iVOD / 165809

Field Value
IVOD_ID 165809
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/165809
日期 2025-11-25
會議資料.會議代碼 院會-11-4-10
會議資料.會議代碼:str 第11屆第4會期第10次會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 10
會議資料.種類 院會
會議資料.標題 第11屆第4會期第10次會議
影片種類 Clip
開始時間 2025-11-25T11:35:41+08:00
結束時間 2025-11-25T11:51:30+08:00
影片長度 00:15:49
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/6325889ad8f272b5a88a3cd7d894ccafb583d2a9868c2e3c1c3e4c01308b4cb5a8298b5aff6b46715ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 吳琪銘
委員發言時間 11:35:41 - 11:51:30
會議時間 2025-11-25T09:00:00+08:00
會議名稱 第11屆第4會期第10次會議(事由:一、討論事項:本院台灣民眾黨黨團擬具「公民投票法第二十三條條文修正草案」,請審議案;本院委員楊瓊瓔等26人擬具「公民投票法第二十三條條文修正草案」,請審議案;本院委員賴士葆等27人擬具「公民投票法第二十三條條文修正草案」,請審議案;本院委員許宇甄等24人擬具「公民投票法第二十三條條文修正草案」,請審議案等8案。二、對行政院院長施政報告繼續質詢。(11月25日)三、11月21日上午9時至10時為國是論壇時間。)
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 0.03096875
transcript.pyannote[0].end 0.80721875
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 16.48409375
transcript.pyannote[1].end 21.64784375
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 21.91784375
transcript.pyannote[2].end 24.22971875
transcript.pyannote[3].speaker SPEAKER_02
transcript.pyannote[3].start 32.90346875
transcript.pyannote[3].end 33.62909375
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 34.10159375
transcript.pyannote[4].end 36.05909375
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 36.49784375
transcript.pyannote[5].end 46.47096875
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 46.50471875
transcript.pyannote[6].end 50.48721875
transcript.pyannote[7].speaker SPEAKER_02
transcript.pyannote[7].start 50.84159375
transcript.pyannote[7].end 51.85409375
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 52.19159375
transcript.pyannote[8].end 68.69534375
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 69.20159375
transcript.pyannote[9].end 76.03596875
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 76.45784375
transcript.pyannote[10].end 91.00409375
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 91.52721875
transcript.pyannote[11].end 108.92534375
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 109.17846875
transcript.pyannote[12].end 113.04284375
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 113.49846875
transcript.pyannote[13].end 115.05096875
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 115.40534375
transcript.pyannote[14].end 126.55971875
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 127.43721875
transcript.pyannote[15].end 130.30596875
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 130.67721875
transcript.pyannote[16].end 137.10659375
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 137.20784375
transcript.pyannote[17].end 138.35534375
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 138.54096875
transcript.pyannote[18].end 142.59096875
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 143.04659375
transcript.pyannote[19].end 145.12221875
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 145.51034375
transcript.pyannote[20].end 147.90659375
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 148.09221875
transcript.pyannote[21].end 150.04971875
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 150.43784375
transcript.pyannote[22].end 153.37409375
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 153.76221875
transcript.pyannote[23].end 156.19221875
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 156.37784375
transcript.pyannote[24].end 158.01471875
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 158.21721875
transcript.pyannote[25].end 161.22096875
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 161.54159375
transcript.pyannote[26].end 164.96721875
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 165.15284375
transcript.pyannote[27].end 166.68846875
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 167.17784375
transcript.pyannote[28].end 171.49784375
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 171.70034375
transcript.pyannote[29].end 173.11784375
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 173.21909375
transcript.pyannote[30].end 175.21034375
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 175.64909375
transcript.pyannote[31].end 178.66971875
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 178.97346875
transcript.pyannote[32].end 183.90096875
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 184.17096875
transcript.pyannote[33].end 186.02721875
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 186.16221875
transcript.pyannote[34].end 187.95096875
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 188.03534375
transcript.pyannote[35].end 190.43159375
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 190.80284375
transcript.pyannote[36].end 191.30909375
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 191.56221875
transcript.pyannote[37].end 194.66721875
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 194.90346875
transcript.pyannote[38].end 198.17721875
transcript.pyannote[39].speaker SPEAKER_01
transcript.pyannote[39].start 198.49784375
transcript.pyannote[39].end 200.86034375
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 201.09659375
transcript.pyannote[40].end 201.78846875
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 202.02471875
transcript.pyannote[41].end 203.99909375
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 204.10034375
transcript.pyannote[42].end 205.53471875
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 205.70346875
transcript.pyannote[43].end 210.64784375
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 210.78284375
transcript.pyannote[44].end 229.69971875
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 230.57721875
transcript.pyannote[45].end 248.07659375
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 248.24534375
transcript.pyannote[46].end 252.36284375
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 252.98721875
transcript.pyannote[47].end 255.13034375
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 255.45096875
transcript.pyannote[48].end 256.32846875
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 256.80096875
transcript.pyannote[49].end 259.45034375
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 259.83846875
transcript.pyannote[50].end 271.17846875
transcript.pyannote[51].speaker SPEAKER_02
transcript.pyannote[51].start 271.46534375
transcript.pyannote[51].end 285.77534375
transcript.pyannote[52].speaker SPEAKER_02
transcript.pyannote[52].start 286.23096875
transcript.pyannote[52].end 295.44471875
transcript.pyannote[53].speaker SPEAKER_02
transcript.pyannote[53].start 295.83284375
transcript.pyannote[53].end 298.51596875
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 298.75221875
transcript.pyannote[54].end 301.58721875
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 301.77284375
transcript.pyannote[55].end 303.57846875
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 304.25346875
transcript.pyannote[56].end 324.92534375
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 325.33034375
transcript.pyannote[57].end 328.65471875
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 328.77284375
transcript.pyannote[58].end 331.00034375
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 331.03409375
transcript.pyannote[59].end 335.28659375
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 335.60721875
transcript.pyannote[60].end 338.52659375
transcript.pyannote[61].speaker SPEAKER_02
transcript.pyannote[61].start 338.91471875
transcript.pyannote[61].end 364.49721875
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 364.71659375
transcript.pyannote[62].end 368.86784375
transcript.pyannote[63].speaker SPEAKER_02
transcript.pyannote[63].start 369.17159375
transcript.pyannote[63].end 371.34846875
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 371.56784375
transcript.pyannote[64].end 373.42409375
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 373.91346875
transcript.pyannote[65].end 374.92596875
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 375.22971875
transcript.pyannote[66].end 378.23346875
transcript.pyannote[67].speaker SPEAKER_02
transcript.pyannote[67].start 378.52034375
transcript.pyannote[67].end 380.49471875
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 380.74784375
transcript.pyannote[68].end 382.36784375
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 382.85721875
transcript.pyannote[69].end 385.03409375
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 385.59096875
transcript.pyannote[70].end 389.33721875
transcript.pyannote[71].speaker SPEAKER_02
transcript.pyannote[71].start 389.84346875
transcript.pyannote[71].end 391.61534375
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 392.10471875
transcript.pyannote[72].end 393.57284375
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 393.77534375
transcript.pyannote[73].end 417.23159375
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 417.61971875
transcript.pyannote[74].end 418.49721875
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 418.64909375
transcript.pyannote[75].end 435.37221875
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 433.04346875
transcript.pyannote[76].end 433.11096875
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 435.64221875
transcript.pyannote[77].end 441.02534375
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 441.19409375
transcript.pyannote[78].end 443.05034375
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 443.18534375
transcript.pyannote[79].end 444.87284375
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 445.04159375
transcript.pyannote[80].end 447.50534375
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 447.60659375
transcript.pyannote[81].end 450.49221875
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 450.74534375
transcript.pyannote[82].end 465.35909375
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 465.64596875
transcript.pyannote[83].end 467.51909375
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 467.83971875
transcript.pyannote[84].end 476.32784375
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 470.86034375
transcript.pyannote[85].end 471.97409375
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 473.12159375
transcript.pyannote[86].end 474.62346875
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 475.78784375
transcript.pyannote[87].end 481.35659375
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 481.67721875
transcript.pyannote[88].end 483.07784375
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 483.34784375
transcript.pyannote[89].end 489.20346875
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 489.45659375
transcript.pyannote[90].end 492.07221875
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 492.29159375
transcript.pyannote[91].end 494.13096875
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 494.13096875
transcript.pyannote[92].end 505.80846875
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 504.64409375
transcript.pyannote[93].end 505.15034375
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 506.04471875
transcript.pyannote[94].end 545.81909375
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 526.41284375
transcript.pyannote[95].end 526.69971875
transcript.pyannote[96].speaker SPEAKER_02
transcript.pyannote[96].start 546.02159375
transcript.pyannote[96].end 548.08034375
transcript.pyannote[97].speaker SPEAKER_02
transcript.pyannote[97].start 548.41784375
transcript.pyannote[97].end 552.68721875
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 553.00784375
transcript.pyannote[98].end 553.53096875
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 553.90221875
transcript.pyannote[99].end 554.64471875
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 555.52221875
transcript.pyannote[100].end 557.66534375
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 558.10409375
transcript.pyannote[101].end 561.64784375
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 561.76596875
transcript.pyannote[102].end 562.33971875
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 562.74471875
transcript.pyannote[103].end 563.35221875
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 563.65596875
transcript.pyannote[104].end 566.13659375
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 566.42346875
transcript.pyannote[105].end 567.23346875
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 567.55409375
transcript.pyannote[106].end 571.14846875
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 571.53659375
transcript.pyannote[107].end 572.16096875
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 572.65034375
transcript.pyannote[108].end 587.87159375
transcript.pyannote[109].speaker SPEAKER_02
transcript.pyannote[109].start 588.20909375
transcript.pyannote[109].end 591.38159375
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 591.48284375
transcript.pyannote[110].end 596.29221875
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 596.78159375
transcript.pyannote[111].end 598.01346875
transcript.pyannote[112].speaker SPEAKER_02
transcript.pyannote[112].start 598.30034375
transcript.pyannote[112].end 601.25346875
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 601.35471875
transcript.pyannote[113].end 603.05909375
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 603.39659375
transcript.pyannote[114].end 605.86034375
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 606.09659375
transcript.pyannote[115].end 608.49284375
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 608.83034375
transcript.pyannote[116].end 610.90596875
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 611.24346875
transcript.pyannote[117].end 615.17534375
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 614.14596875
transcript.pyannote[118].end 614.39909375
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 615.34409375
transcript.pyannote[119].end 617.72346875
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 617.84159375
transcript.pyannote[120].end 622.22909375
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 622.73534375
transcript.pyannote[121].end 623.03909375
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 623.03909375
transcript.pyannote[122].end 623.05596875
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 623.05596875
transcript.pyannote[123].end 623.10659375
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 623.49471875
transcript.pyannote[124].end 624.30471875
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 624.40596875
transcript.pyannote[125].end 627.91596875
transcript.pyannote[126].speaker SPEAKER_02
transcript.pyannote[126].start 628.23659375
transcript.pyannote[126].end 633.18096875
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 633.82221875
transcript.pyannote[127].end 637.93971875
transcript.pyannote[128].speaker SPEAKER_02
transcript.pyannote[128].start 638.04096875
transcript.pyannote[128].end 656.73846875
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 657.31221875
transcript.pyannote[129].end 683.68784375
transcript.pyannote[130].speaker SPEAKER_02
transcript.pyannote[130].start 684.04221875
transcript.pyannote[130].end 686.60721875
transcript.pyannote[131].speaker SPEAKER_02
transcript.pyannote[131].start 686.72534375
transcript.pyannote[131].end 689.94846875
transcript.pyannote[132].speaker SPEAKER_02
transcript.pyannote[132].start 690.10034375
transcript.pyannote[132].end 698.11596875
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 698.35221875
transcript.pyannote[133].end 723.81659375
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 723.96846875
transcript.pyannote[134].end 727.36034375
transcript.pyannote[135].speaker SPEAKER_02
transcript.pyannote[135].start 727.90034375
transcript.pyannote[135].end 735.03846875
transcript.pyannote[136].speaker SPEAKER_02
transcript.pyannote[136].start 735.22409375
transcript.pyannote[136].end 742.49721875
transcript.pyannote[137].speaker SPEAKER_02
transcript.pyannote[137].start 742.85159375
transcript.pyannote[137].end 744.04971875
transcript.pyannote[138].speaker SPEAKER_02
transcript.pyannote[138].start 744.21846875
transcript.pyannote[138].end 747.49221875
transcript.pyannote[139].speaker SPEAKER_02
transcript.pyannote[139].start 747.88034375
transcript.pyannote[139].end 752.01471875
transcript.pyannote[140].speaker SPEAKER_02
transcript.pyannote[140].start 752.85846875
transcript.pyannote[140].end 769.63221875
transcript.pyannote[141].speaker SPEAKER_02
transcript.pyannote[141].start 769.90221875
transcript.pyannote[141].end 771.45471875
transcript.pyannote[142].speaker SPEAKER_02
transcript.pyannote[142].start 771.65721875
transcript.pyannote[142].end 774.66096875
transcript.pyannote[143].speaker SPEAKER_02
transcript.pyannote[143].start 774.82971875
transcript.pyannote[143].end 776.36534375
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 775.80846875
transcript.pyannote[144].end 776.09534375
transcript.pyannote[145].speaker SPEAKER_00
transcript.pyannote[145].start 776.28096875
transcript.pyannote[145].end 782.11971875
transcript.pyannote[146].speaker SPEAKER_02
transcript.pyannote[146].start 781.78221875
transcript.pyannote[146].end 785.15721875
transcript.pyannote[147].speaker SPEAKER_02
transcript.pyannote[147].start 785.46096875
transcript.pyannote[147].end 786.94596875
transcript.pyannote[148].speaker SPEAKER_02
transcript.pyannote[148].start 789.02159375
transcript.pyannote[148].end 791.58659375
transcript.pyannote[149].speaker SPEAKER_02
transcript.pyannote[149].start 792.14346875
transcript.pyannote[149].end 809.13659375
transcript.pyannote[150].speaker SPEAKER_02
transcript.pyannote[150].start 809.42346875
transcript.pyannote[150].end 816.46034375
transcript.pyannote[151].speaker SPEAKER_02
transcript.pyannote[151].start 816.78096875
transcript.pyannote[151].end 818.89034375
transcript.pyannote[152].speaker SPEAKER_02
transcript.pyannote[152].start 819.17721875
transcript.pyannote[152].end 820.42596875
transcript.pyannote[153].speaker SPEAKER_02
transcript.pyannote[153].start 821.03346875
transcript.pyannote[153].end 838.48221875
transcript.pyannote[154].speaker SPEAKER_01
transcript.pyannote[154].start 840.06846875
transcript.pyannote[154].end 843.83159375
transcript.pyannote[155].speaker SPEAKER_01
transcript.pyannote[155].start 844.32096875
transcript.pyannote[155].end 845.18159375
transcript.pyannote[156].speaker SPEAKER_01
transcript.pyannote[156].start 845.33346875
transcript.pyannote[156].end 861.01034375
transcript.pyannote[157].speaker SPEAKER_02
transcript.pyannote[157].start 847.56096875
transcript.pyannote[157].end 848.97846875
transcript.pyannote[158].speaker SPEAKER_00
transcript.pyannote[158].start 848.97846875
transcript.pyannote[158].end 849.56909375
transcript.pyannote[159].speaker SPEAKER_02
transcript.pyannote[159].start 859.86284375
transcript.pyannote[159].end 864.63846875
transcript.pyannote[160].speaker SPEAKER_02
transcript.pyannote[160].start 864.97596875
transcript.pyannote[160].end 867.59159375
transcript.pyannote[161].speaker SPEAKER_02
transcript.pyannote[161].start 868.11471875
transcript.pyannote[161].end 870.93284375
transcript.pyannote[162].speaker SPEAKER_02
transcript.pyannote[162].start 871.55721875
transcript.pyannote[162].end 876.72096875
transcript.pyannote[163].speaker SPEAKER_02
transcript.pyannote[163].start 876.90659375
transcript.pyannote[163].end 884.71971875
transcript.pyannote[164].speaker SPEAKER_02
transcript.pyannote[164].start 885.27659375
transcript.pyannote[164].end 890.03534375
transcript.pyannote[165].speaker SPEAKER_02
transcript.pyannote[165].start 890.23784375
transcript.pyannote[165].end 894.03471875
transcript.pyannote[166].speaker SPEAKER_02
transcript.pyannote[166].start 894.25409375
transcript.pyannote[166].end 895.84034375
transcript.pyannote[167].speaker SPEAKER_02
transcript.pyannote[167].start 896.36346875
transcript.pyannote[167].end 904.59846875
transcript.pyannote[168].speaker SPEAKER_02
transcript.pyannote[168].start 904.81784375
transcript.pyannote[168].end 907.51784375
transcript.pyannote[169].speaker SPEAKER_02
transcript.pyannote[169].start 907.80471875
transcript.pyannote[169].end 916.93409375
transcript.pyannote[170].speaker SPEAKER_02
transcript.pyannote[170].start 917.49096875
transcript.pyannote[170].end 921.91221875
transcript.pyannote[171].speaker SPEAKER_00
transcript.pyannote[171].start 922.45221875
transcript.pyannote[171].end 935.42909375
transcript.pyannote[172].speaker SPEAKER_02
transcript.pyannote[172].start 926.75534375
transcript.pyannote[172].end 927.31221875
transcript.pyannote[173].speaker SPEAKER_00
transcript.pyannote[173].start 935.53034375
transcript.pyannote[173].end 935.54721875
transcript.pyannote[174].speaker SPEAKER_02
transcript.pyannote[174].start 935.54721875
transcript.pyannote[174].end 936.72846875
transcript.pyannote[175].speaker SPEAKER_00
transcript.pyannote[175].start 936.13784375
transcript.pyannote[175].end 936.32346875
transcript.pyannote[176].speaker SPEAKER_00
transcript.pyannote[176].start 936.39096875
transcript.pyannote[176].end 936.40784375
transcript.pyannote[177].speaker SPEAKER_01
transcript.pyannote[177].start 948.60846875
transcript.pyannote[177].end 949.40159375
transcript.whisperx[0].start 16.49
transcript.whisperx[0].end 23.574
transcript.whisperx[0].text 好 主席 我們議會同仁請我們卓院長以及我們交通部部長麻煩再請卓院長 交通部部長備詢
transcript.whisperx[1].start 32.952
transcript.whisperx[1].end 59.402
transcript.whisperx[1].text 吳委員好部長好 院長好院長首先恭喜我們我國出口已經都創新高 財政部最新公布的10月份出口的金額已經達到618億美元 不僅是史上新高也突破了600億的美元大關 創下近15年來最大的漲幅我們累計1至10月出口
transcript.whisperx[2].start 62.883
transcript.whisperx[2].end 90.333
transcript.whisperx[2].text 達到五千一百四十四億美元也提前刷新了歷史的紀錄那我們總統賴清德在演講中也講到台灣目前人均GDP已經達到三萬八千多美元已經超越了日本以及韓國的三萬六至三萬七那並有機會明年突破四萬美元大關
transcript.whisperx[3].start 91.573
transcript.whisperx[3].end 105.789
transcript.whisperx[3].text 在這樣的出口籠井下顯示我國的產業競爭力及全球的需求同步的回升也讓我們市場對前景充滿了信心院長面對出口的景氣雙雙的提升的趨勢
transcript.whisperx[4].start 106.79
transcript.whisperx[4].end 123.114
transcript.whisperx[4].text 你是否針對明年的明年度的稅收表現會持續的樂觀看待那我再一個問題那院長明年要是財政及還債都沒問題的前提之下是否優先考慮在普發現金請我們院長針對這兩點來做說明
transcript.whisperx[5].start 128.149
transcript.whisperx[5].end 156.014
transcript.whisperx[5].text 謝謝吳委員剛剛的說明10月份的出口真的是創了新高而且增加的比例達到49.7%非常的高那1到10月份這個5144億的美元也年增率達到31.8%這個都是國人尤其各行各業其中當然高科技產業占了相當多ICT產業占了相當大的比例能夠這麼做代表台灣在現在國際製造業高科技產業和製造業的重要性
transcript.whisperx[6].start 156.494
transcript.whisperx[6].end 165.753
transcript.whisperx[6].text 所以我們會在這個地方上繼續的保持台灣在國際領先的地位至於明年的稅收其實我們現在是趨於比較保守的因為在整個國際間
transcript.whisperx[7].start 167.199
transcript.whisperx[7].end 195.826
transcript.whisperx[7].text 以及美國的關稅貿易關稅對等關稅談判之後整個世界會呈現一個新的後關稅時代那很多的變化到現在變數還是相當大我國跟美方在最後的談判還沒有達到最終的總結會議那雖然其他國家大致完成但其中也充滿了若干的變數所以明年我們採取比較保守的估計但是一個國家即使我們的稅收應收的比預算的多
transcript.whisperx[8].start 196.526
transcript.whisperx[8].end 220.172
transcript.whisperx[8].text 應收數超過預算數也不應該把它定額一定放在普發現金國家有國家更重大的需求比方我們的國家安全比方我們救災準備比方我們整個科技發展如果我們和平性的考量國家才有整體性向國外競爭的競爭力所以我們認為第一個保守估計明年的稅收再來審慎合理的如果
transcript.whisperx[9].start 220.592
transcript.whisperx[9].end 229.271
transcript.whisperx[9].text 所以說真的有時增數超過預算數的時候要依照國家最需要的實際用途我們來做全盤性的規劃
transcript.whisperx[10].start 231.149
transcript.whisperx[10].end 251.666
transcript.whisperx[10].text 對 因為大家都對明年的稅收還是保持的非常的樂觀那我說全國的民眾的期待我認為要是在我們的財政以及我們的還債能力之下我們行政院還是要來考慮一下是不是明年有剩餘的還是還政移民
transcript.whisperx[11].start 253.527
transcript.whisperx[11].end 281.298
transcript.whisperx[11].text 這是本席的建議那再來因為我們過去在我們的陳建仁院長推動了TPAS這成效都應該是很好是大家都肯定包含我們賴清德總統在旅遊展也特別提到台灣是以觀光立國打造一個觀光的國家隊這願景真的大家都是很興奮
transcript.whisperx[12].start 282.518
transcript.whisperx[12].end 303.124
transcript.whisperx[12].text 那我本席這邊的資料1到9月我國觀光的逆差高達805萬人次代表出國的旅客遠遠多於來台的旅客要扭轉這情況除了吸引國際的觀光客更應積極推動國旅的內需的成長
transcript.whisperx[13].start 304.301
transcript.whisperx[13].end 315.686
transcript.whisperx[13].text 那國裡的發展也不只是我們就是要提升嘛那交通上是關鍵根據統計喔在今年九月底全台已經有超過1822萬人是購買交通業票
transcript.whisperx[14].start 321.328
transcript.whisperx[14].end 342.925
transcript.whisperx[14].text 那近幾年來最受歡迎的之一就證明整個制度設計得宜價格合理民眾的意願都當然他們都希望說搭乘我們公共的運輸工具那本席這邊慎重的一個建議台灣65歲以上的人口已經佔了多少448萬人
transcript.whisperx[15].start 346.548
transcript.whisperx[15].end 368.135
transcript.whisperx[15].text 那政府應該推出由中央統籌我們各地方政府發出的敬老卡由我們中央出面來整合民眾主要致富少許的費用像我們過去推動的TPAS一樣的月票不再受限於長輩每個月的點數
transcript.whisperx[16].start 369.735
transcript.whisperx[16].end 391.343
transcript.whisperx[16].text 那全國都可以使用這個公共運輸那目前我本期所在的地方是新北市的敬老卡點數一個月就480點那又不能跨越使用讓許多的我們的長者持有卡的第一又不捨得用
transcript.whisperx[17].start 392.183
transcript.whisperx[17].end 420.1
transcript.whisperx[17].text 又怕用不夠那反而讓我們政府的這個成效就大大打折那中央的預算都是中央跟地方的預算都是以年度年度來計算那所以我們應該是由中央出面原理我們的敬老卡以年度的額度增加我們長者使用的彈性那院長我們家都有老人嘛
transcript.whisperx[18].start 420.62
transcript.whisperx[18].end 442.19
transcript.whisperx[18].text 那我也希望說未來我們推出屬於我們的銀髮族的銀帕斯因為國旅要護輸最大的潛力客群其實是我們長輩因為有的長輩他們要出國都不方便那要是你年度使用的話他們更有彈性那我看就能帶動我們台灣的旅遊的護輸
transcript.whisperx[19].start 445.911
transcript.whisperx[19].end 472.077
transcript.whisperx[19].text 這一點應該是非常的重要所以我認為我們未來的T-PASS因為前陣子的T-PASS推動的很好那未來部長這應該要研議我們的INPASS讓我們老人他們有尊嚴他不是老人一個人兩個人出去啊他整個他的兒孫都會陪同啊這樣你才能帶動整個觀光市場這是一個真的非常
transcript.whisperx[20].start 472.817
transcript.whisperx[20].end 473.498
transcript.whisperx[20].text 非常重要,所以本集會正式提案
transcript.whisperx[21].start 476.983
transcript.whisperx[21].end 505.555
transcript.whisperx[21].text 這個因為TPAS非常受到國人的支持交通部也提出了TPAS 2.02.0更有多的優惠那麼敬老的部分各縣市有若干不同的規範那如果說TPAS 2.0的常客的優惠再加上各縣市也許他的折扣會更低總部長來說說明跟委員報告我們TPAS 2.0也可以結合敬老卡使用那如果結合敬老卡使用的話算起來大概三到五折因為我們法定本來就是50%就是五折
transcript.whisperx[22].start 506.135
transcript.whisperx[22].end 524.974
transcript.whisperx[22].text 那如果再加上我們TPAS 2.0結合進老票的話大概就會三到五折的折扣啦所以是會非常非常的多的折扣那另外我們還有一個方案就是有一些老人家他不想開車了他想要繳回駕照的話如果繳回駕照我們的折扣會更多
transcript.whisperx[23].start 525.675
transcript.whisperx[23].end 552.323
transcript.whisperx[23].text 那兩年之內他使用TPAS這樣結合起來的話大概就等於是二五折的優惠給所有的老人家那委員在建議的就是說整體性的針對銀髮族的這個部分可能還需要因為這個也跟地方政府會相關所以除了交通部之外我們也跟地方政府必須要來討論看看有沒有這樣的可能性我們來研議看看好 我跟院長跟部長報告當初我們TPAS一推動本來桃園 桃節桃節的捷運
transcript.whisperx[24].start 555.543
transcript.whisperx[24].end 581.284
transcript.whisperx[24].text 都非常空蕩根本連公司的經營都有問題那T-Pass一推動你看桃姐就整個公司的營運都正常都有營業那未來我們全國很多捷運你可以讓他們除了有InPass一張卡全國走透透那不只他一個老人出門他的兒孫都會陪同這是我們未來最大的商機
transcript.whisperx[25].start 583.045
transcript.whisperx[25].end 605.553
transcript.whisperx[25].text 這才像我們總統所講的台灣是一個觀光利果的所以我們一定要這樣趕快來做推動這我認為是一個非常可行又可以帶動台灣整個觀光整個景氣的回升這是對我們台灣的人民都是一個非常好的利多對我們老人也是一種尊重
transcript.whisperx[26].start 606.261
transcript.whisperx[26].end 623.002
transcript.whisperx[26].text 我們來繼續加強整合把它整合起來對老人的折扣會更合理對 因為一定要跟地方政府我們全國都是統一這樣對我們老人他們要鼓勵他們走出來對我們整個產業都是有幫助好不好
transcript.whisperx[27].start 623.541
transcript.whisperx[27].end 651.733
transcript.whisperx[27].text 好的謝謝委員再來我請問部長其實本席在上一次我也提到我們的六五在土城 三峽不管是京城交流道包含山陰 捷運 萬大縣還有山陰縣還有我們很多的建設但是本席這邊還是慎重來要求我們六五的延伸
transcript.whisperx[28].start 652.393
transcript.whisperx[28].end 664.943
transcript.whisperx[28].text 早期六五延伸在我們公共工程會五則城根本是開了六七次的會議也取得了我們的可行性評估現在已經進入我們初期
transcript.whisperx[29].start 666.067
transcript.whisperx[29].end 681.168
transcript.whisperx[29].text 我們的起初的報告也通過了那其中的報告我們已經拖了三次那問題出在哪裡我們總是要來解決因為土層這邊的工業區你看一年的聯產值
transcript.whisperx[30].start 682.29
transcript.whisperx[30].end 697.922
transcript.whisperx[30].text 就超過一千多億那整個交通都已經飽和了又可以紓解我們國道3號的車流量那未來這是一個急迫性啊那一個急迫性未來為什麼會拖了三次請我們部長做說明
transcript.whisperx[31].start 698.582
transcript.whisperx[31].end 727.175
transcript.whisperx[31].text 跟委員報告這個部分因為它整體的路廊牽涉到的面向其實比較廣這裡有台鐵的也有高鐵的還有地方徵收的還有就是因為我們是沿著大漢溪旁邊在走所以跟水利單位也會有相關的關係所以這個部分我們目前在審議的過程當中必須要邀集的單位其實相對是比較多一點這個部分我們會再加速委員在督促我們就會盡量再加速讓它速度更快一些
transcript.whisperx[32].start 728.07
transcript.whisperx[32].end 755.894
transcript.whisperx[32].text 部長 我跟你報告 早期我跟公共工程會吳澤成開過七次會議 包含新北市 桃園還有我們的相關單位都來開會早期就提出這個問題那當時在吳志偉的推動之下都已經排除了很多的因素了那現在怎麼 一個提出怎麼一言再言 那問題還是要去解決啊
transcript.whisperx[33].start 756.687
transcript.whisperx[33].end 785.576
transcript.whisperx[33].text 那是不是拜託部長這是一個積極一定要更為積極我們才可以來達成這個目標因為這才能徹底的解決因為三峽這邊的人口尤其北大尤其土層工業區這對我們的產業都是非常大的幫助這一點都拜託囉報告委員我們今年年底之前看可不可以完成其中的報告的審議好不好 跟您報告我希望有好的結果啦 好不好
transcript.whisperx[34].start 786.158
transcript.whisperx[34].end 808.861
transcript.whisperx[34].text 那再來咧就像我們上一次我所跟部長爭取的我們前瞻最後一筆的經費就是停車場嘛那長湖橋現在已經都在做了吧也將近要完工了吧那問題就是那個長湖橋那個停車場他現在你未來要做好你還要再等
transcript.whisperx[35].start 809.742
transcript.whisperx[35].end 838.289
transcript.whisperx[35].text 兩三年那是不是可以再找個適當的地方來做臨時停車場都可以因為我們三峽這個老街已經在上一屆那個林部長都到那三峽去宣布我們經典城市經典的小鎮那未來這個觀光客要吸引當然就是停車的問題這一點我要拜託我們交通部找一個適當的地點來做為停車臨時的停車啦
transcript.whisperx[36].start 840.217
transcript.whisperx[36].end 866.91
transcript.whisperx[36].text 委員所建議的幾個地點其中牽扯到財政部國產署它的非公用土地還要請財政部國產署再來好好的來規劃看看有沒有如果非公用土地短期間沒有什麼重大的公共用途的話那是不是大概也提供出來再請財政部來檢討這要拜託院長院長來督促會比較快這樣才能解決地方上的問題
transcript.whisperx[37].start 868.174
transcript.whisperx[37].end 895.618
transcript.whisperx[37].text 那本期還有一個比較重要因為時間上的問題就是我上一次所講的就是機械機械設備我們的重機械你看這一次花蓮的映射5R也是要靠他們那個機械公衛他們所帶動整個機械到花蓮可以看得出他們的問題就是跟地方政府的取得那個許可就停車的許可
transcript.whisperx[38].start 896.534
transcript.whisperx[38].end 920.925
transcript.whisperx[38].text 行車的時刻當然啊 政府就是有義務要來幫他們協助你多的問題都會去找他們出來幫忙啊所以這一點我也是感謝我們交通部啦也是初步啦 但是初步幫他們解決的還不過你還要再召開地方政府來做協調不然他們要起的停車的問題還是沒辦法去解決啊就是他那個時刻的問題啊
transcript.whisperx[39].start 922.835
transcript.whisperx[39].end 935.143
transcript.whisperx[39].text 感謝委員我們這個法制化的過程在中央的法制的部分都已經做得完善了那現在就是地方政府的配合的部分我們再積極跟地方政府來溝通看怎麼樣配合我們這些業者讓他們更方便的能夠停車好 謝謝