iVOD / 164859

Field Value
IVOD_ID 164859
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/164859
日期 2025-10-30
會議資料.會議代碼 委員會-11-4-20-5
會議資料.會議代碼:str 第11屆第4會期財政委員會第5次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 5
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第4會期財政委員會第5次全體委員會議
影片種類 Clip
開始時間 2025-10-30T10:08:52+08:00
結束時間 2025-10-30T10:19:46+08:00
影片長度 00:10:54
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/480bc0daa4347f00db6f07f71ddcad178220506846d94b49935765bd47f546513a5392e6bceeeece5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 吳秉叡
委員發言時間 10:08:52 - 10:19:46
會議時間 2025-10-30T09:00:00+08:00
會議名稱 立法院第11屆第4會期財政委員會第5次全體委員會議(事由:邀請金融監督管理委員會彭主任委員金隆、中央銀行、法務部、內政部警政署就「虛擬資產服務法草案及其相關子法修訂暨建立完善監理架構之進程」進行專題報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 0.06471875
transcript.pyannote[0].end 0.90846875
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 5.49846875
transcript.pyannote[1].end 5.85284375
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 5.85284375
transcript.pyannote[2].end 5.86971875
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 6.54471875
transcript.pyannote[3].end 11.75909375
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 11.75909375
transcript.pyannote[4].end 18.76221875
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 19.04909375
transcript.pyannote[5].end 20.43284375
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 21.51284375
transcript.pyannote[6].end 28.81971875
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 29.69721875
transcript.pyannote[7].end 32.02596875
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 31.75596875
transcript.pyannote[8].end 32.27909375
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 32.27909375
transcript.pyannote[9].end 32.31284375
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 32.31284375
transcript.pyannote[10].end 38.32034375
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 38.01659375
transcript.pyannote[11].end 41.96534375
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 42.37034375
transcript.pyannote[12].end 44.07471875
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 44.20971875
transcript.pyannote[13].end 44.51346875
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 44.51346875
transcript.pyannote[14].end 44.93534375
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 45.50909375
transcript.pyannote[15].end 46.96034375
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 47.21346875
transcript.pyannote[16].end 49.23846875
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 49.87971875
transcript.pyannote[17].end 52.22534375
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 52.71471875
transcript.pyannote[18].end 54.89159375
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 55.93784375
transcript.pyannote[19].end 56.32596875
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 56.10659375
transcript.pyannote[20].end 56.19096875
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 56.59596875
transcript.pyannote[21].end 58.89096875
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 59.16096875
transcript.pyannote[22].end 61.59096875
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 62.21534375
transcript.pyannote[23].end 63.81846875
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 64.13909375
transcript.pyannote[24].end 66.83909375
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 67.26096875
transcript.pyannote[25].end 70.60221875
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 69.77534375
transcript.pyannote[26].end 72.54284375
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 73.43721875
transcript.pyannote[27].end 76.94721875
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 77.58846875
transcript.pyannote[28].end 78.11159375
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 78.51659375
transcript.pyannote[29].end 78.85409375
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 79.17471875
transcript.pyannote[30].end 79.79909375
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 84.81096875
transcript.pyannote[31].end 107.42346875
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 107.79471875
transcript.pyannote[32].end 117.02534375
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 117.12659375
transcript.pyannote[33].end 117.21096875
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 117.21096875
transcript.pyannote[34].end 118.39221875
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 117.51471875
transcript.pyannote[35].end 136.46534375
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 134.99721875
transcript.pyannote[36].end 135.23346875
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 136.46534375
transcript.pyannote[37].end 136.58346875
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 136.58346875
transcript.pyannote[38].end 136.68471875
transcript.pyannote[39].speaker SPEAKER_01
transcript.pyannote[39].start 136.68471875
transcript.pyannote[39].end 136.70159375
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 136.70159375
transcript.pyannote[40].end 136.76909375
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 136.76909375
transcript.pyannote[41].end 139.18221875
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 139.65471875
transcript.pyannote[42].end 144.37971875
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 144.37971875
transcript.pyannote[43].end 144.39659375
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 144.48096875
transcript.pyannote[44].end 153.67784375
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 150.25221875
transcript.pyannote[45].end 151.07909375
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 151.70346875
transcript.pyannote[46].end 151.92284375
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 153.13784375
transcript.pyannote[47].end 157.67721875
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 158.52096875
transcript.pyannote[48].end 166.03034375
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 162.57096875
transcript.pyannote[49].end 162.97596875
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 166.03034375
transcript.pyannote[50].end 189.99284375
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 188.37284375
transcript.pyannote[51].end 189.72284375
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 190.26284375
transcript.pyannote[52].end 190.44846875
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 191.41034375
transcript.pyannote[53].end 206.14221875
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 194.63346875
transcript.pyannote[54].end 196.96221875
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 206.53034375
transcript.pyannote[55].end 215.84534375
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 206.63159375
transcript.pyannote[56].end 206.86784375
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 207.01971875
transcript.pyannote[57].end 209.88846875
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 215.06909375
transcript.pyannote[58].end 215.82846875
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 215.84534375
transcript.pyannote[59].end 220.16534375
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 219.60846875
transcript.pyannote[60].end 234.77909375
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 221.48159375
transcript.pyannote[61].end 221.98784375
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 234.77909375
transcript.pyannote[62].end 249.61221875
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 234.82971875
transcript.pyannote[63].end 234.91409375
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 246.55784375
transcript.pyannote[64].end 247.58721875
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 249.69659375
transcript.pyannote[65].end 251.95784375
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 252.36284375
transcript.pyannote[66].end 259.60221875
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 256.26096875
transcript.pyannote[67].end 256.80096875
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 258.53909375
transcript.pyannote[68].end 263.87159375
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 264.00659375
transcript.pyannote[69].end 264.41159375
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 265.10346875
transcript.pyannote[70].end 267.31409375
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 267.97221875
transcript.pyannote[71].end 279.75096875
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 268.52909375
transcript.pyannote[72].end 269.79471875
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 279.34596875
transcript.pyannote[73].end 285.80909375
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 282.85596875
transcript.pyannote[74].end 283.46346875
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 285.94409375
transcript.pyannote[75].end 286.31534375
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 286.43346875
transcript.pyannote[76].end 287.14221875
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 287.69909375
transcript.pyannote[77].end 290.93909375
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 291.49596875
transcript.pyannote[78].end 291.71534375
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 292.52534375
transcript.pyannote[79].end 300.72659375
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 300.76034375
transcript.pyannote[80].end 300.77721875
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 300.87846875
transcript.pyannote[81].end 312.67409375
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 312.15096875
transcript.pyannote[82].end 315.42471875
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 315.12096875
transcript.pyannote[83].end 315.72846875
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 315.69471875
transcript.pyannote[84].end 315.71159375
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 315.72846875
transcript.pyannote[85].end 320.95971875
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 321.09471875
transcript.pyannote[86].end 321.66846875
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 321.49971875
transcript.pyannote[87].end 321.87096875
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 323.18721875
transcript.pyannote[88].end 332.92409375
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 333.14346875
transcript.pyannote[89].end 347.89221875
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 348.46596875
transcript.pyannote[90].end 348.95534375
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 349.34346875
transcript.pyannote[91].end 351.13221875
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 351.58784375
transcript.pyannote[92].end 352.80284375
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 353.30909375
transcript.pyannote[93].end 354.74346875
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 355.04721875
transcript.pyannote[94].end 355.57034375
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 355.89096875
transcript.pyannote[95].end 357.69659375
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 358.00034375
transcript.pyannote[96].end 360.17721875
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 360.73409375
transcript.pyannote[97].end 363.26534375
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 363.92346875
transcript.pyannote[98].end 365.05409375
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 365.52659375
transcript.pyannote[99].end 367.09596875
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 367.28159375
transcript.pyannote[100].end 367.85534375
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 367.41659375
transcript.pyannote[101].end 367.66971875
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 367.99034375
transcript.pyannote[102].end 373.27221875
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 373.89659375
transcript.pyannote[103].end 375.44909375
transcript.pyannote[104].speaker SPEAKER_01
transcript.pyannote[104].start 376.15784375
transcript.pyannote[104].end 377.79471875
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 378.08159375
transcript.pyannote[105].end 379.68471875
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 379.85346875
transcript.pyannote[106].end 395.69909375
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 395.95221875
transcript.pyannote[107].end 407.10659375
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 396.00284375
transcript.pyannote[108].end 396.71159375
transcript.pyannote[109].speaker SPEAKER_02
transcript.pyannote[109].start 407.93346875
transcript.pyannote[109].end 417.43409375
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 417.82221875
transcript.pyannote[110].end 424.31909375
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 425.82096875
transcript.pyannote[111].end 431.54159375
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 432.46971875
transcript.pyannote[112].end 437.83596875
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 438.35909375
transcript.pyannote[113].end 441.81846875
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 442.08846875
transcript.pyannote[114].end 444.40034375
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 444.61971875
transcript.pyannote[115].end 446.88096875
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 446.88096875
transcript.pyannote[116].end 447.92721875
transcript.pyannote[117].speaker SPEAKER_01
transcript.pyannote[117].start 447.50534375
transcript.pyannote[117].end 465.89909375
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 466.59096875
transcript.pyannote[118].end 468.91971875
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 469.62846875
transcript.pyannote[119].end 474.28596875
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 472.53096875
transcript.pyannote[120].end 472.56471875
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 472.56471875
transcript.pyannote[121].end 473.00346875
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 473.00346875
transcript.pyannote[122].end 473.02034375
transcript.pyannote[123].speaker SPEAKER_01
transcript.pyannote[123].start 474.87659375
transcript.pyannote[123].end 477.00284375
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 477.17159375
transcript.pyannote[124].end 482.03159375
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 480.07409375
transcript.pyannote[125].end 480.10784375
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 482.43659375
transcript.pyannote[126].end 483.70221875
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 484.41096875
transcript.pyannote[127].end 484.91721875
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 485.33909375
transcript.pyannote[128].end 489.05159375
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 489.50721875
transcript.pyannote[129].end 491.17784375
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 491.70096875
transcript.pyannote[130].end 502.33221875
transcript.pyannote[131].speaker SPEAKER_01
transcript.pyannote[131].start 502.65284375
transcript.pyannote[131].end 505.69034375
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 506.11221875
transcript.pyannote[132].end 506.93909375
transcript.pyannote[133].speaker SPEAKER_01
transcript.pyannote[133].start 507.66471875
transcript.pyannote[133].end 509.04846875
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 509.20034375
transcript.pyannote[134].end 510.87096875
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 510.97221875
transcript.pyannote[135].end 511.17471875
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 511.54596875
transcript.pyannote[136].end 512.89596875
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 513.50346875
transcript.pyannote[137].end 516.23721875
transcript.pyannote[138].speaker SPEAKER_01
transcript.pyannote[138].start 516.57471875
transcript.pyannote[138].end 518.53221875
transcript.pyannote[139].speaker SPEAKER_01
transcript.pyannote[139].start 519.03846875
transcript.pyannote[139].end 538.30971875
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 527.39159375
transcript.pyannote[140].end 527.44221875
transcript.pyannote[141].speaker SPEAKER_00
transcript.pyannote[141].start 527.52659375
transcript.pyannote[141].end 527.72909375
transcript.pyannote[142].speaker SPEAKER_02
transcript.pyannote[142].start 538.30971875
transcript.pyannote[142].end 538.66409375
transcript.pyannote[143].speaker SPEAKER_02
transcript.pyannote[143].start 538.73159375
transcript.pyannote[143].end 543.91221875
transcript.pyannote[144].speaker SPEAKER_02
transcript.pyannote[144].start 544.31721875
transcript.pyannote[144].end 552.80534375
transcript.pyannote[145].speaker SPEAKER_02
transcript.pyannote[145].start 553.21034375
transcript.pyannote[145].end 557.36159375
transcript.pyannote[146].speaker SPEAKER_01
transcript.pyannote[146].start 556.92284375
transcript.pyannote[146].end 557.53034375
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 557.83409375
transcript.pyannote[147].end 566.79471875
transcript.pyannote[148].speaker SPEAKER_01
transcript.pyannote[148].start 568.07721875
transcript.pyannote[148].end 574.05096875
transcript.pyannote[149].speaker SPEAKER_01
transcript.pyannote[149].start 574.47284375
transcript.pyannote[149].end 576.05909375
transcript.pyannote[150].speaker SPEAKER_02
transcript.pyannote[150].start 576.56534375
transcript.pyannote[150].end 584.00721875
transcript.pyannote[151].speaker SPEAKER_01
transcript.pyannote[151].start 583.02846875
transcript.pyannote[151].end 585.47534375
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 585.59346875
transcript.pyannote[152].end 586.79159375
transcript.pyannote[153].speaker SPEAKER_02
transcript.pyannote[153].start 586.70721875
transcript.pyannote[153].end 592.41096875
transcript.pyannote[154].speaker SPEAKER_02
transcript.pyannote[154].start 592.95096875
transcript.pyannote[154].end 598.72221875
transcript.pyannote[155].speaker SPEAKER_02
transcript.pyannote[155].start 599.27909375
transcript.pyannote[155].end 607.19346875
transcript.pyannote[156].speaker SPEAKER_01
transcript.pyannote[156].start 606.80534375
transcript.pyannote[156].end 613.35284375
transcript.pyannote[157].speaker SPEAKER_02
transcript.pyannote[157].start 610.72034375
transcript.pyannote[157].end 611.15909375
transcript.pyannote[158].speaker SPEAKER_02
transcript.pyannote[158].start 613.35284375
transcript.pyannote[158].end 618.17909375
transcript.pyannote[159].speaker SPEAKER_01
transcript.pyannote[159].start 617.04846875
transcript.pyannote[159].end 623.24159375
transcript.pyannote[160].speaker SPEAKER_02
transcript.pyannote[160].start 618.53346875
transcript.pyannote[160].end 618.98909375
transcript.pyannote[161].speaker SPEAKER_01
transcript.pyannote[161].start 623.51159375
transcript.pyannote[161].end 628.67534375
transcript.pyannote[162].speaker SPEAKER_02
transcript.pyannote[162].start 628.67534375
transcript.pyannote[162].end 633.87284375
transcript.pyannote[163].speaker SPEAKER_01
transcript.pyannote[163].start 632.37096875
transcript.pyannote[163].end 632.69159375
transcript.pyannote[164].speaker SPEAKER_01
transcript.pyannote[164].start 633.87284375
transcript.pyannote[164].end 634.24409375
transcript.pyannote[165].speaker SPEAKER_01
transcript.pyannote[165].start 634.61534375
transcript.pyannote[165].end 638.98596875
transcript.pyannote[166].speaker SPEAKER_01
transcript.pyannote[166].start 639.59346875
transcript.pyannote[166].end 644.58846875
transcript.pyannote[167].speaker SPEAKER_02
transcript.pyannote[167].start 643.74471875
transcript.pyannote[167].end 645.29721875
transcript.pyannote[168].speaker SPEAKER_01
transcript.pyannote[168].start 645.48284375
transcript.pyannote[168].end 649.19534375
transcript.whisperx[0].start 0.069
transcript.whisperx[0].end 28.805
transcript.whisperx[0].text 我們請彭主委委員早早請問美國的這個穩定幣現在進行到的程度是怎麼樣現在美國穩定幣剛剛就是剛剛講那個天才法案天才法案應該據我所知還在做最後一個確認不過他們已經開始已經就是美元的穩定幣現在在市場上已經是主流了他們現在納管的部分好像他一個立法程序最後要完成了
transcript.whisperx[1].start 29.861
transcript.whisperx[1].end 54.737
transcript.whisperx[1].text 所以已經先走了然後法律還沒有完備不是 他們確實是過去USDT或USDC這兩個早就已經存在的東西其實我個人認為過去貨幣的發行是國家的主權行為那如果你這個穩定幣跟美元是掛鉤1比1然後讓渡給私人去發行這是把國家的主權行為下放
transcript.whisperx[2].start 56.702
transcript.whisperx[2].end 76.856
transcript.whisperx[2].text 那這裡產生一個問題啊這個貨幣的總供給量就M2啊會不會因為這樣子而增加這個可能要請央行來回答比較精準這個部分因為央行有做過我知道他們的答案就是說我不把這個算入貨幣嘛但是我是覺得在整體在市面上流動的貨幣就是會增加那個副總裁
transcript.whisperx[3].start 85.384
transcript.whisperx[3].end 89.066
transcript.whisperx[3].text 其實這個問題我們最近在演藝中還流程還蠻複雜的要看譬如說花型之後那個花型商賣出去他收到的那個款項他怎麼用如果他把它當作存款那這個存款的項目是在貨幣供給的項目裡面可是現在穩定幣
transcript.whisperx[4].start 111.098
transcript.whisperx[4].end 115.261
transcript.whisperx[4].text 花型的又可以當交易的媒介那如果從這個部分他有一個影響在這邊對啊他的M2然後還有一個另外一個流向他並不存回銀行體系作為存款他可能買去我們說他可以有高品質的金融資產所以他可能去買債券等等那債券他錢就沒有流回銀行體系所以會有影響假設他去買債券問題是這個
transcript.whisperx[5].start 139.979
transcript.whisperx[5].end 144.021
transcript.whisperx[5].text 穩定幣的取得者他要如何使用這個穩定幣不是你能夠控制的啊不是穩定幣他發行就在穩定幣的這個幣圈流通那這一邊當然他就有交易的功能那你同時有交易的功能問題是你本來國家的
transcript.whisperx[6].start 158.558
transcript.whisperx[6].end 164.299
transcript.whisperx[6].text 貨幣的總供給量M2本來是有受控的但是你再加上這個東西之後這個東西的數量你有辦法總計在裡面嗎我現在這樣講我先講後面流通再來您講的總計如果它在幣圈流通這就是一個交易的媒介那這邊就牽涉到我們要不要把穩定幣它有交易功能要納入貨幣供給這一個項目如果你不納入跟納入這邊
transcript.whisperx[7].start 188.365
transcript.whisperx[7].end 189.747
transcript.whisperx[7].text 對啊 你到底納入還不納入因為在計算貨幣供給有M1 M2那你要看要不要列到因為你從M1這邊拿了貨幣去買所以你如果要納入它可能就跑到M2那這邊就有一增一減
transcript.whisperx[8].start 206.824
transcript.whisperx[8].end 220.223
transcript.whisperx[8].text 對啊那這個增加會產生怎麼樣的後果呢還有一個這是第一層第二層是說幣商拿到錢我剛才講我的意思是說剛剛你回答了我是說幣商拿到錢他要怎麼使用不是你可以控制的嗎不是會影響到貨幣供給對啊所以這個
transcript.whisperx[9].start 223.087
transcript.whisperx[9].end 226.769
transcript.whisperx[9].text 影響增減我們說這樣看起來目前沒辦法說是增還是減要去看他們怎麼用那個有一個流程所以這是我們目前的一個邏輯所以我剛剛講說我為什麼會擔憂這個東西我個人認為如果M2的整體是增加的那你國家的主權行為本來你的貨幣供給是有一定在央行的控制之下如果你這個供給增加太多會造成通貨膨脹啊
transcript.whisperx[10].start 250.142
transcript.whisperx[10].end 263.684
transcript.whisperx[10].text 那不只是通貨膨脹會影響到我們講的就是說貨幣政策效果中另外一個利率水準好 那另外一個問題美國的穩定幣你同不同意它在台灣使用當作美金的支付工具
transcript.whisperx[11].start 265.288
transcript.whisperx[11].end 290.354
transcript.whisperx[11].text 這是國家跟國家之間的主權行為啊這個你們有討論過嗎我想是這樣那個如果美國發行的穩定幣要進入台灣的市場我們儘管會有些規定應該是看他們的規定有一些他規定不到有一些就在網路上直接支付掉了那那個網路上直接支付掉了也不是你們能夠控制的啊那怎麼辦我覺得現在好像即使沒規定也是有這個問題
transcript.whisperx[12].start 292.594
transcript.whisperx[12].end 321.192
transcript.whisperx[12].text 就是跟委員說明一下我們在那個穩定幣裡面呢分兩個一個是台灣發行就是對本國募集嘛這個當然沒問題那再來第一個就是國外已經募集已經存在的話他如果要在我們的所謂的未來的虛擬資產服務業裡面進行交易要經過我們的同意等於說他要經過我們的同意還包括追蹤他所做的事情主委我剛剛有個問題他如果進來經過你的同意這個還比較好控制他現在因為網路無國界你根本就控制不到他他直接就在網路上支付了對確實是
transcript.whisperx[13].start 323.254
transcript.whisperx[13].end 347.768
transcript.whisperx[13].text 台灣的政府就中華民國政府要不要承認是一回事事實上它已經發生了就像我在總質詢的時候經濟部長跟我講說我們台灣不接受中國的電商經營問題是所有的拼多多淘寶的貨品其實大量進來了你不承認它是存在的啊不是說我不承認它就不存在啊那我現在一個問題美國的穩定幣看起來台灣非接受不可
transcript.whisperx[14].start 348.513
transcript.whisperx[14].end 359.778
transcript.whisperx[14].text 因為除非你要跟美國對幹但是我覺得不太可能我們中華民國政府不太可能好那如果他在台灣做支付這一些就會變成我剛剛講的廣義的國家貨幣總體供給
transcript.whisperx[15].start 363.956
transcript.whisperx[15].end 379.353
transcript.whisperx[15].text 有可能會不受控他的金額會增加很多那當然這個金額增加很多M2增加很多的時候另外一個考慮的問題是說會不會造成整個通貨膨脹的問題因為等於就是廣義的貨幣流通在台灣就增加了很多
transcript.whisperx[16].start 380.255
transcript.whisperx[16].end 406.827
transcript.whisperx[16].text 對 這跟委員提到就是說我們從這個比如說穩定幣從過去這一段子在國際上使用確實有一個狀況就是有些國家的民眾對自己本國的貨幣反而信心不夠他會希望持有穩定幣反而成為民間支付一個很重要的這個工具它是自然形成的就是說在確實剛才委員提到就是說在網路世界裡面當我某些國人他自有能力然後透過這個方式去
transcript.whisperx[17].start 408.368
transcript.whisperx[17].end 424.303
transcript.whisperx[17].text 購買或是去轉換這個時候確實我們在整個在我們這個法規管理上面是未來要再努力的地方因為我們現在是希望針對說我們現在納管這些業者然後再來就是對於一般民眾我們加大他的保護的範圍是啦我知道你這個立法的目的但是我剛剛講的這些疑慮是要先想的是
transcript.whisperx[18].start 432.52
transcript.whisperx[18].end 446.951
transcript.whisperx[18].text 我個人認為未來美國的穩定幣一定會透過各種途徑進到台灣來台灣的人也不會去拒絕全世界沒有人會拒絕美金因為美金的流通性跟它的可信度都是現在世界所有貨幣裡面最強的
transcript.whisperx[19].start 447.571
transcript.whisperx[19].end 467.805
transcript.whisperx[19].text 你坦白講 你問我說你是要持有新台幣還是要持有美金如果我有選擇方便的話如果方便的話我當然希望持有美金那我還沒有匯率的我還不會規避匯率的問題啊我們的保險業也不用買那麼多的那麼多的這個在外國投資的時候要買那麼多的這個平衡保險啊不用避那麼多險
transcript.whisperx[20].start 469.653
transcript.whisperx[20].end 483.289
transcript.whisperx[20].text 那這些問題馬上就會來所以我是認為說定這個東西非定不可確實因為時代來了你不改變不行但是很多問題要先想清楚你M2的供給
transcript.whisperx[21].start 484.468
transcript.whisperx[21].end 506.634
transcript.whisperx[21].text 如果美國這邊一比一他是鎖美國公債跟美金而且要鎖住那麼多才能發行等量的穩定幣那美國公債就是因為美國政府要讓他賣他的公債他認為他的美國公債的這個價值跟他的美金現鈔是一樣的這我們能理解台灣的穩定幣發行如果不要鎖百分之百的你說資產資產怎麼估資產有貶值的問題
transcript.whisperx[22].start 511.636
transcript.whisperx[22].end 538.086
transcript.whisperx[22].text 那將來我的這個這個穩定幣的發行結果我的資產事實上我發行的時候百分之百那漲跌的時候要怎麼調整再來如果我跌的時候我的穩定幣還是發行在那邊那我的貨幣的總體供給就增加出來了喔另外在流通的時候我不用信貸幣交易我用穩定幣交易整體的貨如果你把它當作支付的工具當作貨幣的一個形式的話那整體的貨幣供給也是增加的
transcript.whisperx[23].start 538.826
transcript.whisperx[23].end 565.788
transcript.whisperx[23].text 委員剛才講的這些都是非常非常深入的問題就是開放這樣一個新的業種以後會產生什麼樣的影響這其實就是我們在日常開會還有找專家學者在仔細研商因為未來我們要定那個那個穩定幣的管理辦法包括剛才這些全部都要考慮這些問題而且我看到當然不是你的問題法務部的那個草案說到那個三年以上十年以下然後罰兩千萬到
transcript.whisperx[24].start 568.257
transcript.whisperx[24].end 572.462
transcript.whisperx[24].text 幾千萬到兩億這個如果給你出一個包動輒金額是幾百億幾千億的你罰那麼一點點這樣夠嗎
transcript.whisperx[25].start 577.739
transcript.whisperx[25].end 598.557
transcript.whisperx[25].text 這個罰則的部分當然我們有提出來當然就是也要社會有共識看要做什麼而且這個如果出包那個包子大要小心所以它背後的一些封控像剛剛包括一些準備資產像剛剛委員提到那個準備資產的穩定程度還有對外的揭露還有一些平常的調控監控這都是
transcript.whisperx[26].start 600.018
transcript.whisperx[26].end 627.125
transcript.whisperx[26].text 這個索性是國外已經有一段時間的經驗了那我們這部分我們剛好在後面再進來的人比較多可以參考啦我是覺得我個人如果我的理解是多參考一下啦當然有一併要這麼急嘛這是一個考慮我們其實沒有急我剛剛跟委員講說我們但是不要落後我覺得再提醒你一次一個問題喔前一陣子光是這個比特幣被震盪的那一下因為槓桿的關係很多人被清倉強制平倉就Clean
transcript.whisperx[27].start 628.585
transcript.whisperx[27].end 646.699
transcript.whisperx[27].text 這也是剛剛有委員提到說要不要開放這些演商的商品我們就非常謹慎是我要提醒你我再次提醒你台灣人的特性賺錢沒有人會感謝政府集體賠的錢就要找你算帳找你負責你一定要記得這個特性謝謝謝謝委員的提醒謝謝好 謝謝吳委員接下來我們請鍾嘉賓委員