iVOD / 165054

Field Value
IVOD_ID 165054
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/165054
日期 2025-11-05
會議資料.會議代碼 委員會-11-4-15-9
會議資料.會議代碼:str 第11屆第4會期內政委員會第9次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 9
會議資料.種類 委員會
會議資料.委員會代碼[0] 15
會議資料.委員會代碼:str[0] 內政委員會
會議資料.標題 第11屆第4會期內政委員會第9次全體委員會議
影片種類 Clip
開始時間 2025-11-05T10:00:48+08:00
結束時間 2025-11-05T10:12:18+08:00
影片長度 00:11:30
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/0bb7d6ea348ff1d2821e29232273d817d470ab4440ded08e372a46263f60850476aa520af6b9da4e5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 麥玉珍
委員發言時間 10:00:48 - 10:12:18
會議時間 2025-11-05T09:00:00+08:00
會議名稱 立法院第11屆第4會期內政委員會第9次全體委員會議(事由:邀請內政部部長率同所屬列席報告業務概況(含上會期臨時提案辦理情形),並備質詢。 【11月5日及6日兩天一次會】)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 1.61721875
transcript.pyannote[0].end 5.86971875
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 6.66284375
transcript.pyannote[1].end 9.85221875
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 10.74659375
transcript.pyannote[2].end 11.40471875
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 13.37909375
transcript.pyannote[3].end 27.04784375
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 27.65534375
transcript.pyannote[4].end 29.56221875
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 30.50721875
transcript.pyannote[5].end 33.17346875
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 33.37596875
transcript.pyannote[6].end 41.89784375
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 42.60659375
transcript.pyannote[7].end 55.14471875
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 55.78596875
transcript.pyannote[8].end 57.30471875
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 58.23284375
transcript.pyannote[9].end 59.04284375
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 60.15659375
transcript.pyannote[10].end 64.61159375
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 65.32034375
transcript.pyannote[11].end 66.61971875
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 68.39159375
transcript.pyannote[12].end 69.85971875
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 70.18034375
transcript.pyannote[13].end 76.99784375
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 77.26784375
transcript.pyannote[14].end 81.33471875
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 81.53721875
transcript.pyannote[15].end 86.66721875
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 81.68909375
transcript.pyannote[16].end 81.97596875
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 86.97096875
transcript.pyannote[17].end 93.41721875
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 93.88971875
transcript.pyannote[18].end 97.56846875
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 98.05784375
transcript.pyannote[19].end 100.04909375
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 100.43721875
transcript.pyannote[20].end 103.05284375
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 103.35659375
transcript.pyannote[21].end 108.26721875
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 108.65534375
transcript.pyannote[22].end 109.60034375
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 110.05596875
transcript.pyannote[23].end 110.47784375
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 110.71409375
transcript.pyannote[24].end 112.01346875
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 112.60409375
transcript.pyannote[25].end 118.00409375
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 118.02096875
transcript.pyannote[26].end 118.62846875
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 119.01659375
transcript.pyannote[27].end 141.51096875
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 142.08471875
transcript.pyannote[28].end 150.84284375
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 151.12971875
transcript.pyannote[29].end 153.47534375
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 154.03221875
transcript.pyannote[30].end 157.25534375
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 155.88846875
transcript.pyannote[31].end 156.44534375
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 156.49596875
transcript.pyannote[32].end 170.28284375
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 157.59284375
transcript.pyannote[33].end 157.96409375
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 160.93409375
transcript.pyannote[34].end 161.64284375
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 170.78909375
transcript.pyannote[35].end 181.52159375
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 181.97721875
transcript.pyannote[36].end 194.04284375
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 194.65034375
transcript.pyannote[37].end 196.50659375
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 197.11409375
transcript.pyannote[38].end 199.10534375
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 199.15596875
transcript.pyannote[39].end 200.65784375
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 201.29909375
transcript.pyannote[40].end 211.67721875
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 212.52096875
transcript.pyannote[41].end 213.68534375
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 214.39409375
transcript.pyannote[42].end 222.02159375
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 222.35909375
transcript.pyannote[43].end 223.75971875
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 224.06346875
transcript.pyannote[44].end 231.58971875
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 231.97784375
transcript.pyannote[45].end 233.12534375
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 233.80034375
transcript.pyannote[46].end 234.47534375
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 234.77909375
transcript.pyannote[47].end 240.83721875
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 241.36034375
transcript.pyannote[48].end 242.49096875
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 242.74409375
transcript.pyannote[49].end 243.52034375
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 243.63846875
transcript.pyannote[50].end 244.39784375
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 245.35971875
transcript.pyannote[51].end 246.38909375
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 246.77721875
transcript.pyannote[52].end 247.58721875
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 247.97534375
transcript.pyannote[53].end 249.78096875
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 250.16909375
transcript.pyannote[54].end 254.01659375
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 254.55659375
transcript.pyannote[55].end 259.41659375
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 259.92284375
transcript.pyannote[56].end 273.60846875
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 274.19909375
transcript.pyannote[57].end 275.78534375
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 276.44346875
transcript.pyannote[58].end 278.01284375
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 278.41784375
transcript.pyannote[59].end 279.19409375
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 280.08846875
transcript.pyannote[60].end 280.44284375
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 281.42159375
transcript.pyannote[61].end 283.69971875
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 284.32409375
transcript.pyannote[62].end 284.67846875
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 285.21846875
transcript.pyannote[63].end 290.12909375
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 285.48846875
transcript.pyannote[64].end 285.69096875
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 287.04096875
transcript.pyannote[65].end 287.68221875
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 289.97721875
transcript.pyannote[66].end 290.06159375
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 290.12909375
transcript.pyannote[67].end 296.18721875
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 296.32221875
transcript.pyannote[68].end 298.34721875
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 298.54971875
transcript.pyannote[69].end 303.29159375
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 303.34221875
transcript.pyannote[70].end 314.22659375
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 311.39159375
transcript.pyannote[71].end 329.71784375
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 330.51096875
transcript.pyannote[72].end 331.69221875
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 331.74284375
transcript.pyannote[73].end 355.04721875
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 355.36784375
transcript.pyannote[74].end 360.71721875
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 360.78471875
transcript.pyannote[75].end 360.81846875
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 360.81846875
transcript.pyannote[76].end 361.57784375
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 360.83534375
transcript.pyannote[77].end 360.85221875
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 361.02096875
transcript.pyannote[78].end 362.21909375
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 362.86034375
transcript.pyannote[79].end 367.56846875
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 362.92784375
transcript.pyannote[80].end 363.33284375
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 366.48846875
transcript.pyannote[81].end 368.32784375
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 368.80034375
transcript.pyannote[82].end 373.39034375
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 373.49159375
transcript.pyannote[83].end 374.26784375
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 374.65596875
transcript.pyannote[84].end 397.50471875
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 397.25159375
transcript.pyannote[85].end 406.24596875
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 397.70721875
transcript.pyannote[86].end 398.24721875
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 400.89659375
transcript.pyannote[87].end 406.70159375
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 406.26284375
transcript.pyannote[88].end 444.95721875
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 413.19846875
transcript.pyannote[89].end 413.58659375
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 431.44034375
transcript.pyannote[90].end 432.41909375
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 433.06034375
transcript.pyannote[91].end 433.34721875
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 433.88721875
transcript.pyannote[92].end 434.54534375
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 436.57034375
transcript.pyannote[93].end 436.94159375
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 439.43909375
transcript.pyannote[94].end 440.38409375
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 442.47659375
transcript.pyannote[95].end 447.91034375
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 445.66596875
transcript.pyannote[96].end 451.97721875
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 451.97721875
transcript.pyannote[97].end 460.19534375
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 460.51596875
transcript.pyannote[98].end 460.53284375
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 460.53284375
transcript.pyannote[99].end 469.42596875
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 461.03909375
transcript.pyannote[100].end 461.74784375
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 462.20346875
transcript.pyannote[101].end 464.00909375
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 469.54409375
transcript.pyannote[102].end 474.43784375
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 474.80909375
transcript.pyannote[103].end 496.03784375
transcript.pyannote[104].speaker SPEAKER_01
transcript.pyannote[104].start 483.12846875
transcript.pyannote[104].end 483.51659375
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 486.01409375
transcript.pyannote[105].end 487.80284375
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 496.51034375
transcript.pyannote[106].end 515.98409375
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 516.54096875
transcript.pyannote[107].end 517.62096875
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 517.97534375
transcript.pyannote[108].end 520.08471875
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 520.13534375
transcript.pyannote[109].end 521.09721875
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 521.78909375
transcript.pyannote[110].end 534.76596875
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 535.64346875
transcript.pyannote[111].end 536.25096875
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 536.72346875
transcript.pyannote[112].end 538.93409375
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 539.54159375
transcript.pyannote[113].end 542.93346875
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 543.55784375
transcript.pyannote[114].end 544.43534375
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 544.87409375
transcript.pyannote[115].end 555.69096875
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 556.24784375
transcript.pyannote[116].end 562.17096875
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 562.62659375
transcript.pyannote[117].end 565.57971875
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 566.62596875
transcript.pyannote[118].end 584.46284375
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 571.57034375
transcript.pyannote[119].end 572.12721875
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 585.13784375
transcript.pyannote[120].end 585.86346875
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 585.96471875
transcript.pyannote[121].end 595.29659375
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 595.48221875
transcript.pyannote[122].end 595.51596875
transcript.pyannote[123].speaker SPEAKER_01
transcript.pyannote[123].start 595.51596875
transcript.pyannote[123].end 596.15721875
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 595.60034375
transcript.pyannote[124].end 600.74721875
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 597.03471875
transcript.pyannote[125].end 597.43971875
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 599.93721875
transcript.pyannote[126].end 616.74471875
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 616.86284375
transcript.pyannote[127].end 619.09034375
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 619.27596875
transcript.pyannote[128].end 620.72721875
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 620.91284375
transcript.pyannote[129].end 624.76034375
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 624.99659375
transcript.pyannote[130].end 627.56159375
transcript.pyannote[131].speaker SPEAKER_01
transcript.pyannote[131].start 627.78096875
transcript.pyannote[131].end 632.13471875
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 632.43846875
transcript.pyannote[132].end 636.67409375
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 635.39159375
transcript.pyannote[133].end 645.85409375
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 639.40784375
transcript.pyannote[134].end 640.48784375
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 646.22534375
transcript.pyannote[135].end 646.98471875
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 647.23784375
transcript.pyannote[136].end 650.42721875
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 650.84909375
transcript.pyannote[137].end 688.86846875
transcript.pyannote[138].speaker SPEAKER_01
transcript.pyannote[138].start 688.36221875
transcript.pyannote[138].end 690.10034375
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 691.07909375
transcript.pyannote[139].end 691.97346875
transcript.whisperx[0].start 1.916
transcript.whisperx[0].end 9.617
transcript.whisperx[0].text 謝謝主席 有請部長還有移民署署長請保證請移民署署長委員好部長好 署長好想要請教一下我們在處理114年度移民署稅出預算時就已經點出現行司法同意制度有許多缺失
transcript.whisperx[1].start 30.578
transcript.whisperx[1].end 57.098
transcript.whisperx[1].text 迫切需要改善的问题但是在115年度的預算書裡面針對移民署就同意人員政策提出的進進措施並將成果等的資訊定期公布於官方網站這項內容的辦理情形報告還是一片空白請問
transcript.whisperx[2].start 60.802
transcript.whisperx[2].end 76.791
transcript.whisperx[2].text 請問你們的精進措施還有成果在哪裡有在做嗎報告委員 委員好那其實在我們移民署的通譯制度裡面我們這個通譯人才資料庫是在民國98年建制
transcript.whisperx[3].start 77.355
transcript.whisperx[3].end 99.826
transcript.whisperx[3].text 但是在109年的時候我們有做一個精進的方案那這個精進方案裡面其實增列了兩個比較重要的一個措施第一個就是線上需求端的一個邀約還有就是這個滿意度的一個回饋那目前整個資料庫的建置裡面現在我們同意人在資料庫裡面的人才
transcript.whisperx[4].start 100.475
transcript.whisperx[4].end 126.573
transcript.whisperx[4].text 名單大概有接近1400人那其中以越南語跟印尼語的同意資料人才是是最多的那這個這個包含了22種語言那22種語言裡面就是越南跟印尼語是最多的那大概目前在線上端去申請使用權限的包括機關法人跟個人大概有1600個左右那
transcript.whisperx[5].start 130.424
transcript.whisperx[5].end 153.019
transcript.whisperx[5].text 在這1600個左右目前為止我們所掌握到的這個查詢的次數大概7800人次左右啦所以其實在整個的這個部分我們會去做一個處理那另外有關通譯人才的部分我們又有去區分大概有三類第一個就是司法通譯因為司法通譯他需要的語言包括法令的這個
transcript.whisperx[6].start 155.175
transcript.whisperx[6].end 157.418
transcript.whisperx[6].text 這個名詞他必須得是謝謝署長我問我是讓你讓你說啦但是我問東你回西我問這個問我們看到的是這個這個你完全沒有回你回的
transcript.whisperx[7].start 170.876
transcript.whisperx[7].end 196.358
transcript.whisperx[7].text 你回的是我要問的 因為這個我要跟你們所知所以你們回的就是剛才你講的所以我跟你講說你講的東西移民署在民國98年開始建設一個就是通譯人才資料庫是你說的並且在109年7月也做了一次功能升級的改版
transcript.whisperx[8].start 197.719
transcript.whisperx[8].end 209.887
transcript.whisperx[8].text 不查不知道查了嚇一跳這樣的網站使用相框像你說的這改版以來5年的時間累積有登入同意人員是1300
transcript.whisperx[9].start 212.574
transcript.whisperx[9].end 215.898
transcript.whisperx[9].text 有38人需求單位有375個有1591人使用全線在線上要發出邀約同意的服務446件其中呈案的只有56件
transcript.whisperx[10].start 233.877
transcript.whisperx[10].end 239.94
transcript.whisperx[10].text 署長你每年都補助在各個學校限制政府民間團體開辦的統一人才
transcript.whisperx[11].start 245.407
transcript.whisperx[11].end 257.593
transcript.whisperx[11].text 一個縣一般最少有30個人我們22個縣市不要說學校民間團體22個縣市一年也是有660個人5年也要超過3000多人但是你們這邊不到150個人只成功媒合了56件有可能嗎實際上的需求這麼少
transcript.whisperx[12].start 274.241
transcript.whisperx[12].end 297.956
transcript.whisperx[12].text 我們講的是這個這個網站的功能不好啦是想要了解是這個部分完全不可能只有說1591人報告委員我這裡要跟委員做一個報告其實我們那個同意人才資料庫其實就是一個平台那平台其實譬如說
transcript.whisperx[13].start 298.666
transcript.whisperx[13].end 313.603
transcript.whisperx[13].text 我是警察機關我找了一個一個同意人才我邀約他之後然後他們自己會加LINE他就不會再透過這個平台再去做線上的邀約所以他們就直接打電話了啦所以他那個次數相對會比較少如果這個平台沒有用的話你們還要從開始監製就花了150萬
transcript.whisperx[14].start 320.671
transcript.whisperx[14].end 321.393
transcript.whisperx[14].text 109年又花改版也花了450萬保固期滿後從112年到現在每年
transcript.whisperx[15].start 331.979
transcript.whisperx[15].end 354.71
transcript.whisperx[15].text 維護費要花了43萬陸陸續續花了就是700多萬你說這不好啊 不好你還要去維護所以請教一下你對這樣的成果滿意嗎你覺得說這樣的支出移民署沒有說去查這個同意的人員的需求這個資料庫的心得我們要的是
transcript.whisperx[16].start 355.89
transcript.whisperx[16].end 376.89
transcript.whisperx[16].text 這個資料庫你要用的當初的目標還有效果是什麼啊不是你講了就就叫別人去用啊這樣子你還要維護這個這個資料庫要幹嘛報告委員其實當初建立這個資料庫它一定有它基本的一個需求的一個花費然後這個我就說這個是一個媒合平台
transcript.whisperx[17].start 377.438
transcript.whisperx[17].end 397.034
transcript.whisperx[17].text 但是媒合平台之後譬如說我這個承辦人我耳後我都已經加在了我就固定找這個人嘛因為配合的很好所以這個媒合的次數會逐漸的減少但是你不能把它廢掉因為這個平台在這裡會有新進人員又再進來他還是會透過這個平台再去找到相關更多的一個同意人員
transcript.whisperx[18].start 397.794
transcript.whisperx[18].end 404.979
transcript.whisperx[18].text 署長我覺得你講這個真的是不是啦你說有多少人去培訓如果你每年培訓那麼多人你要把這些資料把它納入資料庫讓更多人在這邊找你不能說別人找去了我這個資料庫還是要但是維護但是沒有人找沒關係
transcript.whisperx[19].start 420.769
transcript.whisperx[19].end 442.293
transcript.whisperx[19].text 再去做翻譯也要死啊對不對 你說這個資料庫這樣子就是有需要有需要你要把所有的資料要提供進來當大家有需要的時候也可以找你不能說我私下找了我就用這個這個資料庫好像的功能還是要但是呢 功能不好 也功能不是要維護因為資料庫裡面人才有1400人啊
transcript.whisperx[20].start 445.754
transcript.whisperx[20].end 447.716
transcript.whisperx[20].text 資料庫裡面有一千四百人 五年一千一百人 大家要死啊 要走啊不是這樣子 那不是次數 那是登錄的通譯的人才資料庫裡面有一千四百人 二十二種語言
transcript.whisperx[21].start 460.543
transcript.whisperx[21].end 463.404
transcript.whisperx[21].text 對啊 但是只有這樣子 你覺得很好嗎效果很好嗎人太少了 因為不可能五年只有這樣啦所以我們是在 還有我們看到的就是這個部分我們希望署長真的要把這個資料庫真的是資料庫不是生鏽的資料庫啦我們要的真的是要去做好所以剛才我跟你講的 要的是兩件事情
transcript.whisperx[22].start 489.858
transcript.whisperx[22].end 515.485
transcript.whisperx[22].text 移民署在12年底有制定一份統一制度精進事辦計畫這一點提出問題就是很多的問題洋洋灑灑12項的內容寫得很漂亮但實際上成效在哪裡我們一直沒有看到不管是解凍預算的統一人員政策精進成果報告
transcript.whisperx[23].start 516.665
transcript.whisperx[23].end 531.62
transcript.whisperx[23].text 無消無息或者在城校趴到就是趴到地板上的同意人員資料庫已經新鮮了就連今天內政部提交到我們內政委員會來的業務報告
transcript.whisperx[24].start 536.818
transcript.whisperx[24].end 565.117
transcript.whisperx[24].text 沒有看到同意的問題真的非常令人懷疑政府對於改進同意制度的能力和決心所以我們要呼籲我們內政部實落還有落實實際落實真的是這個資料庫還有說我們這樣子的方案保障在台新住民的權益的承諾
transcript.whisperx[25].start 566.677
transcript.whisperx[25].end 584.223
transcript.whisperx[25].text 我們要我一定會強力的監督這一塊還有就是統一制度的精進事辦計畫的辦理情形把關該計畫動資的預算支出所以署長你剛才講有需要
transcript.whisperx[26].start 585.223
transcript.whisperx[26].end 594.068
transcript.whisperx[26].text 也有要去改進所以我希望你在一個月內一個月內提出統一的制度改善經濟報告兩個就是因為我看到剛才的是空白你沒有提出謝謝委員讓我補充一下是好不好謝謝委員那其實在整個統一制度裡面我們在112年有一個統一制度的一個經濟方案
transcript.whisperx[27].start 609.617
transcript.whisperx[27].end 613.159
transcript.whisperx[27].text 他是每兩年期會做一次的檢討那在今年的12月31號會把事辦的這兩年的一些狀況我們在會提出來做精進在所謂同意人才的培訓認證管理跟任用這個部分我們會來做持續的改善那委員剛剛所提提出來的部分我們將相關那個檢討精進的這個報告我們也會在
transcript.whisperx[28].start 633.224
transcript.whisperx[28].end 636.946
transcript.whisperx[28].text 委員要求的期限之內我們會再把資料送給委員還有這個資料庫要有用的資料庫好不好我們要把所有全部你們補助或者各縣市有辦理的培訓通譯人員要把它全部納入進來讓大家才會找得到人來去翻譯
transcript.whisperx[29].start 653.798
transcript.whisperx[29].end 657.242
transcript.whisperx[29].text 事實上有很多地方是找不到翻譯你們這個地方又沒有去改善又沒有去改進就停留在那一邊所以這個資料庫大家都覺得是生鏽大家也沒辦法因為你拍去翻譯也沒有拍
transcript.whisperx[30].start 670.494
transcript.whisperx[30].end 678.821
transcript.whisperx[30].text 大家要找到裡面的人數有限所以大家就沒辦法去配合所以變成這個資料庫變成是生鏽的資料庫所以大家才不會去用才會人數那麼差所以這個兩個部分我希望署長要去做好謝謝