iVOD / 165081

Field Value
IVOD_ID 165081
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/165081
日期 2025-11-05
會議資料.會議代碼 委員會-11-4-20-6
會議資料.會議代碼:str 第11屆第4會期財政委員會第6次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 6
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第4會期財政委員會第6次全體委員會議
影片種類 Clip
開始時間 2025-11-05T11:32:19+08:00
結束時間 2025-11-05T11:44:12+08:00
影片長度 00:11:53
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/0bb7d6ea348ff1d2a47d626072c52273e93813deec41dbca372a46263f6085044699aaf52c7902745ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 王世堅
委員發言時間 11:32:19 - 11:44:12
會議時間 2025-11-05T09:00:00+08:00
會議名稱 立法院第11屆第4會期財政委員會第6次全體委員會議(事由:審查「使用牌照稅法」29案:(僅詢答) 一、行政院函請審議、本院委員邱鎮軍等19人、委員陳超明等18人、委員羅明才等20人、委員廖偉翔等19人、委員楊瓊瓔等27人、委員許宇甄等22人、委員邱若華等17人、委員林俊憲等26人、委員王鴻薇等19人、委員李彥秀等16人、委員蘇清泉等18人、委員徐欣瑩等24人、委員郭昱晴等19人、委員王美惠等19人、委員李坤城等18人、委員羅廷瑋等17人、委員郭國文等18人、委員吳沛憶等17人、委員葛如鈞等16人、委員沈發惠等17人、委員林思銘等22人、委員賴士葆等25人、委員黃健豪等20人分別擬具「使用牌照稅法第五條條文修正草案」等24案。【後2案如經院會復議,本次會議不予審查】 二、本院台灣民眾黨黨團擬具「使用牌照稅法第五條及第七條條文修正草案」案。 三、本院委員廖先翔等17人擬具「使用牌照稅法第五條及第三十八條條文修正草案」案。 四、本院委員牛煦庭等17人、委員鍾佳濱等16人分別擬具「使用牌照稅法第七條條文修正草案」等2案。【後1案如經院會復議,本次會議不予審查】 五、本院委員廖偉翔等17人擬具「使用牌照稅法第七條及第三十八條條文修正草案」案。 【11月5日及6日二天一次會】)
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 5.27909375
transcript.pyannote[0].end 9.76784375
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 9.86909375
transcript.pyannote[1].end 12.16409375
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 16.29846875
transcript.pyannote[2].end 17.02409375
transcript.pyannote[3].speaker SPEAKER_02
transcript.pyannote[3].start 17.98596875
transcript.pyannote[3].end 18.49221875
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 19.47096875
transcript.pyannote[4].end 24.36471875
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 25.46159375
transcript.pyannote[5].end 28.90409375
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 29.07284375
transcript.pyannote[6].end 31.09784375
transcript.pyannote[7].speaker SPEAKER_02
transcript.pyannote[7].start 31.80659375
transcript.pyannote[7].end 32.16096875
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 32.78534375
transcript.pyannote[8].end 36.09284375
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 37.05471875
transcript.pyannote[9].end 38.62409375
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 38.97846875
transcript.pyannote[10].end 39.80534375
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 40.39596875
transcript.pyannote[11].end 43.83846875
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 44.05784375
transcript.pyannote[12].end 50.16659375
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 50.63909375
transcript.pyannote[13].end 53.82846875
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 54.33471875
transcript.pyannote[14].end 64.47659375
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 65.16846875
transcript.pyannote[15].end 69.40409375
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 70.06221875
transcript.pyannote[16].end 73.52159375
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 73.67346875
transcript.pyannote[17].end 73.89284375
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 73.89284375
transcript.pyannote[18].end 73.92659375
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 73.92659375
transcript.pyannote[19].end 78.39846875
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 78.80346875
transcript.pyannote[20].end 84.79409375
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 85.06409375
transcript.pyannote[21].end 91.07159375
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 91.40909375
transcript.pyannote[22].end 98.46284375
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 100.31909375
transcript.pyannote[23].end 100.70721875
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 101.12909375
transcript.pyannote[24].end 101.95596875
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 102.39471875
transcript.pyannote[25].end 103.33971875
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 104.03159375
transcript.pyannote[26].end 106.44471875
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 106.83284375
transcript.pyannote[27].end 107.50784375
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 107.62596875
transcript.pyannote[28].end 109.63409375
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 109.29659375
transcript.pyannote[29].end 109.73534375
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 109.73534375
transcript.pyannote[30].end 110.59596875
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 110.71409375
transcript.pyannote[31].end 112.75596875
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 113.11034375
transcript.pyannote[32].end 114.32534375
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 114.40971875
transcript.pyannote[33].end 114.83159375
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 114.83159375
transcript.pyannote[34].end 117.46409375
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 117.66659375
transcript.pyannote[35].end 119.92784375
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 120.28221875
transcript.pyannote[36].end 123.10034375
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 124.39971875
transcript.pyannote[37].end 126.28971875
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 126.71159375
transcript.pyannote[38].end 136.65096875
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 137.61284375
transcript.pyannote[39].end 138.18659375
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 138.91221875
transcript.pyannote[40].end 140.95409375
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 141.27471875
transcript.pyannote[41].end 142.94534375
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 143.55284375
transcript.pyannote[42].end 144.98721875
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 145.39221875
transcript.pyannote[43].end 146.33721875
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 146.59034375
transcript.pyannote[44].end 148.09221875
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 148.41284375
transcript.pyannote[45].end 149.77971875
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 150.01596875
transcript.pyannote[46].end 150.48846875
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 150.58971875
transcript.pyannote[47].end 152.81721875
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 153.25596875
transcript.pyannote[48].end 155.14596875
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 156.19221875
transcript.pyannote[49].end 158.89221875
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 159.56721875
transcript.pyannote[50].end 162.99284375
transcript.pyannote[51].speaker SPEAKER_02
transcript.pyannote[51].start 163.36409375
transcript.pyannote[51].end 164.54534375
transcript.pyannote[52].speaker SPEAKER_02
transcript.pyannote[52].start 165.25409375
transcript.pyannote[52].end 167.66721875
transcript.pyannote[53].speaker SPEAKER_02
transcript.pyannote[53].start 167.98784375
transcript.pyannote[53].end 170.90721875
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 171.36284375
transcript.pyannote[54].end 172.54409375
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 172.96596875
transcript.pyannote[55].end 175.36221875
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 176.05409375
transcript.pyannote[56].end 178.39971875
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 178.97346875
transcript.pyannote[57].end 193.97534375
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 194.97096875
transcript.pyannote[58].end 197.21534375
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 197.72159375
transcript.pyannote[59].end 201.51846875
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 201.78846875
transcript.pyannote[60].end 203.39159375
transcript.pyannote[61].speaker SPEAKER_02
transcript.pyannote[61].start 204.35346875
transcript.pyannote[61].end 208.40346875
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 209.01096875
transcript.pyannote[62].end 213.31409375
transcript.pyannote[63].speaker SPEAKER_02
transcript.pyannote[63].start 213.70221875
transcript.pyannote[63].end 218.07284375
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 218.71409375
transcript.pyannote[64].end 222.07221875
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 222.51096875
transcript.pyannote[65].end 227.72534375
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 230.08784375
transcript.pyannote[66].end 231.97784375
transcript.pyannote[67].speaker SPEAKER_02
transcript.pyannote[67].start 232.26471875
transcript.pyannote[67].end 235.55534375
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 236.23034375
transcript.pyannote[68].end 237.86721875
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 238.52534375
transcript.pyannote[69].end 243.48659375
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 246.81096875
transcript.pyannote[70].end 248.71784375
transcript.pyannote[71].speaker SPEAKER_02
transcript.pyannote[71].start 250.16909375
transcript.pyannote[71].end 251.73846875
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 252.19409375
transcript.pyannote[72].end 253.27409375
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 253.45971875
transcript.pyannote[73].end 258.28596875
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 260.17596875
transcript.pyannote[74].end 263.65221875
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 263.95596875
transcript.pyannote[75].end 264.46221875
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 265.12034375
transcript.pyannote[76].end 265.69409375
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 265.99784375
transcript.pyannote[77].end 267.19596875
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 268.19159375
transcript.pyannote[78].end 270.46971875
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 271.26284375
transcript.pyannote[79].end 272.03909375
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 272.25846875
transcript.pyannote[80].end 275.11034375
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 277.16909375
transcript.pyannote[81].end 285.03284375
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 286.31534375
transcript.pyannote[82].end 288.00284375
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 288.94784375
transcript.pyannote[83].end 290.12909375
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 292.37346875
transcript.pyannote[84].end 293.08221875
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 293.74034375
transcript.pyannote[85].end 295.63034375
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 298.34721875
transcript.pyannote[86].end 300.06846875
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 301.09784375
transcript.pyannote[87].end 301.36784375
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 301.78971875
transcript.pyannote[88].end 302.63346875
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 303.17346875
transcript.pyannote[89].end 304.82721875
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 305.56971875
transcript.pyannote[90].end 318.64784375
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 317.26409375
transcript.pyannote[91].end 317.95596875
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 319.10346875
transcript.pyannote[92].end 319.27221875
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 319.60971875
transcript.pyannote[93].end 320.13284375
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 320.41971875
transcript.pyannote[94].end 320.87534375
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 322.03971875
transcript.pyannote[95].end 324.14909375
transcript.pyannote[96].speaker SPEAKER_02
transcript.pyannote[96].start 324.35159375
transcript.pyannote[96].end 331.03409375
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 331.03409375
transcript.pyannote[97].end 331.59096875
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 331.96221875
transcript.pyannote[98].end 355.36784375
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 355.70534375
transcript.pyannote[99].end 359.87346875
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 360.41346875
transcript.pyannote[100].end 362.60721875
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 362.97846875
transcript.pyannote[101].end 364.26096875
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 365.17221875
transcript.pyannote[102].end 366.84284375
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 366.84284375
transcript.pyannote[103].end 367.23096875
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 367.31534375
transcript.pyannote[104].end 379.06034375
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 379.63409375
transcript.pyannote[105].end 388.54409375
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 382.62096875
transcript.pyannote[106].end 383.29596875
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 389.43846875
transcript.pyannote[107].end 394.06221875
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 394.61909375
transcript.pyannote[108].end 397.08284375
transcript.pyannote[109].speaker SPEAKER_02
transcript.pyannote[109].start 397.31909375
transcript.pyannote[109].end 405.50346875
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 405.89159375
transcript.pyannote[110].end 421.65284375
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 422.76659375
transcript.pyannote[111].end 433.73534375
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 434.78159375
transcript.pyannote[112].end 437.05971875
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 437.95409375
transcript.pyannote[113].end 442.56096875
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 441.02534375
transcript.pyannote[114].end 441.09284375
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 442.83096875
transcript.pyannote[115].end 446.02034375
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 446.52659375
transcript.pyannote[116].end 453.49596875
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 454.37346875
transcript.pyannote[117].end 458.33909375
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 459.01409375
transcript.pyannote[118].end 459.19971875
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 459.87471875
transcript.pyannote[119].end 502.66971875
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 503.95221875
transcript.pyannote[120].end 504.28971875
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 504.77909375
transcript.pyannote[121].end 526.09221875
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 527.89784375
transcript.pyannote[122].end 530.02409375
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 530.93534375
transcript.pyannote[123].end 535.06971875
transcript.pyannote[124].speaker SPEAKER_02
transcript.pyannote[124].start 536.03159375
transcript.pyannote[124].end 538.46159375
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 539.08596875
transcript.pyannote[125].end 539.89596875
transcript.pyannote[126].speaker SPEAKER_02
transcript.pyannote[126].start 540.04784375
transcript.pyannote[126].end 548.80596875
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 549.53159375
transcript.pyannote[127].end 559.80846875
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 560.07846875
transcript.pyannote[128].end 587.02784375
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 587.24721875
transcript.pyannote[129].end 589.32284375
transcript.pyannote[130].speaker SPEAKER_02
transcript.pyannote[130].start 587.56784375
transcript.pyannote[130].end 589.55909375
transcript.pyannote[131].speaker SPEAKER_01
transcript.pyannote[131].start 589.96409375
transcript.pyannote[131].end 590.31846875
transcript.pyannote[132].speaker SPEAKER_02
transcript.pyannote[132].start 590.33534375
transcript.pyannote[132].end 592.64721875
transcript.pyannote[133].speaker SPEAKER_02
transcript.pyannote[133].start 592.81596875
transcript.pyannote[133].end 594.63846875
transcript.pyannote[134].speaker SPEAKER_02
transcript.pyannote[134].start 595.06034375
transcript.pyannote[134].end 613.18409375
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 596.66346875
transcript.pyannote[135].end 596.98409375
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 596.98409375
transcript.pyannote[136].end 597.00096875
transcript.pyannote[137].speaker SPEAKER_02
transcript.pyannote[137].start 613.75784375
transcript.pyannote[137].end 615.68159375
transcript.pyannote[138].speaker SPEAKER_02
transcript.pyannote[138].start 616.03596875
transcript.pyannote[138].end 619.07346875
transcript.pyannote[139].speaker SPEAKER_02
transcript.pyannote[139].start 620.08596875
transcript.pyannote[139].end 624.62534375
transcript.pyannote[140].speaker SPEAKER_01
transcript.pyannote[140].start 624.32159375
transcript.pyannote[140].end 624.99659375
transcript.pyannote[141].speaker SPEAKER_02
transcript.pyannote[141].start 624.99659375
transcript.pyannote[141].end 627.25784375
transcript.pyannote[142].speaker SPEAKER_02
transcript.pyannote[142].start 628.52346875
transcript.pyannote[142].end 629.13096875
transcript.pyannote[143].speaker SPEAKER_02
transcript.pyannote[143].start 629.46846875
transcript.pyannote[143].end 662.50971875
transcript.pyannote[144].speaker SPEAKER_02
transcript.pyannote[144].start 663.50534375
transcript.pyannote[144].end 667.36971875
transcript.pyannote[145].speaker SPEAKER_02
transcript.pyannote[145].start 667.89284375
transcript.pyannote[145].end 673.66409375
transcript.pyannote[146].speaker SPEAKER_01
transcript.pyannote[146].start 670.08659375
transcript.pyannote[146].end 671.65596875
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 673.66409375
transcript.pyannote[147].end 684.05909375
transcript.pyannote[148].speaker SPEAKER_01
transcript.pyannote[148].start 684.10971875
transcript.pyannote[148].end 686.05034375
transcript.pyannote[149].speaker SPEAKER_02
transcript.pyannote[149].start 684.21096875
transcript.pyannote[149].end 685.94909375
transcript.pyannote[150].speaker SPEAKER_02
transcript.pyannote[150].start 686.05034375
transcript.pyannote[150].end 686.08409375
transcript.pyannote[151].speaker SPEAKER_02
transcript.pyannote[151].start 686.20221875
transcript.pyannote[151].end 695.31471875
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 695.31471875
transcript.pyannote[152].end 695.90534375
transcript.pyannote[153].speaker SPEAKER_02
transcript.pyannote[153].start 695.90534375
transcript.pyannote[153].end 699.24659375
transcript.pyannote[154].speaker SPEAKER_00
transcript.pyannote[154].start 699.24659375
transcript.pyannote[154].end 699.46596875
transcript.pyannote[155].speaker SPEAKER_00
transcript.pyannote[155].start 699.53346875
transcript.pyannote[155].end 706.78971875
transcript.pyannote[156].speaker SPEAKER_01
transcript.pyannote[156].start 709.62471875
transcript.pyannote[156].end 713.75909375
transcript.whisperx[0].start 5.922
transcript.whisperx[0].end 30.914
transcript.whisperx[0].text 謝謝主席我請關稅署彭署長好 請關務署彭署長委員好博署長你先前的很多表現都很不錯那麼在關務的這個部分把關的部分你們確實做到可以說滴水不漏
transcript.whisperx[1].start 31.837
transcript.whisperx[1].end 35.884
transcript.whisperx[1].text 不過還是有相當大的破口而這個破口
transcript.whisperx[2].start 37.116
transcript.whisperx[2].end 64.069
transcript.whisperx[2].text 竟然是毒品那這一點讓我覺得這個是非常可怕的事情現在的毒品已經不是早年的海洛因啦這些過去常被吸食的現在很多都是新時代新類型比方說現在最厲害的這一種叫伊托蜜子這無色無味那麼它
transcript.whisperx[3].start 65.219
transcript.whisperx[3].end 84.451
transcript.whisperx[3].text 不但已經網路化的銷售而且他已經滲透到我們年輕這一輩那根據教育部他們所委託國建署他們共同的查估裡面他們查估的結果
transcript.whisperx[4].start 85.211
transcript.whisperx[4].end 98.223
transcript.whisperx[4].text 在高中職生大概我們全國55萬高中職生裡面竟然有高達百分之
transcript.whisperx[5].start 102.494
transcript.whisperx[5].end 122.885
transcript.whisperx[5].text 6.5是有在使用電子煙而電子煙就是會用到這個所謂的喪屍煙彈依託米子那國中生數字大概一半那大概一半的話大概也有一萬七千位學生也就是
transcript.whisperx[6].start 126.815
transcript.whisperx[6].end 136.449
transcript.whisperx[6].text 這種喪屍煙彈已經大量年輕化滲透到我們年輕這一輩加起來國中生高中生大概有五萬兩千位很可能涉入這個
transcript.whisperx[7].start 139.276
transcript.whisperx[7].end 163.896
transcript.whisperx[7].text 上司煙彈的稀釋那上司煙彈在查緝方面我們關務署我認為責無旁貸那關務署你們在前幾年民國110年你們建置了這個人工智慧輔助氣絲系統你們花了一億多元建置這個系統
transcript.whisperx[8].start 165.305
transcript.whisperx[8].end 178.136
transcript.whisperx[8].text 可是這個系統竟然我把它調這個數字出來以後你們比方說你們當年判讀了4256萬件當年判讀4256萬件行李竟然顯示出說裡面這個行李裡面有可疑毒品竟然顯示高達522萬件
transcript.whisperx[9].start 195.017
transcript.whisperx[9].end 200.499
transcript.whisperx[9].text 竟然高達522萬件那522萬件被你們顯示警鈴大響大家神經緊繃 大家趕快過來針對查獲的這個疑似有毒品的行李結果522萬件毒品裡面
transcript.whisperx[10].start 218.786
transcript.whisperx[10].end 239.771
transcript.whisperx[10].text 竟然只有124件有124件是真的有毒品天啊這一個AI系統花費上億元建制的AI系統他竟然判毒的錯誤率高達99.989%
transcript.whisperx[11].start 246.857
transcript.whisperx[11].end 274.212
transcript.whisperx[11].text 有這麼烏龍的系統嗎所以我認為這個系統你們看要想辦法怎麼去改善因為現在還在用所以你的看法我認為對於毒品的查緝我們引進AI系統當然很好可是你引進的是什麼樣的AI
transcript.whisperx[12].start 277.853
transcript.whisperx[12].end 304.44
transcript.whisperx[12].text 會不會這個系統處理建制的這些官員有什麼官商勾結嗎官商勾結A百姓I不是這樣嗎要不然怎麼有這麼荒唐的事情你看法呢 有什麼方式來改善對於這個毒品的判讀
transcript.whisperx[13].start 305.655
transcript.whisperx[13].end 316.649
transcript.whisperx[13].text 是 如同委員說的我們目前AI輔助判讀的毒品這個系統真的目前的誤判率會比較高高很多 沒有錯那我們是跟公研院合作跟公研院是應該是公研院是跟公研院合作的
transcript.whisperx[14].start 325.741
transcript.whisperx[14].end 348.801
transcript.whisperx[14].text 那這個我更訝異這我更訝異那他們現在有提出什麼改善的方式嗎跟委員報告我們現在查賭的方式我們不是真這AI它不是說針對毒品的種類就直接就判定說它是毒品我們目前第一階段是用藏匿的方式就是我們會把過去藏毒品的方式來讓AI來去學習
transcript.whisperx[15].start 350.823
transcript.whisperx[15].end 363.991
transcript.whisperx[15].text 所以目前的錯誤率會比較高是沒有錯那我們已經都在改善當中了在改善當中我們過去有那個氣毒犬我們過去用X光的方式那個也是
transcript.whisperx[16].start 365.273
transcript.whisperx[16].end 387.893
transcript.whisperx[16].text 履建大工啊那這些系統我們也應該訪國外國外他們在X光的系統上面他們在企圖權這一部分他們都屢有斬獲所以我不曉得你們這一部分到底做的怎麼樣傳統的這個方式還有還有其實有經驗的官務員
transcript.whisperx[17].start 389.645
transcript.whisperx[17].end 405.266
transcript.whisperx[17].text 或者警方的人員其實有經驗的光是看行李大概的情況還有尤其出關的時候要提領行李的人那個神色那也是一個很重要的判讀不是嗎
transcript.whisperx[18].start 405.999
transcript.whisperx[18].end 433.491
transcript.whisperx[18].text 是委員講的都沒有錯那個企圖犬我們也有44組的企圖犬就是一隻狗配一個人我們有44組那成效也不錯那X光的判毒方面我們是用高風險去篩選可疑的貨物那有密報跟沒有密報的我們海關查獲自行查獲的比例就是沒有密報自行查獲的比例都高達9成以上我們一年大概都會查獲到500件的一個毒品
transcript.whisperx[19].start 435.247
transcript.whisperx[19].end 457.615
transcript.whisperx[19].text 喪屍病毒也是我們查緝的重點我剛剛講的你這一個AI系統你竟然總判讀量4256萬件竟然他有高達520萬件是出現說這個判讀這個是有毒品然後就警示燈大亮警鈴大作大家緊張
transcript.whisperx[20].start 460.02
transcript.whisperx[20].end 476.5
transcript.whisperx[20].text 真的有520萬件的話那真的是要大緊張了這問題是當他判讀錯誤錯誤率這麼高的時候是對我們關務署對所有我們政府官員的造成困擾
transcript.whisperx[21].start 477.501
transcript.whisperx[21].end 501.303
transcript.whisperx[21].text 還有微信掃地啊然後對於被檢查行李的我們出入關的國人那也是多難堪的一件事不是這樣嗎好啦那你說這個要加強要改善我相信公園院他有那個能力啦你們要加緊連絡但是你們每年啊又編六到七千萬這你們說還要再增加辨識
transcript.whisperx[22].start 503.988
transcript.whisperx[22].end 529.635
transcript.whisperx[22].text 的這些禁品比方說肉類製品 電子菸 加熱菸或者是說塵困的紙操或者你要辨識特定農產品你們大概加了五項說要去增加辨識這幾項你光一項毒品你就誤判率這麼高了那你何來的信心
transcript.whisperx[23].start 531.007
transcript.whisperx[23].end 559.451
transcript.whisperx[23].text 加這些錢 增加附帶的這些設施那麼到底情況會是怎麼樣你這個布置的這個成效到現在也沒有看你提出任何的報告做好了沒 你說要增加這五項對鈔票 對電子菸對這個特定農產品還有對肉製品那這個部分你們用了沒 這一套系統
transcript.whisperx[24].start 560.431
transcript.whisperx[24].end 588.468
transcript.whisperx[24].text 報告委員這也是在我們次世代人工這個輔助判讀系統裡面會去做這是一個計畫那我們之所以會把這些物品列為這是AI輔助判讀的一個項目最主要是海關查緝的項目重點項目實在非常多那人力非常有限所以我們是盡量說以後要朝智慧科技的查緝的方式去努力所以才會把這些重點項目
transcript.whisperx[25].start 590.829
transcript.whisperx[25].end 618.581
transcript.whisperx[25].text 但是你們改善這個AI判讀這個速度太慢了我剛剛講的這個這幾年來你們我看到也沒什麼誤判率也沒什麼改善啊然後現在又看到你新編的預算每年這兩年你們每年都要花七千多萬六千多萬那去增設這個AI的輔助系統那又要增加判讀這五大項
transcript.whisperx[26].start 620.271
transcript.whisperx[26].end 627.078
transcript.whisperx[26].text 所以我認為你們確實要加緊不但要加緊建制
transcript.whisperx[27].start 628.581
transcript.whisperx[27].end 649.662
transcript.whisperx[27].text 而且要跟工研院專業的技術請他們要更用心在這一塊他不要說這個金額不大 一億多現在要增加的複設的這幾項也才7000多萬對工研院而言 他們認為這個小case就對了
transcript.whisperx[28].start 652.285
transcript.whisperx[28].end 656.935
transcript.whisperx[28].text 所以那樣子的心態下才會有誤判率這麼高誤判率高達99.99989
transcript.whisperx[29].start 663.827
transcript.whisperx[29].end 689.118
transcript.whisperx[29].text 這個大概是世界級的大烏龍你回去好好改善啦謝謝委員的指導阿部長也請你要多盯一盯關務署好不好跟委員補充修正一下中科院那邊我是口誤那個是中山科學研究院我們跟中山科學研究院合作跟中山科學研究院他確實比中研院他
transcript.whisperx[30].start 690.987
transcript.whisperx[30].end 706.39
transcript.whisperx[30].text 抱歉抱歉 我以為他確實比龔岩岳差了一些啦是是好 謝謝謝謝王世堅委員OK 謝謝接下來請陳育珍委員發言 謝謝謝謝主席 請這個財政部長