iVOD / 165806

Field Value
IVOD_ID 165806
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/165806
日期 2025-11-25
會議資料.會議代碼 院會-11-4-10
會議資料.會議代碼:str 第11屆第4會期第10次會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 10
會議資料.種類 院會
會議資料.標題 第11屆第4會期第10次會議
影片種類 Clip
開始時間 2025-11-25T10:46:43+08:00
結束時間 2025-11-25T11:02:31+08:00
影片長度 00:15:48
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/6325889ad8f272b50c5fb7c47d1ba787b583d2a9868c2e3c1c3e4c01308b4cb555b575a02889fffd5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 邱志偉
委員發言時間 10:46:43 - 11:02:31
會議時間 2025-11-25T09:00:00+08:00
會議名稱 第11屆第4會期第10次會議(事由:一、討論事項:本院台灣民眾黨黨團擬具「公民投票法第二十三條條文修正草案」,請審議案;本院委員楊瓊瓔等26人擬具「公民投票法第二十三條條文修正草案」,請審議案;本院委員賴士葆等27人擬具「公民投票法第二十三條條文修正草案」,請審議案;本院委員許宇甄等24人擬具「公民投票法第二十三條條文修正草案」,請審議案等8案。二、對行政院院長施政報告繼續質詢。(11月25日)三、11月21日上午9時至10時為國是論壇時間。)
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 20.87159375
transcript.pyannote[0].end 23.58846875
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 23.87534375
transcript.pyannote[1].end 28.66784375
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 27.48659375
transcript.pyannote[2].end 28.02659375
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 28.66784375
transcript.pyannote[3].end 28.68471875
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 37.24034375
transcript.pyannote[4].end 37.84784375
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 37.84784375
transcript.pyannote[5].end 38.87721875
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 39.36659375
transcript.pyannote[6].end 48.69846875
transcript.pyannote[7].speaker SPEAKER_02
transcript.pyannote[7].start 48.83346875
transcript.pyannote[7].end 49.82909375
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 50.25096875
transcript.pyannote[8].end 51.58409375
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 51.93846875
transcript.pyannote[9].end 54.77346875
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 55.46534375
transcript.pyannote[10].end 57.89534375
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 58.80659375
transcript.pyannote[11].end 60.20721875
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 60.74721875
transcript.pyannote[12].end 63.02534375
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 63.73409375
transcript.pyannote[13].end 66.16409375
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 67.36221875
transcript.pyannote[14].end 70.53471875
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 71.15909375
transcript.pyannote[15].end 72.89721875
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 74.01096875
transcript.pyannote[16].end 76.00221875
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 76.72784375
transcript.pyannote[17].end 78.61784375
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 78.82034375
transcript.pyannote[18].end 79.22534375
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 79.68096875
transcript.pyannote[19].end 81.75659375
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 82.41471875
transcript.pyannote[20].end 84.25409375
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 85.41846875
transcript.pyannote[21].end 90.26159375
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 91.72971875
transcript.pyannote[22].end 92.42159375
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 92.74221875
transcript.pyannote[23].end 96.65721875
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 97.55159375
transcript.pyannote[24].end 102.49596875
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 102.49596875
transcript.pyannote[25].end 108.95909375
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 104.68971875
transcript.pyannote[26].end 104.95971875
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 108.95909375
transcript.pyannote[27].end 108.97596875
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 108.97596875
transcript.pyannote[28].end 109.02659375
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 109.02659375
transcript.pyannote[29].end 109.27971875
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 109.27971875
transcript.pyannote[30].end 109.29659375
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 109.48221875
transcript.pyannote[31].end 112.16534375
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 112.94159375
transcript.pyannote[32].end 114.74721875
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 114.94971875
transcript.pyannote[33].end 116.24909375
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 116.63721875
transcript.pyannote[34].end 119.30346875
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 118.47659375
transcript.pyannote[35].end 118.57784375
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 119.43846875
transcript.pyannote[36].end 123.82596875
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 119.77596875
transcript.pyannote[37].end 119.79284375
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 125.19284375
transcript.pyannote[38].end 125.71596875
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 126.17159375
transcript.pyannote[39].end 132.92159375
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 133.05659375
transcript.pyannote[40].end 134.69346875
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 135.25034375
transcript.pyannote[41].end 141.78096875
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 142.33784375
transcript.pyannote[42].end 145.42596875
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 146.40471875
transcript.pyannote[43].end 148.29471875
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 149.18909375
transcript.pyannote[44].end 152.88471875
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 153.37409375
transcript.pyannote[45].end 155.09534375
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 156.34409375
transcript.pyannote[46].end 157.69409375
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 157.84596875
transcript.pyannote[47].end 159.83721875
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 161.32221875
transcript.pyannote[48].end 161.79471875
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 161.96346875
transcript.pyannote[49].end 163.66784375
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 164.47784375
transcript.pyannote[50].end 165.15284375
transcript.pyannote[51].speaker SPEAKER_02
transcript.pyannote[51].start 165.60846875
transcript.pyannote[51].end 167.49846875
transcript.pyannote[52].speaker SPEAKER_02
transcript.pyannote[52].start 167.83596875
transcript.pyannote[52].end 168.64596875
transcript.pyannote[53].speaker SPEAKER_02
transcript.pyannote[53].start 169.03409375
transcript.pyannote[53].end 170.16471875
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 171.56534375
transcript.pyannote[54].end 172.22346875
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 172.89846875
transcript.pyannote[55].end 175.31159375
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 176.25659375
transcript.pyannote[56].end 177.50534375
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 177.79221875
transcript.pyannote[57].end 178.78784375
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 180.47534375
transcript.pyannote[58].end 182.34846875
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 183.07409375
transcript.pyannote[59].end 186.43221875
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 186.66846875
transcript.pyannote[60].end 188.64284375
transcript.pyannote[61].speaker SPEAKER_02
transcript.pyannote[61].start 189.06471875
transcript.pyannote[61].end 190.16159375
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 190.70159375
transcript.pyannote[62].end 193.35096875
transcript.pyannote[63].speaker SPEAKER_02
transcript.pyannote[63].start 194.31284375
transcript.pyannote[63].end 202.49721875
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 203.29034375
transcript.pyannote[64].end 205.87221875
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 206.59784375
transcript.pyannote[65].end 209.02784375
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 210.41159375
transcript.pyannote[66].end 212.80784375
transcript.pyannote[67].speaker SPEAKER_02
transcript.pyannote[67].start 213.31409375
transcript.pyannote[67].end 220.43534375
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 220.82346875
transcript.pyannote[68].end 221.98784375
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 223.15221875
transcript.pyannote[69].end 225.36284375
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 225.78471875
transcript.pyannote[70].end 226.40909375
transcript.pyannote[71].speaker SPEAKER_02
transcript.pyannote[71].start 226.93221875
transcript.pyannote[71].end 228.38346875
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 229.36221875
transcript.pyannote[72].end 230.54346875
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 230.69534375
transcript.pyannote[73].end 231.11721875
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 231.11721875
transcript.pyannote[74].end 231.23534375
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 231.28596875
transcript.pyannote[75].end 237.36096875
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 238.57596875
transcript.pyannote[76].end 239.09909375
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 239.68971875
transcript.pyannote[77].end 240.92159375
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 242.10284375
transcript.pyannote[78].end 245.62971875
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 246.11909375
transcript.pyannote[79].end 254.42159375
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 255.46784375
transcript.pyannote[80].end 258.87659375
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 259.28159375
transcript.pyannote[81].end 260.73284375
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 261.39096875
transcript.pyannote[82].end 264.49596875
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 265.57596875
transcript.pyannote[83].end 266.40284375
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 268.00596875
transcript.pyannote[84].end 268.44471875
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 268.76534375
transcript.pyannote[85].end 269.69346875
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 270.79034375
transcript.pyannote[86].end 271.26284375
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 271.65096875
transcript.pyannote[87].end 272.69721875
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 273.08534375
transcript.pyannote[88].end 273.10221875
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 273.10221875
transcript.pyannote[89].end 274.30034375
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 274.73909375
transcript.pyannote[90].end 274.75596875
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 274.75596875
transcript.pyannote[91].end 276.08909375
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 276.40971875
transcript.pyannote[92].end 276.67971875
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 276.67971875
transcript.pyannote[93].end 278.70471875
transcript.pyannote[94].speaker SPEAKER_02
transcript.pyannote[94].start 278.95784375
transcript.pyannote[94].end 279.95346875
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 282.50159375
transcript.pyannote[95].end 286.93971875
transcript.pyannote[96].speaker SPEAKER_02
transcript.pyannote[96].start 287.98596875
transcript.pyannote[96].end 288.57659375
transcript.pyannote[97].speaker SPEAKER_02
transcript.pyannote[97].start 290.65221875
transcript.pyannote[97].end 292.12034375
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 292.93034375
transcript.pyannote[98].end 298.92096875
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 299.14034375
transcript.pyannote[99].end 302.83596875
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 303.39284375
transcript.pyannote[100].end 305.29971875
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 305.90721875
transcript.pyannote[101].end 309.65346875
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 310.86846875
transcript.pyannote[102].end 315.32346875
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 315.94784375
transcript.pyannote[103].end 350.49096875
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 316.30221875
transcript.pyannote[104].end 317.50034375
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 325.97159375
transcript.pyannote[105].end 327.10221875
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 327.10221875
transcript.pyannote[106].end 327.65909375
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 327.65909375
transcript.pyannote[107].end 327.84471875
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 327.84471875
transcript.pyannote[108].end 328.50284375
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 328.78971875
transcript.pyannote[109].end 329.16096875
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 349.20846875
transcript.pyannote[110].end 352.78596875
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 353.05596875
transcript.pyannote[111].end 356.97096875
transcript.pyannote[112].speaker SPEAKER_02
transcript.pyannote[112].start 357.44346875
transcript.pyannote[112].end 360.26159375
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 360.80159375
transcript.pyannote[113].end 362.47221875
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 362.91096875
transcript.pyannote[114].end 366.06659375
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 366.38721875
transcript.pyannote[115].end 367.87221875
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 368.24346875
transcript.pyannote[116].end 370.40346875
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 370.75784375
transcript.pyannote[117].end 371.71971875
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 371.90534375
transcript.pyannote[118].end 373.67721875
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 374.84159375
transcript.pyannote[119].end 376.15784375
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 376.86659375
transcript.pyannote[120].end 380.93346875
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 381.47346875
transcript.pyannote[121].end 382.19909375
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 382.57034375
transcript.pyannote[122].end 385.13534375
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 385.69221875
transcript.pyannote[123].end 389.94471875
transcript.pyannote[124].speaker SPEAKER_02
transcript.pyannote[124].start 390.70409375
transcript.pyannote[124].end 391.78409375
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 392.17221875
transcript.pyannote[125].end 394.78784375
transcript.pyannote[126].speaker SPEAKER_02
transcript.pyannote[126].start 395.41221875
transcript.pyannote[126].end 396.45846875
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 397.11659375
transcript.pyannote[127].end 398.29784375
transcript.pyannote[128].speaker SPEAKER_02
transcript.pyannote[128].start 398.83784375
transcript.pyannote[128].end 408.01784375
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 408.37221875
transcript.pyannote[129].end 409.51971875
transcript.pyannote[130].speaker SPEAKER_02
transcript.pyannote[130].start 410.38034375
transcript.pyannote[130].end 411.17346875
transcript.pyannote[131].speaker SPEAKER_01
transcript.pyannote[131].start 411.89909375
transcript.pyannote[131].end 415.02096875
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 415.42596875
transcript.pyannote[132].end 416.01659375
transcript.pyannote[133].speaker SPEAKER_01
transcript.pyannote[133].start 416.33721875
transcript.pyannote[133].end 419.05409375
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 419.27346875
transcript.pyannote[134].end 420.21846875
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 420.38721875
transcript.pyannote[135].end 424.38659375
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 425.01096875
transcript.pyannote[136].end 426.42846875
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 426.64784375
transcript.pyannote[137].end 429.48284375
transcript.pyannote[138].speaker SPEAKER_01
transcript.pyannote[138].start 429.87096875
transcript.pyannote[138].end 437.19471875
transcript.pyannote[139].speaker SPEAKER_01
transcript.pyannote[139].start 437.70096875
transcript.pyannote[139].end 441.29534375
transcript.pyannote[140].speaker SPEAKER_01
transcript.pyannote[140].start 441.49784375
transcript.pyannote[140].end 442.88159375
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 443.72534375
transcript.pyannote[141].end 447.85971875
transcript.pyannote[142].speaker SPEAKER_01
transcript.pyannote[142].start 447.91034375
transcript.pyannote[142].end 449.81721875
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 449.90159375
transcript.pyannote[143].end 451.94346875
transcript.pyannote[144].speaker SPEAKER_01
transcript.pyannote[144].start 451.97721875
transcript.pyannote[144].end 452.02784375
transcript.pyannote[145].speaker SPEAKER_01
transcript.pyannote[145].start 452.11221875
transcript.pyannote[145].end 453.76596875
transcript.pyannote[146].speaker SPEAKER_01
transcript.pyannote[146].start 453.98534375
transcript.pyannote[146].end 457.68096875
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 457.90034375
transcript.pyannote[147].end 461.61284375
transcript.pyannote[148].speaker SPEAKER_01
transcript.pyannote[148].start 461.91659375
transcript.pyannote[148].end 462.94596875
transcript.pyannote[149].speaker SPEAKER_01
transcript.pyannote[149].start 463.26659375
transcript.pyannote[149].end 464.65034375
transcript.pyannote[150].speaker SPEAKER_01
transcript.pyannote[150].start 464.66721875
transcript.pyannote[150].end 468.64971875
transcript.pyannote[151].speaker SPEAKER_02
transcript.pyannote[151].start 469.57784375
transcript.pyannote[151].end 474.69096875
transcript.pyannote[152].speaker SPEAKER_02
transcript.pyannote[152].start 475.28159375
transcript.pyannote[152].end 478.65659375
transcript.pyannote[153].speaker SPEAKER_02
transcript.pyannote[153].start 479.33159375
transcript.pyannote[153].end 484.74846875
transcript.pyannote[154].speaker SPEAKER_02
transcript.pyannote[154].start 485.30534375
transcript.pyannote[154].end 487.07721875
transcript.pyannote[155].speaker SPEAKER_02
transcript.pyannote[155].start 487.71846875
transcript.pyannote[155].end 489.81096875
transcript.pyannote[156].speaker SPEAKER_02
transcript.pyannote[156].start 490.11471875
transcript.pyannote[156].end 490.84034375
transcript.pyannote[157].speaker SPEAKER_02
transcript.pyannote[157].start 491.32971875
transcript.pyannote[157].end 497.05034375
transcript.pyannote[158].speaker SPEAKER_02
transcript.pyannote[158].start 497.70846875
transcript.pyannote[158].end 501.28596875
transcript.pyannote[159].speaker SPEAKER_02
transcript.pyannote[159].start 501.77534375
transcript.pyannote[159].end 502.34909375
transcript.pyannote[160].speaker SPEAKER_02
transcript.pyannote[160].start 502.75409375
transcript.pyannote[160].end 503.26034375
transcript.pyannote[161].speaker SPEAKER_02
transcript.pyannote[161].start 503.49659375
transcript.pyannote[161].end 506.44971875
transcript.pyannote[162].speaker SPEAKER_02
transcript.pyannote[162].start 507.46221875
transcript.pyannote[162].end 511.09034375
transcript.pyannote[163].speaker SPEAKER_02
transcript.pyannote[163].start 511.74846875
transcript.pyannote[163].end 513.94221875
transcript.pyannote[164].speaker SPEAKER_02
transcript.pyannote[164].start 514.22909375
transcript.pyannote[164].end 516.18659375
transcript.pyannote[165].speaker SPEAKER_02
transcript.pyannote[165].start 516.89534375
transcript.pyannote[165].end 521.14784375
transcript.pyannote[166].speaker SPEAKER_00
transcript.pyannote[166].start 521.26596875
transcript.pyannote[166].end 521.75534375
transcript.pyannote[167].speaker SPEAKER_02
transcript.pyannote[167].start 521.78909375
transcript.pyannote[167].end 527.02034375
transcript.pyannote[168].speaker SPEAKER_00
transcript.pyannote[168].start 527.45909375
transcript.pyannote[168].end 527.59409375
transcript.pyannote[169].speaker SPEAKER_02
transcript.pyannote[169].start 527.59409375
transcript.pyannote[169].end 528.47159375
transcript.pyannote[170].speaker SPEAKER_02
transcript.pyannote[170].start 529.29846875
transcript.pyannote[170].end 530.74971875
transcript.pyannote[171].speaker SPEAKER_02
transcript.pyannote[171].start 531.00284375
transcript.pyannote[171].end 541.49909375
transcript.pyannote[172].speaker SPEAKER_02
transcript.pyannote[172].start 542.05596875
transcript.pyannote[172].end 542.52846875
transcript.pyannote[173].speaker SPEAKER_02
transcript.pyannote[173].start 543.32159375
transcript.pyannote[173].end 548.26596875
transcript.pyannote[174].speaker SPEAKER_02
transcript.pyannote[174].start 548.92409375
transcript.pyannote[174].end 552.38346875
transcript.pyannote[175].speaker SPEAKER_02
transcript.pyannote[175].start 553.27784375
transcript.pyannote[175].end 559.97721875
transcript.pyannote[176].speaker SPEAKER_02
transcript.pyannote[176].start 561.00659375
transcript.pyannote[176].end 564.02721875
transcript.pyannote[177].speaker SPEAKER_02
transcript.pyannote[177].start 565.12409375
transcript.pyannote[177].end 569.02221875
transcript.pyannote[178].speaker SPEAKER_02
transcript.pyannote[178].start 569.68034375
transcript.pyannote[178].end 570.01784375
transcript.pyannote[179].speaker SPEAKER_02
transcript.pyannote[179].start 570.76034375
transcript.pyannote[179].end 574.55721875
transcript.pyannote[180].speaker SPEAKER_02
transcript.pyannote[180].start 574.89471875
transcript.pyannote[180].end 575.68784375
transcript.pyannote[181].speaker SPEAKER_01
transcript.pyannote[181].start 575.68784375
transcript.pyannote[181].end 575.70471875
transcript.pyannote[182].speaker SPEAKER_01
transcript.pyannote[182].start 577.93221875
transcript.pyannote[182].end 581.72909375
transcript.pyannote[183].speaker SPEAKER_02
transcript.pyannote[183].start 578.01659375
transcript.pyannote[183].end 578.55659375
transcript.pyannote[184].speaker SPEAKER_01
transcript.pyannote[184].start 581.86409375
transcript.pyannote[184].end 586.40346875
transcript.pyannote[185].speaker SPEAKER_01
transcript.pyannote[185].start 586.62284375
transcript.pyannote[185].end 589.18784375
transcript.pyannote[186].speaker SPEAKER_01
transcript.pyannote[186].start 589.22159375
transcript.pyannote[186].end 590.52096875
transcript.pyannote[187].speaker SPEAKER_01
transcript.pyannote[187].start 590.68971875
transcript.pyannote[187].end 593.13659375
transcript.pyannote[188].speaker SPEAKER_01
transcript.pyannote[188].start 593.44034375
transcript.pyannote[188].end 596.19096875
transcript.pyannote[189].speaker SPEAKER_01
transcript.pyannote[189].start 596.42721875
transcript.pyannote[189].end 599.78534375
transcript.pyannote[190].speaker SPEAKER_01
transcript.pyannote[190].start 599.92034375
transcript.pyannote[190].end 603.85221875
transcript.pyannote[191].speaker SPEAKER_02
transcript.pyannote[191].start 604.30784375
transcript.pyannote[191].end 611.26034375
transcript.pyannote[192].speaker SPEAKER_02
transcript.pyannote[192].start 611.69909375
transcript.pyannote[192].end 613.62284375
transcript.pyannote[193].speaker SPEAKER_02
transcript.pyannote[193].start 614.12909375
transcript.pyannote[193].end 615.20909375
transcript.pyannote[194].speaker SPEAKER_02
transcript.pyannote[194].start 615.79971875
transcript.pyannote[194].end 616.76159375
transcript.pyannote[195].speaker SPEAKER_02
transcript.pyannote[195].start 616.93034375
transcript.pyannote[195].end 619.64721875
transcript.pyannote[196].speaker SPEAKER_00
transcript.pyannote[196].start 619.64721875
transcript.pyannote[196].end 637.29846875
transcript.pyannote[197].speaker SPEAKER_00
transcript.pyannote[197].start 637.60221875
transcript.pyannote[197].end 643.50846875
transcript.pyannote[198].speaker SPEAKER_02
transcript.pyannote[198].start 642.39471875
transcript.pyannote[198].end 643.28909375
transcript.pyannote[199].speaker SPEAKER_02
transcript.pyannote[199].start 643.45784375
transcript.pyannote[199].end 646.83284375
transcript.pyannote[200].speaker SPEAKER_02
transcript.pyannote[200].start 647.45721875
transcript.pyannote[200].end 649.90409375
transcript.pyannote[201].speaker SPEAKER_02
transcript.pyannote[201].start 650.41034375
transcript.pyannote[201].end 651.33846875
transcript.pyannote[202].speaker SPEAKER_02
transcript.pyannote[202].start 651.87846875
transcript.pyannote[202].end 653.53221875
transcript.pyannote[203].speaker SPEAKER_02
transcript.pyannote[203].start 653.54909375
transcript.pyannote[203].end 655.48971875
transcript.pyannote[204].speaker SPEAKER_02
transcript.pyannote[204].start 655.82721875
transcript.pyannote[204].end 659.42159375
transcript.pyannote[205].speaker SPEAKER_02
transcript.pyannote[205].start 660.31596875
transcript.pyannote[205].end 662.10471875
transcript.pyannote[206].speaker SPEAKER_02
transcript.pyannote[206].start 662.44221875
transcript.pyannote[206].end 663.45471875
transcript.pyannote[207].speaker SPEAKER_02
transcript.pyannote[207].start 663.70784375
transcript.pyannote[207].end 664.95659375
transcript.pyannote[208].speaker SPEAKER_02
transcript.pyannote[208].start 665.61471875
transcript.pyannote[208].end 671.28471875
transcript.pyannote[209].speaker SPEAKER_02
transcript.pyannote[209].start 672.11159375
transcript.pyannote[209].end 672.98909375
transcript.pyannote[210].speaker SPEAKER_02
transcript.pyannote[210].start 673.41096875
transcript.pyannote[210].end 677.05596875
transcript.pyannote[211].speaker SPEAKER_02
transcript.pyannote[211].start 677.57909375
transcript.pyannote[211].end 679.92471875
transcript.pyannote[212].speaker SPEAKER_02
transcript.pyannote[212].start 681.79784375
transcript.pyannote[212].end 687.07971875
transcript.pyannote[213].speaker SPEAKER_02
transcript.pyannote[213].start 687.56909375
transcript.pyannote[213].end 691.77096875
transcript.pyannote[214].speaker SPEAKER_02
transcript.pyannote[214].start 692.37846875
transcript.pyannote[214].end 694.38659375
transcript.pyannote[215].speaker SPEAKER_02
transcript.pyannote[215].start 695.33159375
transcript.pyannote[215].end 708.57846875
transcript.pyannote[216].speaker SPEAKER_02
transcript.pyannote[216].start 709.77659375
transcript.pyannote[216].end 716.22284375
transcript.pyannote[217].speaker SPEAKER_02
transcript.pyannote[217].start 716.91471875
transcript.pyannote[217].end 725.11596875
transcript.pyannote[218].speaker SPEAKER_02
transcript.pyannote[218].start 725.57159375
transcript.pyannote[218].end 733.94159375
transcript.pyannote[219].speaker SPEAKER_02
transcript.pyannote[219].start 734.97096875
transcript.pyannote[219].end 736.25346875
transcript.pyannote[220].speaker SPEAKER_01
transcript.pyannote[220].start 735.88221875
transcript.pyannote[220].end 740.69159375
transcript.pyannote[221].speaker SPEAKER_01
transcript.pyannote[221].start 740.75909375
transcript.pyannote[221].end 742.71659375
transcript.pyannote[222].speaker SPEAKER_01
transcript.pyannote[222].start 742.98659375
transcript.pyannote[222].end 748.42034375
transcript.pyannote[223].speaker SPEAKER_01
transcript.pyannote[223].start 748.52159375
transcript.pyannote[223].end 749.07846875
transcript.pyannote[224].speaker SPEAKER_01
transcript.pyannote[224].start 749.21346875
transcript.pyannote[224].end 754.61346875
transcript.pyannote[225].speaker SPEAKER_01
transcript.pyannote[225].start 754.76534375
transcript.pyannote[225].end 759.76034375
transcript.pyannote[226].speaker SPEAKER_01
transcript.pyannote[226].start 759.82784375
transcript.pyannote[226].end 776.07846875
transcript.pyannote[227].speaker SPEAKER_02
transcript.pyannote[227].start 776.28096875
transcript.pyannote[227].end 778.32284375
transcript.pyannote[228].speaker SPEAKER_02
transcript.pyannote[228].start 778.81221875
transcript.pyannote[228].end 782.96346875
transcript.pyannote[229].speaker SPEAKER_02
transcript.pyannote[229].start 783.57096875
transcript.pyannote[229].end 784.16159375
transcript.pyannote[230].speaker SPEAKER_02
transcript.pyannote[230].start 784.43159375
transcript.pyannote[230].end 786.49034375
transcript.pyannote[231].speaker SPEAKER_02
transcript.pyannote[231].start 786.97971875
transcript.pyannote[231].end 790.30409375
transcript.pyannote[232].speaker SPEAKER_02
transcript.pyannote[232].start 790.52346875
transcript.pyannote[232].end 793.05471875
transcript.pyannote[233].speaker SPEAKER_02
transcript.pyannote[233].start 793.64534375
transcript.pyannote[233].end 799.04534375
transcript.pyannote[234].speaker SPEAKER_01
transcript.pyannote[234].start 797.10471875
transcript.pyannote[234].end 797.50971875
transcript.pyannote[235].speaker SPEAKER_02
transcript.pyannote[235].start 799.55159375
transcript.pyannote[235].end 807.97221875
transcript.pyannote[236].speaker SPEAKER_02
transcript.pyannote[236].start 808.37721875
transcript.pyannote[236].end 812.22471875
transcript.pyannote[237].speaker SPEAKER_02
transcript.pyannote[237].start 812.37659375
transcript.pyannote[237].end 823.29471875
transcript.pyannote[238].speaker SPEAKER_02
transcript.pyannote[238].start 824.03721875
transcript.pyannote[238].end 826.70346875
transcript.pyannote[239].speaker SPEAKER_01
transcript.pyannote[239].start 827.66534375
transcript.pyannote[239].end 829.28534375
transcript.pyannote[240].speaker SPEAKER_01
transcript.pyannote[240].start 829.36971875
transcript.pyannote[240].end 830.71971875
transcript.pyannote[241].speaker SPEAKER_01
transcript.pyannote[241].start 831.27659375
transcript.pyannote[241].end 837.41909375
transcript.pyannote[242].speaker SPEAKER_01
transcript.pyannote[242].start 837.95909375
transcript.pyannote[242].end 841.03034375
transcript.pyannote[243].speaker SPEAKER_02
transcript.pyannote[243].start 841.31721875
transcript.pyannote[243].end 847.30784375
transcript.pyannote[244].speaker SPEAKER_02
transcript.pyannote[244].start 847.76346875
transcript.pyannote[244].end 859.71096875
transcript.pyannote[245].speaker SPEAKER_01
transcript.pyannote[245].start 851.62784375
transcript.pyannote[245].end 852.35346875
transcript.pyannote[246].speaker SPEAKER_02
transcript.pyannote[246].start 860.13284375
transcript.pyannote[246].end 860.95971875
transcript.pyannote[247].speaker SPEAKER_02
transcript.pyannote[247].start 861.09471875
transcript.pyannote[247].end 862.00596875
transcript.pyannote[248].speaker SPEAKER_02
transcript.pyannote[248].start 862.54596875
transcript.pyannote[248].end 869.43096875
transcript.pyannote[249].speaker SPEAKER_02
transcript.pyannote[249].start 870.19034375
transcript.pyannote[249].end 871.96221875
transcript.pyannote[250].speaker SPEAKER_02
transcript.pyannote[250].start 872.26596875
transcript.pyannote[250].end 877.09221875
transcript.pyannote[251].speaker SPEAKER_02
transcript.pyannote[251].start 877.63221875
transcript.pyannote[251].end 878.13846875
transcript.pyannote[252].speaker SPEAKER_02
transcript.pyannote[252].start 878.62784375
transcript.pyannote[252].end 879.15096875
transcript.pyannote[253].speaker SPEAKER_02
transcript.pyannote[253].start 879.69096875
transcript.pyannote[253].end 880.66971875
transcript.pyannote[254].speaker SPEAKER_02
transcript.pyannote[254].start 880.99034375
transcript.pyannote[254].end 882.15471875
transcript.pyannote[255].speaker SPEAKER_02
transcript.pyannote[255].start 883.18409375
transcript.pyannote[255].end 886.39034375
transcript.pyannote[256].speaker SPEAKER_02
transcript.pyannote[256].start 886.74471875
transcript.pyannote[256].end 892.41471875
transcript.pyannote[257].speaker SPEAKER_02
transcript.pyannote[257].start 892.61721875
transcript.pyannote[257].end 903.19784375
transcript.pyannote[258].speaker SPEAKER_02
transcript.pyannote[258].start 903.43409375
transcript.pyannote[258].end 903.83909375
transcript.pyannote[259].speaker SPEAKER_02
transcript.pyannote[259].start 904.51409375
transcript.pyannote[259].end 906.67409375
transcript.pyannote[260].speaker SPEAKER_02
transcript.pyannote[260].start 907.29846875
transcript.pyannote[260].end 912.68159375
transcript.pyannote[261].speaker SPEAKER_02
transcript.pyannote[261].start 913.17096875
transcript.pyannote[261].end 915.41534375
transcript.pyannote[262].speaker SPEAKER_02
transcript.pyannote[262].start 917.08596875
transcript.pyannote[262].end 922.48596875
transcript.pyannote[263].speaker SPEAKER_02
transcript.pyannote[263].start 923.29596875
transcript.pyannote[263].end 927.26159375
transcript.pyannote[264].speaker SPEAKER_02
transcript.pyannote[264].start 927.80159375
transcript.pyannote[264].end 936.32346875
transcript.pyannote[265].speaker SPEAKER_00
transcript.pyannote[265].start 935.68221875
transcript.pyannote[265].end 941.50409375
transcript.pyannote[266].speaker SPEAKER_02
transcript.pyannote[266].start 938.68596875
transcript.pyannote[266].end 939.12471875
transcript.pyannote[267].speaker SPEAKER_01
transcript.pyannote[267].start 947.96721875
transcript.pyannote[267].end 948.96284375
transcript.whisperx[0].start 21.24
transcript.whisperx[0].end 28.21
transcript.whisperx[0].text 好 謝謝主席是不是有請行政院卓院長麻煩請卓院長再次備詢另外也請交通部陳部長麻煩請交通部長備詢
transcript.whisperx[1].start 37.27
transcript.whisperx[1].end 65.565
transcript.whisperx[1].text 邱委員好 院長好 部長好我是立法院台日韓經貿合作跟安全合作促進會的會長我常常關注台韓台日跟台日韓這個三邊關係以及東北亞區域的經貿合作跟安全合作所以今天是交通主題我先針對觀光的部分請教一下這個院長跟部長台灣到日本觀光大概每年600萬
transcript.whisperx[2].start 67.403
transcript.whisperx[2].end 96.517
transcript.whisperx[2].text 那日本到台灣觀光大概150萬是四分之一日本人口是台灣的五倍台灣到韓國觀光是150萬日本到南韓觀光韓國到台灣觀光是100萬但是韓國人口是台灣的兩倍所以我們應該提出東北亞特別是日韓觀光客倍增計畫那個部長你知道除了韓國除了首爾跟福城之外還有哪些城市你比較熟悉
transcript.whisperx[3].start 98.331
transcript.whisperx[3].end 122.264
transcript.whisperx[3].text 韓國我比較不熟悉我只有首爾有去過 其他的地方我沒去過這個很重要 我們是命運共同體生活共同圈你飛機到首爾大概是兩個小時跟我從高雄到台北搭高鐵是一樣的還有大邱 光州 青州青州剛好也是在這次APEC主辦的區域主辦的城市所以應該提出日韓觀光會備增計畫
transcript.whisperx[4].start 125.236
transcript.whisperx[4].end 148.07
transcript.whisperx[4].text 第一個日本人了解台灣的大概極限於大都市日本大阪福岡北海道很多縣市鳥取那些島根很多縣市的日本民眾並不了解台灣更何況他們了解台灣了解台北台南他們也不知道高雄也不知道
transcript.whisperx[5].start 149.286
transcript.whisperx[5].end 178.533
transcript.whisperx[5].text 所以一定要提出一個縝密的計畫這計畫包括第一個航線要密集我們對日本航線大概很多縣市的主要機場我們都有飛這是供給帶動需求你有飛啊紅眼航班 縱使紅眼航班班班客滿我們年輕朋友都去那韓國除了飛首爾跟釜山之外還有濟州啊我們也飛青州也飛大邱
transcript.whisperx[6].start 180.506
transcript.whisperx[6].end 208.576
transcript.whisperx[6].text 跟以前的光州世界的光州所以要讓這些二線二三線城市能夠瞭解台灣認識台灣他們才有興趣台灣來觀光嘛所以從這數據來看我們有很大的成長空間所以航線密集之外特別台灣飛韓國的航線二三線城市可能你要鼓勵這個國際航空要多飛不怕沒有需求就怕沒有供給另外宣傳要多於話
transcript.whisperx[7].start 210.481
transcript.whisperx[7].end 237.283
transcript.whisperx[7].text 宣傳要多元化你要宣傳內容你要讓他們感到有興趣台灣是一個有趣的國家是一個友善的國家是一個好玩的國家是一個安全的國家宣傳內容不只有台北也要包括台南 台中當然也要包括高雄所以宣傳你在當地的主流媒體YouTube什麼都要去讓他們能夠從中了解
transcript.whisperx[8].start 238.615
transcript.whisperx[8].end 266.124
transcript.whisperx[8].text 第三個 設施的友善日本大城市 小城市他們所有的官方標語跟交通的指標全部是四語共識英文 日文 中文跟韓文就像我們入境韓國他們機長在入境的大門這個航班從哪邊來就從台灣來 還有中華民國國旗代表友善
transcript.whisperx[9].start 268.075
transcript.whisperx[9].end 292.008
transcript.whisperx[9].text 所以我是鼓勵啊 總部長你可以帶隊去日本 韓國來行銷台灣觀光以你的專業 以你的年輕 以你的高顏值絕對會引起這個當地民眾的認可所以我是覺得您可以
transcript.whisperx[10].start 293.567
transcript.whisperx[10].end 314.197
transcript.whisperx[10].text 現在應該沒有什麼旅行限制可以的話你看每個月都去都沒關係今天去韓國 哪一天去日本去二三屆城市讓他們知道台灣有很美麗的風景 很友善的環境跟很帥氣的部長這部分我提出建議給交通部做參考
transcript.whisperx[11].start 316.013
transcript.whisperx[11].end 337.164
transcript.whisperx[11].text 這個是很有價值因為台日韓確實是友好跟委員報告台灣的觀光客國外來的旅客第一名是日本韓國是第三名所以如果能夠倍增的話對於台灣的整體的國際觀光客來講是會增加非常多您剛剛在講的尤其是我們的交通的據點
transcript.whisperx[12].start 338.044
transcript.whisperx[12].end 365.219
transcript.whisperx[12].text 要對他們友善這個我們目前也正在研究可不可以再增加除了英語之外可不可以再增加日語或者是韓語在一些比較日本觀光客跟韓國觀光客會來的地方來增加這個部分我們也在討論你去日本這個二三線城市啊他們的這個巴士他們的這個地鐵或者是他們這個電車都是全部都是韓文中文中文還分簡理式跟繁體式所以代表一個友善的環境友善的設施
transcript.whisperx[13].start 366.485
transcript.whisperx[13].end 389.719
transcript.whisperx[13].text 當然我也討論到台日韓的經貿合作我今天看到一個韓國的產業商業部長他同時也是韓國首席對外談判代表他竟然提出希望跟台灣在談判過程中或者是半導體的合作
transcript.whisperx[14].start 390.953
transcript.whisperx[14].end 414.481
transcript.whisperx[14].text 第一次聽到韓國的貿易談判代表提出這個論調而且主動提出要跟台灣合作我不曉得院長我們有沒有收到韓方相關的訊息合作的訊息或者如果有收到我們對他們的這種訴求我們的基本態度基本的立場為何到目前為止我們談判的整個談判團隊是針對跟美國做一對一的談判
transcript.whisperx[15].start 419.66
transcript.whisperx[15].end 447.69
transcript.whisperx[15].text 這其他您說的倒沒有這樣的訊息不過我也注意到今天有這樣的一個消息台灣跟韓國之間這同是一個比較良性的競爭比較多了台灣跟日本之間是比較有相關性的互補性比較多所以我們跟韓國一直在高科技以及晶片的製造先進製程方面有一些競爭那台灣現在是領先蠻多的所以台灣是有能力不只韓國台灣是有能力在成為一個全世界的先進的
transcript.whisperx[16].start 448.157
transcript.whisperx[16].end 468.523
transcript.whisperx[16].text 晶圓製造的一個聯盟的倡議我們曾經有這樣想過但是現在我們並沒有這樣說因為自從關稅談判之後變成是一對一的談判在進行台灣現在最主要是跟留在台灣做全世界的佈局那希望跟我們台灣內部的產業供應鏈跟世界可以合作的互補的這個產業國家多多的合作
transcript.whisperx[17].start 469.656
transcript.whisperx[17].end 496.888
transcript.whisperx[17].text 因為今天是交通主題啊我繼續請教交通的議題就台灣的航站主要航站出入境最多的還是這個桃園機場桃園機場我一直期待說能夠最起碼有一個我們是AI大國半導體大國機場設備設施應該是應該是這個先進國家的行列但是我覺得跟雨田比較起來跟韓國的這個仁川這張宇我們是落後很多
transcript.whisperx[18].start 497.765
transcript.whisperx[18].end 515.99
transcript.whisperx[18].text 我們手撿 安撿旅客出境的行李行李轉盤都要用人工搬運很難想像我們AI大國 半導體大國這種設施還是停留在古老很久以前的時代
transcript.whisperx[19].start 516.966
transcript.whisperx[19].end 542.41
transcript.whisperx[19].text 所以未來是不是智慧化的這個航站的動線怎麼樣讓這個桃園的機場或者松山機場小港機場能夠包括這個行李拖運能夠有動線好的規劃智慧化通關等等流量預測行李這種拖運這些都是一個智慧型的航站必須要有條件但是你
transcript.whisperx[20].start 543.582
transcript.whisperx[20].end 566.863
transcript.whisperx[20].text 這個部長跟院長你們到這個桃園機場去看好像動線混亂好像這個各單位的事權統合並沒有做得很好所以我們航站出境第一個要安全要便利要迅速最重要是安心讓旅客安心所以你這設施是要由航站由交通部去統合包括設施的改善我剛剛講種種動線規劃 自動通關等等
transcript.whisperx[21].start 570.862
transcript.whisperx[21].end 592.783
transcript.whisperx[21].text 這個有沒有相關的智慧機場總體的這個計畫改善計畫我想請教一下部長最近去看過桃園三航廈新的即將在今年年底要啟用的他當然就是一個比較新的規劃跟設計因為整個桃園機場超過應該有40幾年以上的時間當初設計建造也許是先進
transcript.whisperx[22].start 593.533
transcript.whisperx[22].end 603.598
transcript.whisperx[22].text 但是也不容許在當中做大規模的改變所以我們一直慢慢的維修但現在新的三行項我認為可以給國內一個比較全面而且嶄新的一個面貌
transcript.whisperx[23].start 604.369
transcript.whisperx[23].end 633.327
transcript.whisperx[23].text 是 但是一航廈二航廈還是要慢慢改善特別我很難想像說這個出境的行李安檢還要人工搬運一般都自動化的所以這一點再請交通部持續提出改善計畫跟委員報告就是我們三航廈我們北郎天會先開始等整個航廈完成之後我們就會針對舊的航廈就委員剛剛所指示的就是智慧化的部分在舊的航廈看怎麼樣去做更新
transcript.whisperx[24].start 633.707
transcript.whisperx[24].end 658.909
transcript.whisperx[24].text 我們就會提出一個新的計畫把舊的航廈因為你要等新的航廈完成之後把旅客引到那邊去我舊的航廈才有餘裕的空間可以做這方面的改善另外我們入境的旅客現在這個還是有首檢首尼西尼的安檢除了日本之外日本是非豬瘟的疫區但是日本沒有相關的措施他沒有入境旅客的首尼西尼的安檢台灣為什麼
transcript.whisperx[25].start 660.393
transcript.whisperx[25].end 679.677
transcript.whisperx[25].text 所以這個安檢要投入2億每年還有人力 還有這個位置所以那個是由房間署在執行但是對入境的旅客會造成不便日本可以不用這個入境旅客的這個手裏心的安檢為什麼 因為他的處理系統做得很好
transcript.whisperx[26].start 682.657
transcript.whisperx[26].end 708.149
transcript.whisperx[26].text 廚餘 家戶廚餘他們每一戶他們因為日本人對這個廚餘的處理他們相當具有他們的傳統他們有廚餘的乾燥機你廚餘之後你用乾燥機他們有些的縣市有補助你去購買乾燥機乾燥機之後你那個廚餘就去水化去水化之後你就變成一般的廢酒就可以去燒
transcript.whisperx[27].start 710.067
transcript.whisperx[27].end 729.185
transcript.whisperx[27].text 那你沒有儲水的話你在廚餘你放進焚化爐對焚化爐是一個很大的損害所以我是希望說以前某些縣市都有針對家戶廚餘機的補助後來能不能做一個全國統一的政策來推動家戶都有一個廚餘的乾燥機把這個廚餘乾燥機納入防疫的體系裡面
transcript.whisperx[28].start 735.411
transcript.whisperx[28].end 758.409
transcript.whisperx[28].text 這個院長是我們在這兩天正在針對未來廚餘政策做全面性的檢討我們也希望能夠盡快的來決定否則對養豬業者還有這些清運廚餘的業者還有這個事業的這個產生廚餘的事業單位都是很大的困擾我們會做最快的決定所以這個就是未來啊如果這廚餘的用去化能夠有所解決的話我們在選這個
transcript.whisperx[29].start 760.04
transcript.whisperx[29].end 782.763
transcript.whisperx[29].text 去化中端去化的問題來引申出他如何來處理瀝乾以後去焚化是一條途徑直接送去堆肥做飼料也是一條途徑送去做生殖能發電也是一條途徑我們在尋這個途徑來做各種的考量兩個最主要方向第一個要減量減量就是說用廚餘的乾燥劑加護先做好減量
transcript.whisperx[30].start 783.644
transcript.whisperx[30].end 807.713
transcript.whisperx[30].text 另外它的安全化 廚餘的安全化我上禮拜跟日本相關的主管部門大概變門會議開了三個半小時什麼針對廚餘讓它變成安全飼料叫ECOFITECOFIT他們日本有非常好的經驗怎麼樣把這廚餘變成一個ECOFIT而且它比原來的飼料成本還更低
transcript.whisperx[31].start 808.453
transcript.whisperx[31].end 837.117
transcript.whisperx[31].text 我建議啊院長可以跟農業部部長請他們去做更多研究跟日本人學習怎麼樣透過政府的這個整個體系的這個建立起來把這個廚餘變成一個安全的ecofeed安全的飼料我想這個日本的經驗值得我們學習我們這個在半個月之內啊因為配合整個廚餘禁用的期間我們必須在半個月之內要做有所決定所以最近正積極的在
transcript.whisperx[32].start 838.284
transcript.whisperx[32].end 855.21
transcript.whisperx[32].text 決定討論這個處於未來的處理政策我們那天三個半小時的討論他們充分的做簡報我也充分的提出很多問題我想有機會的話再跟院長再討論好的 謝謝高雄機場我一直希望說
transcript.whisperx[33].start 856.19
transcript.whisperx[33].end 881.883
transcript.whisperx[33].text 現在能夠增加除了區域航線之外能夠成為一個這個東南亞的一個空運的hub一個中心所以你要增加美歐跟紐澳的這個行業也很重要我希望可以試看看那大概我已經質詢好多次都沒有一個回應回應是空洞沒有具體的做法所以我希望是不是
transcript.whisperx[34].start 883.483
transcript.whisperx[34].end 903.539
transcript.whisperx[34].text 雖然有宵禁的問題但是運量絕對沒有問題所得也沒有問題因為你們告訴我說歐美航線規劃要考慮到人口規模我們人口絕對沒有問題規模絕對沒有問題嘛另外居民所得跟機貿觀光未來半導體的這個製造中心就在南台灣啊就在高雄台南啊 對不對
transcript.whisperx[35].start 904.594
transcript.whisperx[35].end 914.888
transcript.whisperx[35].text 所以這部分應該可以先試看看你用Chad飛也可以你用旺基來飛也可以我們現在只有一架A330在飛
transcript.whisperx[36].start 917.13
transcript.whisperx[36].end 941.066
transcript.whisperx[36].text 大型的飛機多集中在松山跟桃園這個對南台灣不太公平所以說你是不是可以用供給帶動需求的概念最起碼部長你可以責任國際航空公司去做規劃最好你先試看看嘛你連試都沒試就說是不行 這個我覺得我們積極來跟國際航空公司來溝通這個問題我們也希望南部的航班可以更多然後可以飛得
transcript.whisperx[37].start 947.947
transcript.whisperx[37].end 948.778
transcript.whisperx[37].text 好谢谢秋泽