iVOD / 165066

Field Value
IVOD_ID 165066
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/165066
日期 2025-11-05
會議資料.會議代碼 委員會-11-4-20-6
會議資料.會議代碼:str 第11屆第4會期財政委員會第6次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 6
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第4會期財政委員會第6次全體委員會議
影片種類 Clip
開始時間 2025-11-05T10:57:28+08:00
結束時間 2025-11-05T11:08:23+08:00
影片長度 00:10:55
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/0bb7d6ea348ff1d2d9b62b098fe66ddfe93813deec41dbca372a46263f608504440e68855abdbf165ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 李坤城
委員發言時間 10:57:28 - 11:08:23
會議時間 2025-11-05T09:00:00+08:00
會議名稱 立法院第11屆第4會期財政委員會第6次全體委員會議(事由:審查「使用牌照稅法」29案:(僅詢答) 一、行政院函請審議、本院委員邱鎮軍等19人、委員陳超明等18人、委員羅明才等20人、委員廖偉翔等19人、委員楊瓊瓔等27人、委員許宇甄等22人、委員邱若華等17人、委員林俊憲等26人、委員王鴻薇等19人、委員李彥秀等16人、委員蘇清泉等18人、委員徐欣瑩等24人、委員郭昱晴等19人、委員王美惠等19人、委員李坤城等18人、委員羅廷瑋等17人、委員郭國文等18人、委員吳沛憶等17人、委員葛如鈞等16人、委員沈發惠等17人、委員林思銘等22人、委員賴士葆等25人、委員黃健豪等20人分別擬具「使用牌照稅法第五條條文修正草案」等24案。【後2案如經院會復議,本次會議不予審查】 二、本院台灣民眾黨黨團擬具「使用牌照稅法第五條及第七條條文修正草案」案。 三、本院委員廖先翔等17人擬具「使用牌照稅法第五條及第三十八條條文修正草案」案。 四、本院委員牛煦庭等17人、委員鍾佳濱等16人分別擬具「使用牌照稅法第七條條文修正草案」等2案。【後1案如經院會復議,本次會議不予審查】 五、本院委員廖偉翔等17人擬具「使用牌照稅法第七條及第三十八條條文修正草案」案。 【11月5日及6日二天一次會】)
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 0.90846875
transcript.pyannote[0].end 3.32159375
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 4.09784375
transcript.pyannote[1].end 4.11471875
transcript.pyannote[2].speaker SPEAKER_02
transcript.pyannote[2].start 4.11471875
transcript.pyannote[2].end 4.13159375
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 4.13159375
transcript.pyannote[3].end 4.55346875
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 4.55346875
transcript.pyannote[4].end 4.82346875
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 4.82346875
transcript.pyannote[5].end 5.26221875
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 10.02096875
transcript.pyannote[6].end 10.66221875
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 10.96596875
transcript.pyannote[7].end 18.00284375
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 18.22221875
transcript.pyannote[8].end 18.59346875
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 18.59346875
transcript.pyannote[9].end 23.08221875
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 23.47034375
transcript.pyannote[10].end 25.14096875
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 25.49534375
transcript.pyannote[11].end 31.08096875
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 25.56284375
transcript.pyannote[12].end 25.93409375
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 25.93409375
transcript.pyannote[13].end 26.00159375
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 27.55409375
transcript.pyannote[14].end 27.90846875
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 31.65471875
transcript.pyannote[15].end 32.95409375
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 33.47721875
transcript.pyannote[16].end 37.30784375
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 37.98284375
transcript.pyannote[17].end 40.02471875
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 38.91096875
transcript.pyannote[18].end 39.34971875
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 39.63659375
transcript.pyannote[19].end 40.93596875
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 40.93596875
transcript.pyannote[20].end 41.13846875
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 41.13846875
transcript.pyannote[21].end 47.01096875
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 47.39909375
transcript.pyannote[22].end 52.51221875
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 52.39409375
transcript.pyannote[23].end 53.81159375
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 53.65971875
transcript.pyannote[24].end 54.87471875
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 54.13221875
transcript.pyannote[25].end 54.62159375
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 54.73971875
transcript.pyannote[26].end 70.92284375
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 71.51346875
transcript.pyannote[27].end 76.32284375
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 77.74034375
transcript.pyannote[28].end 86.86971875
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 86.86971875
transcript.pyannote[29].end 91.25721875
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 91.25721875
transcript.pyannote[30].end 93.67034375
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 91.74659375
transcript.pyannote[31].end 92.11784375
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 93.16409375
transcript.pyannote[32].end 98.53034375
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 98.54721875
transcript.pyannote[33].end 101.87159375
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 101.97284375
transcript.pyannote[34].end 104.25096875
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 104.97659375
transcript.pyannote[35].end 111.70971875
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 109.21221875
transcript.pyannote[36].end 110.69721875
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 111.15284375
transcript.pyannote[37].end 114.08909375
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 114.49409375
transcript.pyannote[38].end 121.10909375
transcript.pyannote[39].speaker SPEAKER_01
transcript.pyannote[39].start 116.94096875
transcript.pyannote[39].end 117.44721875
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 121.76721875
transcript.pyannote[40].end 121.81784375
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 121.83471875
transcript.pyannote[41].end 134.33909375
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 134.69346875
transcript.pyannote[42].end 142.03409375
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 142.96221875
transcript.pyannote[43].end 144.22784375
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 144.17721875
transcript.pyannote[44].end 145.25721875
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 145.25721875
transcript.pyannote[45].end 146.03346875
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 146.35409375
transcript.pyannote[46].end 173.99534375
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 174.48471875
transcript.pyannote[47].end 177.99471875
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 177.75846875
transcript.pyannote[48].end 184.32284375
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 184.87971875
transcript.pyannote[49].end 205.12971875
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 205.19721875
transcript.pyannote[50].end 206.90159375
transcript.pyannote[51].speaker SPEAKER_02
transcript.pyannote[51].start 206.90159375
transcript.pyannote[51].end 211.76159375
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 211.76159375
transcript.pyannote[52].end 211.77846875
transcript.pyannote[53].speaker SPEAKER_02
transcript.pyannote[53].start 211.77846875
transcript.pyannote[53].end 211.79534375
transcript.pyannote[54].speaker SPEAKER_03
transcript.pyannote[54].start 212.67284375
transcript.pyannote[54].end 227.53971875
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 217.71846875
transcript.pyannote[55].end 218.02221875
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 220.26659375
transcript.pyannote[56].end 220.28346875
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 220.28346875
transcript.pyannote[57].end 220.62096875
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 224.36721875
transcript.pyannote[58].end 225.02534375
transcript.pyannote[59].speaker SPEAKER_03
transcript.pyannote[59].start 227.80971875
transcript.pyannote[59].end 237.00659375
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 232.82159375
transcript.pyannote[60].end 232.93971875
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 235.20096875
transcript.pyannote[61].end 235.21784375
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 235.21784375
transcript.pyannote[62].end 236.50034375
transcript.pyannote[63].speaker SPEAKER_03
transcript.pyannote[63].start 237.27659375
transcript.pyannote[63].end 245.95034375
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 237.34409375
transcript.pyannote[64].end 240.56721875
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 246.13596875
transcript.pyannote[65].end 246.57471875
transcript.pyannote[66].speaker SPEAKER_03
transcript.pyannote[66].start 247.01346875
transcript.pyannote[66].end 247.85721875
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 247.11471875
transcript.pyannote[67].end 255.07971875
transcript.pyannote[68].speaker SPEAKER_03
transcript.pyannote[68].start 255.19784375
transcript.pyannote[68].end 284.22284375
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 258.38721875
transcript.pyannote[69].end 258.75846875
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 261.76221875
transcript.pyannote[70].end 261.98159375
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 261.98159375
transcript.pyannote[71].end 262.01534375
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 262.01534375
transcript.pyannote[72].end 262.03221875
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 262.03221875
transcript.pyannote[73].end 262.18409375
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 273.08534375
transcript.pyannote[74].end 273.50721875
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 276.03846875
transcript.pyannote[75].end 276.07221875
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 276.07221875
transcript.pyannote[76].end 276.37596875
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 284.42534375
transcript.pyannote[77].end 286.93971875
transcript.pyannote[78].speaker SPEAKER_03
transcript.pyannote[78].start 287.05784375
transcript.pyannote[78].end 292.13721875
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 292.03596875
transcript.pyannote[79].end 292.39034375
transcript.pyannote[80].speaker SPEAKER_03
transcript.pyannote[80].start 292.32284375
transcript.pyannote[80].end 297.36846875
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 297.35159375
transcript.pyannote[81].end 319.17096875
transcript.pyannote[82].speaker SPEAKER_03
transcript.pyannote[82].start 305.53596875
transcript.pyannote[82].end 305.68784375
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 319.72784375
transcript.pyannote[83].end 322.81596875
transcript.pyannote[84].speaker SPEAKER_03
transcript.pyannote[84].start 323.13659375
transcript.pyannote[84].end 333.29534375
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 330.34221875
transcript.pyannote[85].end 330.44346875
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 330.49409375
transcript.pyannote[86].end 330.57846875
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 330.57846875
transcript.pyannote[87].end 330.69659375
transcript.pyannote[88].speaker SPEAKER_03
transcript.pyannote[88].start 333.59909375
transcript.pyannote[88].end 350.37284375
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 335.25284375
transcript.pyannote[89].end 335.67471875
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 337.27784375
transcript.pyannote[90].end 337.64909375
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 340.77096875
transcript.pyannote[91].end 340.80471875
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 340.80471875
transcript.pyannote[92].end 342.77909375
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 348.87096875
transcript.pyannote[93].end 353.95034375
transcript.pyannote[94].speaker SPEAKER_03
transcript.pyannote[94].start 353.66346875
transcript.pyannote[94].end 353.73096875
transcript.pyannote[95].speaker SPEAKER_03
transcript.pyannote[95].start 353.95034375
transcript.pyannote[95].end 354.11909375
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 354.11909375
transcript.pyannote[96].end 358.38846875
transcript.pyannote[97].speaker SPEAKER_03
transcript.pyannote[97].start 354.23721875
transcript.pyannote[97].end 354.49034375
transcript.pyannote[98].speaker SPEAKER_03
transcript.pyannote[98].start 359.43471875
transcript.pyannote[98].end 368.53034375
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 366.62346875
transcript.pyannote[99].end 368.86784375
transcript.pyannote[100].speaker SPEAKER_03
transcript.pyannote[100].start 368.86784375
transcript.pyannote[100].end 370.90971875
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 370.55534375
transcript.pyannote[101].end 420.65721875
transcript.pyannote[102].speaker SPEAKER_03
transcript.pyannote[102].start 372.71534375
transcript.pyannote[102].end 372.98534375
transcript.pyannote[103].speaker SPEAKER_03
transcript.pyannote[103].start 375.88784375
transcript.pyannote[103].end 375.97221875
transcript.pyannote[104].speaker SPEAKER_03
transcript.pyannote[104].start 378.60471875
transcript.pyannote[104].end 378.70596875
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 380.34284375
transcript.pyannote[105].end 380.73096875
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 387.32909375
transcript.pyannote[106].end 388.81409375
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 392.89784375
transcript.pyannote[107].end 393.33659375
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 402.92159375
transcript.pyannote[108].end 404.17034375
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 405.75659375
transcript.pyannote[109].end 406.36409375
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 420.87659375
transcript.pyannote[110].end 434.35971875
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 427.01909375
transcript.pyannote[111].end 427.30596875
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 428.26784375
transcript.pyannote[112].end 430.56284375
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 434.17409375
transcript.pyannote[113].end 437.92034375
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 438.10596875
transcript.pyannote[114].end 439.45596875
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 439.45596875
transcript.pyannote[115].end 444.60284375
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 444.60284375
transcript.pyannote[116].end 452.39909375
transcript.pyannote[117].speaker SPEAKER_01
transcript.pyannote[117].start 448.75409375
transcript.pyannote[117].end 450.01971875
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 451.52159375
transcript.pyannote[118].end 476.04096875
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 476.88471875
transcript.pyannote[119].end 477.45846875
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 477.57659375
transcript.pyannote[120].end 507.76596875
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 508.42409375
transcript.pyannote[121].end 535.01909375
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 513.52034375
transcript.pyannote[122].end 513.73971875
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 513.73971875
transcript.pyannote[123].end 513.77346875
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 519.51096875
transcript.pyannote[124].end 519.76409375
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 529.92284375
transcript.pyannote[125].end 530.05784375
transcript.pyannote[126].speaker SPEAKER_02
transcript.pyannote[126].start 535.37346875
transcript.pyannote[126].end 539.32221875
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 539.52471875
transcript.pyannote[127].end 554.03721875
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 541.11096875
transcript.pyannote[128].end 541.22909375
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 547.18596875
transcript.pyannote[129].end 547.23659375
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 547.27034375
transcript.pyannote[130].end 547.28721875
transcript.pyannote[131].speaker SPEAKER_01
transcript.pyannote[131].start 547.42221875
transcript.pyannote[131].end 547.43909375
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 553.64909375
transcript.pyannote[132].end 553.69971875
transcript.pyannote[133].speaker SPEAKER_01
transcript.pyannote[133].start 553.75034375
transcript.pyannote[133].end 553.90221875
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 553.96971875
transcript.pyannote[134].end 562.89659375
transcript.pyannote[135].speaker SPEAKER_02
transcript.pyannote[135].start 560.12909375
transcript.pyannote[135].end 560.61846875
transcript.pyannote[136].speaker SPEAKER_02
transcript.pyannote[136].start 563.74034375
transcript.pyannote[136].end 569.34284375
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 569.29221875
transcript.pyannote[137].end 571.68846875
transcript.pyannote[138].speaker SPEAKER_02
transcript.pyannote[138].start 571.68846875
transcript.pyannote[138].end 575.63721875
transcript.pyannote[139].speaker SPEAKER_01
transcript.pyannote[139].start 575.63721875
transcript.pyannote[139].end 576.78471875
transcript.pyannote[140].speaker SPEAKER_02
transcript.pyannote[140].start 575.99159375
transcript.pyannote[140].end 578.74221875
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 577.61159375
transcript.pyannote[141].end 580.83471875
transcript.pyannote[142].speaker SPEAKER_02
transcript.pyannote[142].start 580.26096875
transcript.pyannote[142].end 583.23096875
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 581.89784375
transcript.pyannote[143].end 594.18284375
transcript.pyannote[144].speaker SPEAKER_02
transcript.pyannote[144].start 583.48409375
transcript.pyannote[144].end 583.93971875
transcript.pyannote[145].speaker SPEAKER_01
transcript.pyannote[145].start 594.65534375
transcript.pyannote[145].end 599.81909375
transcript.pyannote[146].speaker SPEAKER_02
transcript.pyannote[146].start 599.81909375
transcript.pyannote[146].end 599.83596875
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 599.83596875
transcript.pyannote[147].end 599.86971875
transcript.pyannote[148].speaker SPEAKER_02
transcript.pyannote[148].start 599.86971875
transcript.pyannote[148].end 600.57846875
transcript.pyannote[149].speaker SPEAKER_01
transcript.pyannote[149].start 600.13971875
transcript.pyannote[149].end 608.00346875
transcript.pyannote[150].speaker SPEAKER_02
transcript.pyannote[150].start 600.78096875
transcript.pyannote[150].end 601.23659375
transcript.pyannote[151].speaker SPEAKER_02
transcript.pyannote[151].start 608.23971875
transcript.pyannote[151].end 612.05346875
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 612.01971875
transcript.pyannote[152].end 616.39034375
transcript.pyannote[153].speaker SPEAKER_02
transcript.pyannote[153].start 614.01096875
transcript.pyannote[153].end 614.60159375
transcript.pyannote[154].speaker SPEAKER_02
transcript.pyannote[154].start 615.42846875
transcript.pyannote[154].end 616.52534375
transcript.pyannote[155].speaker SPEAKER_02
transcript.pyannote[155].start 616.55909375
transcript.pyannote[155].end 621.75659375
transcript.pyannote[156].speaker SPEAKER_01
transcript.pyannote[156].start 621.67221875
transcript.pyannote[156].end 623.29221875
transcript.pyannote[157].speaker SPEAKER_02
transcript.pyannote[157].start 621.94221875
transcript.pyannote[157].end 622.97159375
transcript.pyannote[158].speaker SPEAKER_02
transcript.pyannote[158].start 623.03909375
transcript.pyannote[158].end 623.07284375
transcript.pyannote[159].speaker SPEAKER_02
transcript.pyannote[159].start 623.19096875
transcript.pyannote[159].end 632.53971875
transcript.pyannote[160].speaker SPEAKER_01
transcript.pyannote[160].start 628.79346875
transcript.pyannote[160].end 629.06346875
transcript.pyannote[161].speaker SPEAKER_01
transcript.pyannote[161].start 632.13471875
transcript.pyannote[161].end 633.29909375
transcript.pyannote[162].speaker SPEAKER_02
transcript.pyannote[162].start 633.45096875
transcript.pyannote[162].end 639.52596875
transcript.pyannote[163].speaker SPEAKER_00
transcript.pyannote[163].start 639.52596875
transcript.pyannote[163].end 641.19659375
transcript.pyannote[164].speaker SPEAKER_01
transcript.pyannote[164].start 655.84409375
transcript.pyannote[164].end 656.60346875
transcript.pyannote[165].speaker SPEAKER_00
transcript.pyannote[165].start 656.23221875
transcript.pyannote[165].end 656.83971875
transcript.pyannote[166].speaker SPEAKER_00
transcript.pyannote[166].start 656.94096875
transcript.pyannote[166].end 656.97471875
transcript.whisperx[0].start 1.777
transcript.whisperx[0].end 5.199
transcript.whisperx[0].text 謝謝主席 我們請莊部長好 請莊部長委員好部長好今天我們普發U1是開始線上預登記是不是
transcript.whisperx[1].start 18.277
transcript.whisperx[1].end 46.178
transcript.whisperx[1].text 是的我剛好我的身分證字尾是1所以我今天可以去登記我早上我也去登記了我就用線上登記的方式早上看起來沒什麼塞車可能因為我們分流的關係今天好像是0跟1有分流 是請問一下如果我今天去預先登記最快哪時候可以領到這個1萬塊
transcript.whisperx[2].start 48.812
transcript.whisperx[2].end 76.082
transcript.whisperx[2].text 11月12号入账11月12号入账11月12号入账对 开始入账那请问一下现在有很多的银行或是商家就是在讲说如何放大这1万块那我们的国银或是范公股银行有这一个放大1万块的什么红利 激励这个措施还是希望说我们能够把这1万块拿去消费比较好
transcript.whisperx[3].start 77.802
transcript.whisperx[3].end 104.074
transcript.whisperx[3].text 都有很多的措施包含這個但是都有配合他們的信用卡那些再來就希望大家都能夠去做一些消費活動不過好像是把它存進去 存進去才有這一個也有一些是用存的所以部長認為說是存進去比較好還是把它花出去比較好看大家的各自選擇 自由運用那部長你會存起來還是花出去
transcript.whisperx[4].start 105.41
transcript.whisperx[4].end 113.931
transcript.whisperx[4].text 我大概会有自己相关的一些决定来做怎么样处置这个一万块就一万块啊那就促进经济来讲应该是花出去吧
transcript.whisperx[5].start 114.894
transcript.whisperx[5].end 120.195
transcript.whisperx[5].text 花出去平常也在花也不會因為這1萬塊就再去我會有其他的處理我們不是在處理100萬我們就講說處理這1萬塊而已我就會花出去請教一下因為我們今天是使用牌照稅我們延長使用牌照稅的實施期間到2030年對不對
transcript.whisperx[6].start 143.919
transcript.whisperx[6].end 167.117
transcript.whisperx[6].text 對 189年這延長五年嘛五年 對那這延長五年是因為是要配合我們這個2030年我們行政院有一個淨零排放的一個階段性的目標那我先請教一下部長因為我們這個是有貨物稅有牌照稅那就貨物稅的部分因為這其實應該都沒有爭議
transcript.whisperx[7].start 168.198
transcript.whisperx[7].end 171.504
transcript.whisperx[7].text 貨物稅的部分我們這個是完稅價格在140萬的違憲 對不對
transcript.whisperx[8].start 174.574
transcript.whisperx[8].end 203.129
transcript.whisperx[8].text 以下的话免征以上是二分之一那我请教一下部长和署长在这边我们也希望说这个减免这个货物税能够让消费者他能够感受到那所以说进口商或是经销商在签订买卖契约的时候有确实跟消费者说明说该车应退还的货物税是因定价的策略反映在售价上面或是另行约定退还的方式
transcript.whisperx[9].start 203.989
transcript.whisperx[9].end 210.858
transcript.whisperx[9].text 這個有說清楚嗎我們目前的方式是怎麼樣目前來說這個部分我想這個是署長在失誤激增上我們來做一個說明
transcript.whisperx[10].start 212.711
transcript.whisperx[10].end 235.943
transcript.whisperx[10].text 包括委員目前的不管是進口商或經商因為我們這貨物稅是出廠稅那是由產製廠商就先繳納的或是進口商在進口時就先繳了這些貨物稅所以後面我們退是退給那個就是我們所謂的納稅誘人就是進口商或是所謂產製的廠商那基本上目前實務商那是退給車商對
transcript.whisperx[11].start 237.384
transcript.whisperx[11].end 240.867
transcript.whisperx[11].text 等於測商沒有繳稅所以他就會在買賣契約上目前我們看到都在買賣契約上這部分他就會扣掉所以有確定說扣除的部分的話比如說140萬以下大概可以扣掉多少
transcript.whisperx[12].start 255.419
transcript.whisperx[12].end 262.644
transcript.whisperx[12].text 看它的完稅價格我們如果以140萬為例現在是25%的稅那就35萬所以它就等於因為我們完稅價格跟市售價格不一樣完稅價格是有課稅價格市售它還會疊加譬如它的利潤運費保險費等等之類它會疊加上去所以它最後就必須要把那35萬如果以完稅價140萬為例如果它最後疊加售價是170萬它把那35萬扣退給消費者
transcript.whisperx[13].start 285
transcript.whisperx[13].end 304.55
transcript.whisperx[13].text 這目前都有規定很清楚嗎我們目前是沒有在法令上這樣說但是在實務上因為既然沒有繳這個稅他就會把這個稅扣掉那這樣子對於車商有什麼樣的一個約制力就是我們希望說扣掉這個貨物稅是讓我們的消費者他願意去買電動車
transcript.whisperx[14].start 306.031
transcript.whisperx[14].end 322.621
transcript.whisperx[14].text 對啊 那增加電動車就是讓我們這個近年排放的目標能夠達成嘛那你如果說有扣掉貨物稅免到排到稅了那結果咧 排到稅應該是消費者啦我說貨物稅的話那如果沒有反映給消費者的話那我們只是讓車商得到這些好處而已啊
transcript.whisperx[15].start 323.188
transcript.whisperx[15].end 348.784
transcript.whisperx[15].text 包括委員根據過去我們這個退還減徵貨物稅的經驗的話目前看到的是都有反應那如果就像我們上次在未含糖飲料要減徵貨物稅我們免稅的時候我們也有要求因為它金額太小所以我們做消費這個金額比較大如果有必要目前我們看到的是都有反應因為金額太大消費者自己知道他會爭取
transcript.whisperx[16].start 349.825
transcript.whisperx[16].end 358.186
transcript.whisperx[16].text 我還是希望說雖然這個是延續性的政策但是我還是希望說財政部這方面能不能把它定得更清楚
transcript.whisperx[17].start 359.945
transcript.whisperx[17].end 370.574
transcript.whisperx[17].text 好 我們研究看看怎麼訂或是透過請主管部會去加強就像上次一樣請主管部會去加強那這個應該算是經濟部對 目前是經濟部好 那你們跟經濟部去討論一下我們還是希望說這個免掉貨物稅之後這個能夠讓消費者他能夠得到說那的確我應該是買電動車那也得 也的確貨物稅有減免140萬以下 全免嘛140萬以上我們就看那個比率再做調整嘛 對不對是
transcript.whisperx[18].start 388.908
transcript.whisperx[18].end 413.708
transcript.whisperx[18].text 好那把這一個比較清楚的一個方式我覺得還是定出來了好不好是是是好那這個可能要請經濟部也來回答一下因為我們這個是配合行政院2030年的運具電動化的階段性的目標經濟部那我們有一個2030年運具電動化的目標是電動小客車市售比要百分之三十電動機車市售比百分之三十五
transcript.whisperx[19].start 414.288
transcript.whisperx[19].end 418.73
transcript.whisperx[19].text 這有可能透過免貨物稅 免牌照稅能夠達到這個目標嗎 署長報告委員 我們透過這樣子的租稅減免可以鼓勵更多的行賄者可以買那我是說達到這個目標嗎對 這個是我們很有信心可以達到這個目標有信心達到這個目標距離現在還有一段差距 現在是多少
transcript.whisperx[20].start 438.297
transcript.whisperx[20].end 458.272
transcript.whisperx[20].text 現在是大概10%左右對啊 10% 20%要成長20%五年的時間20%有辦法嗎但是因為這一兩年它的電動車的成長率都是蠻高的以這樣的成長趨勢的話我們當然希望說能夠達到因為我們政策上面已經做一些優惠了好 那再請一下蘇珊請回請教一下
transcript.whisperx[21].start 458.993
transcript.whisperx[21].end 475.798
transcript.whisperx[21].text 部長剛從韓國參加APEC回來現在韓國的媒體他們也對於說台灣的經濟成長感到驚訝不論是我們的GDP人均GDP有可能在今年會超過韓國是不是
transcript.whisperx[22].start 476.988
transcript.whisperx[22].end 499.066
transcript.whisperx[22].text 是的我们预测人均GDP今年在37430这是韩国然后台湾是38066所以这个是在时隔22年之后台湾的人均GDP再度超越韩国然后我们的经济成长率也超越他们
transcript.whisperx[23].start 500.027
transcript.whisperx[23].end 501.949
transcript.whisperx[23].text 請教一下部長您剛從韓國回來您認為我們經濟成長率跟人均GDP贏韓國的策略是什麼
transcript.whisperx[24].start 508.802
transcript.whisperx[24].end 528.667
transcript.whisperx[24].text 主要是我们的整个国家的政策选对的方向因为第一个我们知道之前我们有加速投资台湾的三大方案让台湾的资金以吸引在国外的资金回来投资这个投资其实就奠定了我们后续AI整个供应链更为完整
transcript.whisperx[25].start 530.067
transcript.whisperx[25].end 543.132
transcript.whisperx[25].text 所以我們的出口暢旺所以這一次我們在APEC的時候南韓的幾位官員都很羨慕我們台灣這一次的經濟成長率幾乎是比他們高出很多那最主要是我們加速台灣投資的三大方案的一個策略選擇那台商回台投資以及讓我們支撐整個出口這一次的暢旺
transcript.whisperx[26].start 551.508
transcript.whisperx[26].end 562.511
transcript.whisperx[26].text 整個出口都創歷年的新高請教一下部長今年經濟成長率看起來是會在5%以上對於明年經濟成長率你的看法
transcript.whisperx[27].start 563.966
transcript.whisperx[27].end 578.339
transcript.whisperx[27].text 經濟成長率整個的估測是在主機總署那主機總署都會定期的一個公佈那應該是不會超過5%啦對不對目前我看到他的資料大概沒有到5%不過可能也會隨時的調整大概大概2.5到3左右啦初步他是這樣的估測那我再請教一下部長
transcript.whisperx[28].start 584.545
transcript.whisperx[28].end 607.643
transcript.whisperx[28].text 那主席總書他也預估啦在這個經濟規模成長還有新台幣升值的兩大因素助攻之下明年的GDP有可能突破4萬美元那部長覺得有可能達到嗎我們上次突破3萬是在2021年那有可能您認為說在這種經濟成長的規模之下有可能明年GDP成長突破4萬美元嗎
transcript.whisperx[29].start 608.611
transcript.whisperx[29].end 616.997
transcript.whisperx[29].text 我想這個部分還是要尊重主席總署的一個估測沒有啦 那就您的看法勒當然預測是他在預測啦 就您的看法勒那我想我們後續還是要持續的觀察因為還有許多不確定的因素存在啦那你有信心嗎美國的關稅的一個稅率最後是怎麼樣以及還有匯率的一些變動等等地緣政治風險都是要考慮的一些變動因素那部長有信心嗎
transcript.whisperx[30].start 633.807
transcript.whisperx[30].end 640.833
transcript.whisperx[30].text 我們希望我們都有信心大家全國同仁一起努力 同胞們一起努力好 謝謝好 謝謝李坤 陳昭緯