript.whisperx[6].end 177.543
transcript.whisperx[6].text 我想這個你剛才提到說有這個整個這個整個到底是新增的從計劃源頭擴增新案源 擴增案源到這個從去年就從去年到現在為止政府主動促成的私人參與公共建設的案件中新增案源的占比大概是多少 你有沒有統計
transcript.whisperx[7].start 178.71
transcript.whisperx[7].end 203.828
transcript.whisperx[7].text 我想等一下會請財政部我跟委員報告就是說其實我們一個案源就是從起到真正簽約其實是要有一個時間的落差的所以我們現在最重要的事情我們有一個叫指標型的專案譬如說我們以後規定所有的再生水跟海淡廠都一定要走促餐這個大概有八百多億
transcript.whisperx[8].start 204.668
transcript.whisperx[8].end 222.893
transcript.whisperx[8].text 然後我們現在在推很多的社會住宅現在都還在規劃當中我們以後會有一個大型的社會住宅的方式然後還有長照機構還有文教設施那些還有數位建設其實我們都是在陸續盤點當中如果委員有興趣的話還在陸續盤點還沒有完全揭露就是在規劃的過程中間我想副主委適時的揭露讓我們更了解我們整個投資的一個
transcript.whisperx[9].start 233.876
transcript.whisperx[9].end 256.309
transcript.whisperx[9].text 就是這個策略要執行的一個成效我覺得你要適時的一次一個揭露我想這個政府的期望是引資回流我們從國外的資金回到我們台灣投資公共建設這是政府的一個期望那目前有沒有量化或可追蹤的數據顯示資金回流的規模是多少
transcript.whisperx[10].start 257.69
transcript.whisperx[10].end 277.502
transcript.whisperx[10].text 大概因為如果是金管會的話他們有他們的那個如果是金融業的話我們就可以從金管會裡面的那個金融業投資專案的那個金額裡面去了解啦那還有其他的面向 比如說我們造園我們的
transcript.whisperx[11].start 280.183
transcript.whisperx[11].end 308.788
transcript.whisperx[11].text 投資台灣三大方案我的問題很清楚就是你們我要了解整個統計的數字到底你現在外資引資回流他的目前現在來投入你這個策略性的方案大概是多少的比例我看你我知道我說的第一個你跟我回答這個問題就好了我第一個就是剛剛其實彭主委有講到就是他投資在就是收錢資金從國外投資的比重規模大概是多少你們沒有統計
transcript.whisperx[12].start 310.168
transcript.whisperx[12].end 321.032
transcript.whisperx[12].text 我們基本上就是我們只有統計所以我剛才一直強調希望你們要揭露到底它成效怎麼樣你們還是要揭露出來我們有促參的 有金融商品的我希望你們記住相關的統計數字能夠做出來我想我們政府現在一直強調策略性產業就是希望透過優惠投融資的條件把資金導向AI算力中心綠能 光電 健康醫療數位基礎建設等產業
transcript.whisperx[13].start 338.818
transcript.whisperx[13].end 367.427
transcript.whisperx[13].text 行政院也要求各部會釋出具公共建設性的策略性產業類別但重點在哪裡你可以具體告訴我嗎最重要就是你的重點在哪裡啊重點在於我們希望透過一些優惠的提高投資限額的鬆綁讓受益企業資金更容易投資在我們希望他投入的這些策略性產業還有公共建設的範疇是
transcript.whisperx[14].start 368.587
transcript.whisperx[14].end 376.07
transcript.whisperx[14].text 那我們就提高受險業投資的誘因面向去作業主委我要問你這個問題我是想問你到底你們現在操作的策略性產業它的具體的一個名單產業名攤以及適用的標準到底是哪幾個產業
transcript.whisperx[15].start 386.893
transcript.whisperx[15].end 411.819
transcript.whisperx[15].text 如果金融機構根本不知道說你是哪個標準可以適用優惠條件對金融市場而言最怕的就是你的定義模糊你的標準不清到底要對哪幾個策略性的產業是我們要去希望投資進去的所以這些產業的名單你要很清楚的告訴我們金融市場
transcript.whisperx[16].start 412.779
transcript.whisperx[16].end 428.918
transcript.whisperx[16].text 是 我想我们会跟金管会合作因为基本上就是五大信贷这些名单与适用的标准能够很明确的如列出来好不好好 没问题副主委你请回好 谢谢现在请金管会彭主委请彭主委
transcript.whisperx[17].start 431.57
transcript.whisperx[17].end 456.646
transcript.whisperx[17].text 主委 你好你們在配合兆元投資方案的第二大策略裡面做出投融條件投融資條件的優化放寬尤其對保險業要透過私募股權的PE及創投的VC投資公共建設的風險係數具體可降到1.28%而且透過PE VC可間接投資策略性的產業
transcript.whisperx[18].start 459.847
transcript.whisperx[18].end 480.292
transcript.whisperx[18].text 這項鬆綁已經正式發布並令事已經實施了嘛對不對都實施了但根據金管會截至今年6月國內保險業可運用資金大概是32.5兆對不對但其中專案運用於公共投資的實際金額大概只有1500億大概1500億左右
transcript.whisperx[19].start 485.193
transcript.whisperx[19].end 511.03
transcript.whisperx[19].text 這個是否顯示說我們儘管誘因的政策已經施行但是真正進入我們特定的公共建設的這些投資的金額的資金就進入這些策略性產業的資金仍然很少仍然偏低現在這個用鬆綁這些法規這些投資的標的這個他們在評估這個案子不會這麼快但是我們現在等於制度要先行
transcript.whisperx[20].start 512.63
transcript.whisperx[20].end 539.378
transcript.whisperx[20].text 這個是我們也是剛剛才鬆綁這些規定那我們也是在試試看假設這1.28是否能夠讓他們真的有這個評估以及開始有個案出現那我們也是在制度上我們先做一個這樣處理還有就是剛剛也有委員提到我們針對未來公建或投資這個範圍我們希望把它可投資的範圍加大來宣示一個政策發展的方向
transcript.whisperx[21].start 539.858
transcript.whisperx[21].end 552.243
transcript.whisperx[21].text 主委你有沒有統計過這個離當初政策設計投資的誘因他的目標差距有多大目前只有1500億左右跟你當初設計的這個目標差距有多大你們有沒有統計過
transcript.whisperx[22].start 553.297
transcript.whisperx[22].end 578.308
transcript.whisperx[22].text 就是我們當然希望這越多越好因為這優觀到我們整個放寬我們看到還是好像這個優因並沒有真正吸引到我們的這些受選業者去投資這是一個整體的問題我說這是一個市場我們所能影響的是買方的市場我們可以提高他的意願但是他市場上還是要有適合的標的所以這標的就各個部會正在努力不管國發外財政部
transcript.whisperx[23].start 579.208
transcript.whisperx[23].end 601.483
transcript.whisperx[23].text 投資標的沒有很明顯嘛我剛才講你的清單投資的清單如果不是很清楚的話整個這些受險業者他怎麼敢去貿然投資呢對 所以我們在我們這邊可以來處理的這個部分的障礙我們先把它消除所以我們也要跟跨部會來全力來協作看能不能提供更多有利於他投資的這個機會
transcript.whisperx[24].start 602.864
transcript.whisperx[24].end 624.149
transcript.whisperx[24].text 好 希望你們努力 是 一定的我再去請問一下今年受險業將正式接軌國際財務報導準則第17號的保險合約就是IFRS17以及新一代的清償能力制度那對於引導受險業投入公共建設會有任何財務上的影響嗎
transcript.whisperx[25].start 625.409
transcript.whisperx[25].end 637.835
transcript.whisperx[25].text 有關IFRS17的部分這倒沒有很具體但是我們的TIS新的制度的話我覺得這一部分我們在未來政策上面會針對這一塊會來加大力道
transcript.whisperx[26].start 641.322
transcript.whisperx[26].end 657.854
transcript.whisperx[26].text 最後我想又回到我們剛剛的問題就是說你現在這個放寬風險係數這個是一個硬性的誘因但是金融機構實際上在做投資決策時遇到的是風險報酬現金流等實務層面的一個評估
transcript.whisperx[27].start 658.695
transcript.whisperx[27].end 682.952
transcript.whisperx[27].text 所以金管會你有沒有評估過這個這項鬆綁是真正就是風險係數的鬆綁是真正能夠提升市場的參與意願有沒有做任何投資意願數據的一個調查其實我們在不管是全世界實施RBC制度的國家任何一個RBC係數絕對是他們投資上非常重要的基礎參考依據這是他們整個經營成本
transcript.whisperx[28].start 684.674
transcript.whisperx[28].end 710.276
transcript.whisperx[28].text 這個一定會有影響但是最重要的是標的本身我最後問你一個問題所以你預計今年保險資金投入公共建設的比例要提高到多少我們當然希望它能夠長遠越多越好預估多少還沒這個是牽涉他們投資醫院還有各家投資的成本我們只能正式上先鼓勵大概是這樣做好 希望你加油當然 謝謝 謝謝委員謝謝李世民在外