iVOD / 164768

Field Value
IVOD_ID 164768
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/164768
日期 2025-10-29
會議資料.會議代碼 委員會-11-4-36-5
會議資料.會議代碼:str 第11屆第4會期司法及法制委員會第5次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 5
會議資料.種類 委員會
會議資料.委員會代碼[0] 36
會議資料.委員會代碼:str[0] 司法及法制委員會
會議資料.標題 第11屆第4會期司法及法制委員會第5次全體委員會議
影片種類 Clip
開始時間 2025-10-29T10:12:38+08:00
結束時間 2025-10-29T10:25:14+08:00
影片長度 00:12:36
支援功能[0] ai-transcript
支援功能[1] gazette
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/3d43f2f62388da51e6440ea5aa8f7d42d0e1721cc507f77aa3c61875d63c71356631682cceb1dba85ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 羅智強
委員發言時間 10:12:38 - 10:25:14
會議時間 2025-10-29T09:00:00+08:00
會議名稱 立法院第11屆第4會期司法及法制委員會第5次全體委員會議(事由:邀請行政院人事行政總處人事長列席報告業務概況及立法計畫,並備質詢。 【10月29日及30日兩天一次會】)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 5.27909375
transcript.pyannote[0].end 7.86096875
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 8.21534375
transcript.pyannote[1].end 9.22784375
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 11.40471875
transcript.pyannote[2].end 13.83471875
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 14.50971875
transcript.pyannote[3].end 18.42471875
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 20.17971875
transcript.pyannote[4].end 22.13721875
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 21.20909375
transcript.pyannote[5].end 21.90096875
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 22.99784375
transcript.pyannote[6].end 27.35159375
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 24.34784375
transcript.pyannote[7].end 25.09034375
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 28.02659375
transcript.pyannote[8].end 44.02409375
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 28.26284375
transcript.pyannote[9].end 28.87034375
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 29.95034375
transcript.pyannote[10].end 30.38909375
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 34.67534375
transcript.pyannote[11].end 35.97471875
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 39.60284375
transcript.pyannote[12].end 40.04159375
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 44.02409375
transcript.pyannote[13].end 44.51346875
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 44.10846875
transcript.pyannote[14].end 44.12534375
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 44.51346875
transcript.pyannote[15].end 45.03659375
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 45.03659375
transcript.pyannote[16].end 45.93096875
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 47.65221875
transcript.pyannote[17].end 49.13721875
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 49.28909375
transcript.pyannote[18].end 51.41534375
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 49.42409375
transcript.pyannote[19].end 49.84596875
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 52.86659375
transcript.pyannote[20].end 60.12284375
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 61.91159375
transcript.pyannote[21].end 71.02409375
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 71.02409375
transcript.pyannote[22].end 104.84159375
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 105.92159375
transcript.pyannote[23].end 114.24096875
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 117.34596875
transcript.pyannote[24].end 125.37846875
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 124.97346875
transcript.pyannote[25].end 125.17596875
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 125.78346875
transcript.pyannote[26].end 127.70721875
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 128.06159375
transcript.pyannote[27].end 140.95409375
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 131.89221875
transcript.pyannote[28].end 132.39846875
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 137.68034375
transcript.pyannote[29].end 138.13596875
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 142.65846875
transcript.pyannote[30].end 146.03346875
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 146.03346875
transcript.pyannote[31].end 148.14284375
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 148.98659375
transcript.pyannote[32].end 149.74596875
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 149.84721875
transcript.pyannote[33].end 156.09096875
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 156.51284375
transcript.pyannote[34].end 157.79534375
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 158.03159375
transcript.pyannote[35].end 160.59659375
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 161.47409375
transcript.pyannote[36].end 161.91284375
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 162.68909375
transcript.pyannote[37].end 176.32409375
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 175.26096875
transcript.pyannote[38].end 178.36596875
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 179.09159375
transcript.pyannote[39].end 180.17159375
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 180.62721875
transcript.pyannote[40].end 190.83659375
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 190.93784375
transcript.pyannote[41].end 193.36784375
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 193.95846875
transcript.pyannote[42].end 202.93596875
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 203.17221875
transcript.pyannote[43].end 210.09096875
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 211.17096875
transcript.pyannote[44].end 235.06596875
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 224.38409375
transcript.pyannote[45].end 224.70471875
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 235.40346875
transcript.pyannote[46].end 241.71471875
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 240.68534375
transcript.pyannote[47].end 241.63034375
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 241.71471875
transcript.pyannote[48].end 241.78221875
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 241.93409375
transcript.pyannote[49].end 261.39096875
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 261.74534375
transcript.pyannote[50].end 265.00221875
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 267.53346875
transcript.pyannote[51].end 268.51221875
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 268.68096875
transcript.pyannote[52].end 269.92971875
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 270.35159375
transcript.pyannote[53].end 293.30159375
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 284.86409375
transcript.pyannote[54].end 285.21846875
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 287.44596875
transcript.pyannote[55].end 287.80034375
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 293.67284375
transcript.pyannote[56].end 299.27534375
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 298.26284375
transcript.pyannote[57].end 298.80284375
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 299.27534375
transcript.pyannote[58].end 299.32596875
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 300.25409375
transcript.pyannote[59].end 300.28784375
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 300.28784375
transcript.pyannote[60].end 304.06784375
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 304.75971875
transcript.pyannote[61].end 311.35784375
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 311.50971875
transcript.pyannote[62].end 317.38221875
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 317.71971875
transcript.pyannote[63].end 320.74034375
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 321.09471875
transcript.pyannote[64].end 322.86659375
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 323.10284375
transcript.pyannote[65].end 334.30784375
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 334.78034375
transcript.pyannote[66].end 344.88846875
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 346.30596875
transcript.pyannote[67].end 355.03034375
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 355.03034375
transcript.pyannote[68].end 362.20221875
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 362.43846875
transcript.pyannote[69].end 375.93846875
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 374.62221875
transcript.pyannote[70].end 375.78659375
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 375.93846875
transcript.pyannote[71].end 375.95534375
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 375.95534375
transcript.pyannote[72].end 375.97221875
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 375.97221875
transcript.pyannote[73].end 375.98909375
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 376.64721875
transcript.pyannote[74].end 384.44346875
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 385.84409375
transcript.pyannote[75].end 392.89784375
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 393.25221875
transcript.pyannote[76].end 395.02409375
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 395.71596875
transcript.pyannote[77].end 410.38034375
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 411.35909375
transcript.pyannote[78].end 412.05096875
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 413.94096875
transcript.pyannote[79].end 430.76534375
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 430.76534375
transcript.pyannote[80].end 432.46971875
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 430.79909375
transcript.pyannote[81].end 430.98471875
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 433.53284375
transcript.pyannote[82].end 437.16096875
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 437.61659375
transcript.pyannote[83].end 451.08284375
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 451.55534375
transcript.pyannote[84].end 453.17534375
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 453.95159375
transcript.pyannote[85].end 472.17659375
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 472.37909375
transcript.pyannote[86].end 472.96971875
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 472.96971875
transcript.pyannote[87].end 486.97596875
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 479.88846875
transcript.pyannote[88].end 480.31034375
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 482.25096875
transcript.pyannote[89].end 482.77409375
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 483.93846875
transcript.pyannote[90].end 484.57971875
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 486.97596875
transcript.pyannote[91].end 487.02659375
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 487.02659375
transcript.pyannote[92].end 488.22471875
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 487.12784375
transcript.pyannote[93].end 494.78909375
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 494.83971875
transcript.pyannote[94].end 499.09221875
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 499.15971875
transcript.pyannote[95].end 507.05721875
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 508.67721875
transcript.pyannote[96].end 509.89221875
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 510.39846875
transcript.pyannote[97].end 511.41096875
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 510.85409375
transcript.pyannote[98].end 511.90034375
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 511.84971875
transcript.pyannote[99].end 513.16596875
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 513.48659375
transcript.pyannote[100].end 524.26971875
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 526.90221875
transcript.pyannote[101].end 526.91909375
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 526.91909375
transcript.pyannote[102].end 527.96534375
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 527.96534375
transcript.pyannote[103].end 529.19721875
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 529.19721875
transcript.pyannote[104].end 529.29846875
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 529.34909375
transcript.pyannote[105].end 530.26034375
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 530.90159375
transcript.pyannote[106].end 540.11534375
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 540.33471875
transcript.pyannote[107].end 546.94971875
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 547.72596875
transcript.pyannote[108].end 558.55971875
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 558.88034375
transcript.pyannote[109].end 563.70659375
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 564.85409375
transcript.pyannote[110].end 569.32596875
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 569.56221875
transcript.pyannote[111].end 572.31284375
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 571.48596875
transcript.pyannote[112].end 577.96596875
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 572.80221875
transcript.pyannote[113].end 573.61221875
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 577.96596875
transcript.pyannote[114].end 584.74971875
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 584.74971875
transcript.pyannote[115].end 588.64784375
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 588.90096875
transcript.pyannote[116].end 595.54971875
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 596.37659375
transcript.pyannote[117].end 603.86909375
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 604.49346875
transcript.pyannote[118].end 611.05784375
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 611.69909375
transcript.pyannote[119].end 613.11659375
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 613.40346875
transcript.pyannote[120].end 621.41909375
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 619.64721875
transcript.pyannote[121].end 631.07159375
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 631.91534375
transcript.pyannote[122].end 633.07971875
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 633.53534375
transcript.pyannote[123].end 635.12159375
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 635.88096875
transcript.pyannote[124].end 638.36159375
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 639.15471875
transcript.pyannote[125].end 647.30534375
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 648.30096875
transcript.pyannote[126].end 649.44846875
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 650.22471875
transcript.pyannote[127].end 651.64221875
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 652.11471875
transcript.pyannote[128].end 653.73471875
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 654.32534375
transcript.pyannote[129].end 660.16409375
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 660.73784375
transcript.pyannote[130].end 663.82596875
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 664.07909375
transcript.pyannote[131].end 669.22596875
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 669.93471875
transcript.pyannote[132].end 673.64721875
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 674.13659375
transcript.pyannote[133].end 675.82409375
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 676.22909375
transcript.pyannote[134].end 677.68034375
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 678.20346875
transcript.pyannote[135].end 682.25346875
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 682.65846875
transcript.pyannote[136].end 686.43846875
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 687.06284375
transcript.pyannote[137].end 688.19346875
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 688.69971875
transcript.pyannote[138].end 692.76659375
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 692.96909375
transcript.pyannote[139].end 696.74909375
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 697.18784375
transcript.pyannote[140].end 700.14096875
transcript.pyannote[141].speaker SPEAKER_00
transcript.pyannote[141].start 700.44471875
transcript.pyannote[141].end 706.77284375
transcript.pyannote[142].speaker SPEAKER_00
transcript.pyannote[142].start 707.04284375
transcript.pyannote[142].end 710.35034375
transcript.pyannote[143].speaker SPEAKER_00
transcript.pyannote[143].start 710.75534375
transcript.pyannote[143].end 714.53534375
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 715.44659375
transcript.pyannote[144].end 723.10784375
transcript.pyannote[145].speaker SPEAKER_00
transcript.pyannote[145].start 723.54659375
transcript.pyannote[145].end 730.76909375
transcript.pyannote[146].speaker SPEAKER_00
transcript.pyannote[146].start 731.19096875
transcript.pyannote[146].end 741.11346875
transcript.pyannote[147].speaker SPEAKER_00
transcript.pyannote[147].start 741.56909375
transcript.pyannote[147].end 745.39971875
transcript.pyannote[148].speaker SPEAKER_00
transcript.pyannote[148].start 745.45034375
transcript.pyannote[148].end 749.09534375
transcript.pyannote[149].speaker SPEAKER_00
transcript.pyannote[149].start 749.71971875
transcript.pyannote[149].end 753.31409375
transcript.pyannote[150].speaker SPEAKER_01
transcript.pyannote[150].start 754.73159375
transcript.pyannote[150].end 756.06471875
transcript.whisperx[0].start 5.967
transcript.whisperx[0].end 25.896
transcript.whisperx[0].text 謝謝主席 有請人事長請人事長委員早安 人事長早請問人事長知道什麼是十大建設有哪十個建設是蔣經國時代的嗎 對大概高速公路 中鋼 中船
transcript.whisperx[1].start 28.587
transcript.whisperx[1].end 50.569
transcript.whisperx[1].text 中正國際機場機場大概是以交通為主體的以交通為主體中山高速公路還有就是以交通為主體的嘛陸海空嘛還有中港嘛台中港還有蘇澳港石化工業核能發電廠
transcript.whisperx[2].start 53.072
transcript.whisperx[2].end 60.009
transcript.whisperx[2].text 我想請教一下任市長你知道當時這個十大建設對我們台灣帶來什麼樣的效益
transcript.whisperx[3].start 63.221
transcript.whisperx[3].end 89.253
transcript.whisperx[3].text 那就是孩子要當大人了就是一個政府引領一個國家要轉型一個很重要的重大的投資第一個是抵抗當時那個石油危機帶來的經濟不景氣是短期面長期就是你說的當大人就是說把台灣創造現代化的一個基礎建設然後也改善我們的投資環境那包括鋼鐵造船石化工業都可以提高我們的
transcript.whisperx[4].start 89.673
transcript.whisperx[4].end 114.057
transcript.whisperx[4].text 一些原料的自主度 降低對外的依賴的程度為我們的工業轉型奠定非常好的基礎所以台灣今天的所謂的經濟奇蹟跟這個十大建設基礎建設有非常高度的關係 對不對一定是非常有關那我想請教您 你覺得十大建設最大的工程有哪些人
transcript.whisperx[5].start 117.386
transcript.whisperx[5].end 140.827
transcript.whisperx[5].text 大概孫益賢還有我們中綱那個趙耀東嘛那當然帶頭的大概是我們蔣經國前總統嘛那當然這裡面默默奉獻的會更多人啦會更多人默默奉獻更多的是哪一些人
transcript.whisperx[6].start 142.694
transcript.whisperx[6].end 161.602
transcript.whisperx[6].text 那位都沒出名 他就常常這麼做我跟人事長講啦 就是你啦你知道嗎 就是跟你一樣奉公守法 兢兢業業為國家服務打拼的公務員 對不對沒有這些文官他沒有辦法執行這些政務官的政策嘛 對不對
transcript.whisperx[7].start 162.951
transcript.whisperx[7].end 179.54
transcript.whisperx[7].text 公務人員本來就是一個國家安定穩定還有發展一個非常非常重要的因素可是他們平常很少被highlight出來他們是默默在做就是無名英雄無名英雄就當年
transcript.whisperx[8].start 180.734
transcript.whisperx[8].end 209.102
transcript.whisperx[8].text 你會發現說除了一些優秀的政務官專業的一些我們講國營事業經營者還有就是一些非常優秀的文官專業認真然後忠誠然後為我們國家建設來打拼的公務員是他們打造今天台灣堅實的一個所謂的基礎建設跟經濟基礎那我再問你知道現在台灣其實我們的經濟產業裡面重中之重是高科技產業對不對
transcript.whisperx[9].start 211.332
transcript.whisperx[9].end 233.548
transcript.whisperx[9].text 目前大家從十年前的自動性產業那這五六年就是直接就跨到半導體部分那當然未來還是會以AI為主體的一個產業然後它會延展出來比如像光通訊還有量子運算的相關的領域的還有一些
transcript.whisperx[10].start 237.49
transcript.whisperx[10].end 264.668
transcript.whisperx[10].text 醫療科技的部分我覺得是台灣非常有機會的一個區塊那其中有一個我們講就是說等於是台灣高科技產業的孵化器就新竹科學園區嘛包括台積電啊當年在電機的時候也是你剛剛講的那些包括孫玉璇啊李國鼎啊很多優秀的政務官那打造這些所謂的我們講高科技的所謂的搖籃還是有一群無名的英雄默默無名的英雄是誰
transcript.whisperx[11].start 267.594
transcript.whisperx[11].end 291.874
transcript.whisperx[11].text 你剛講過了嘛我提到從工研院出來的這些人坦白講那一個機關對台灣來講很重要工研院然後這裡面大概大家耳熟能詳的就是孫益謙以前在台電嘛後來有李國鼎嘛 KT嘛還有相關的這些人我覺得他always在這個領域會
transcript.whisperx[12].start 294.476
transcript.whisperx[12].end 303.707
transcript.whisperx[12].text 給大家坐標一個非常無可期待的一個位置覺得市長講得很好我為什麼要問你這些事情知道嗎
transcript.whisperx[13].start 304.841
transcript.whisperx[13].end 332.557
transcript.whisperx[13].text 因為你會看到在那個年代當中其實第一個我們整個社會的景象是這樣有一些非常優秀有遠見有潛在力有魄力的政務官然後帶著一群有專業有熱情為國家奉獻的公務員所以兩個合作起來打拼打造了今天台灣非常堅實的不管是產業的基礎還是我們講說是工業的基礎乃至於經濟發展的基礎
transcript.whisperx[14].start 334.858
transcript.whisperx[14].end 344.488
transcript.whisperx[14].text 那當時的公務員說實在話任市長你也是一路公務員上來嘛對不對公務員在當時應該還算是一個算是還蠻光榮的行業吧對不對
transcript.whisperx[15].start 346.625
transcript.whisperx[15].end 368.144
transcript.whisperx[15].text 穩定啦 穩定那光榮是覺得就是奉獻國家的一個蠻好的一個途徑非常好我跟任司長講我當兵退伍我也考上公務員考到高考分派到公平教育委員會當時我印象非常深刻當我回去跟爸爸媽媽講我考上公務員之後
transcript.whisperx[16].start 368.717
transcript.whisperx[16].end 384.533
transcript.whisperx[16].text 我爸爸那开心的样子我相信任市长你应该有经历过这个过程吧没有被骂为什么要进国家机关代表你的能力很好这个你的父母亲不希望你当公务员是这个意思吗我要讲一件事拉回来一个重点就是事实上在过去的我们的所谓的
transcript.whisperx[17].start 390.448
transcript.whisperx[17].end 409.123
transcript.whisperx[17].text 政治環境或是政府環境裡面公務員是很有光榮感的那時候國家也很照顧公務員那國家也很需要優秀的文官作為我們今天政府的整個支柱但是我想請問你跟過去比起來公務員還是一個吸引人的職業選擇嗎還是嗎
transcript.whisperx[18].start 413.973
transcript.whisperx[18].end 436.388
transcript.whisperx[18].text 整體來講是啦可是有一些時空環境的不一樣現在年輕人他對他的工作的那種期待他很多人不願意選擇朝九晚五他希望他的上班時間可以更加的輕鬆你講這個我不是很認同我也不認為什麼叫時代會改變什麼樣的人的習性
transcript.whisperx[19].start 437.697
transcript.whisperx[19].end 452.616
transcript.whisperx[19].text 你也可以講我在當兵退伍那一年我可能也不一定喜歡朝九晚五的工作啊如果自由自在又有好薪水又有好待遇又有好的退休保障的工作然後又有光榮感的工作我還是願意去做啊不要朝九晚五啊所以這跟時代無關
transcript.whisperx[20].start 454.028
transcript.whisperx[20].end 470.605
transcript.whisperx[20].text 基本上有一個比較彈性自由的工作環境那是每個時代都會有人嚮往的可是為什麼以前我只是問你一件事跟以前跟20年前跟30年前好不用講跟10年前好了相比你覺得公務員還是一個吸引人的職業選擇嗎
transcript.whisperx[21].start 473.627
transcript.whisperx[21].end 493.7
transcript.whisperx[21].text 我覺得換個角度來看以前選擇的機會會比較少所以很多人選擇當老師 公務人員因為生活比較安定現在選擇也比較多所以我想以前選擇也很多有些經濟蓬勃發展的過程當中商業環境優渥還是很多不一樣的選擇
transcript.whisperx[22].start 494.941
transcript.whisperx[22].end 524.042
transcript.whisperx[22].text 那我拿一個客觀數據 因為講感覺不準嘛講個客觀數據嘛你知道在馬英九執政的時候他公務人員報考人數最高可以到多少人哪一年最高2009年啦50萬人啦50萬人 最高啦他平均大概保持到將近40萬嘛但是最高曾經到50萬嘛 對不對那你知道去年公務人員報考人數剩多少
transcript.whisperx[23].start 527.046
transcript.whisperx[23].end 546.431
transcript.whisperx[23].text 16萬啦大概不到2016萬啦如果從這個國民黨執政把政府所有的50萬做最高點來算到16萬那是掉7成啦掉7%那就算是以所謂40萬來算那也掉到6成啦少了6成欸
transcript.whisperx[24].start 547.796
transcript.whisperx[24].end 563.536
transcript.whisperx[24].text 我想請問你這客觀數據到底展現出什麼樣的一個狀況公務人員今天為什麼報考人數大減你不要跟我講掃紙化喔台灣的掃紙化也沒有掃到說今天掉六成七成沒有喔 沒錯吧
transcript.whisperx[25].start 564.964
transcript.whisperx[25].end 585.66
transcript.whisperx[25].text 沒有到七成 大概今年會到十一萬左右這樣的幅度還是蠻大的這樣的幅度大啊但是我也跟你講就是說也沒有到今天公務人員報考人數跌幅這麼深啊 沒錯吧我覺得比較客觀來講應該是整個經濟環境跟以前真的很不一樣我要跟我們的主計長講
transcript.whisperx[26].start 589.002
transcript.whisperx[26].end 612.688
transcript.whisperx[26].text 你講說經濟環境講年輕人選擇職業的多樣化這些都是每個時代都有啦有經濟有繁榮有低迷台灣這麼多年來都是如此但公務人員報考的人數是一直在上升的那回頭為什麼要問這些事情為什麼跟你講一件事情請問你贊成今天國民黨主張的停侃年金嗎停侃公務員年金嗎
transcript.whisperx[27].start 613.942
transcript.whisperx[27].end 637.069
transcript.whisperx[27].text 我覺得這個議題是要從國家整體的那種潛藏負債的角度來看我跟任市長講 你知道我向來不為難你啦你現在主要的執政的政策不是你也不敢講出跟執政政策不一樣的方向但我今天很客觀告訴你如果今天我們公務人員報考人數還是一樣維持在40萬 50萬
transcript.whisperx[28].start 639.329
transcript.whisperx[28].end 653.408
transcript.whisperx[28].text 你年金砍到一直砍他還是維持這麼多報考人數代表這個起碼有個客觀指標他還是一個吸引人的職業現在不是啊我們沒有反對今天所謂退休金或年金
transcript.whisperx[29].start 654.643
transcript.whisperx[29].end 677.1
transcript.whisperx[29].text 今天要做適度的調整公務人員也沒反對喔他沒有國家一輩子付出奉獻那你所得替代一直砍砍砍現在砍到七成以下他們還是願意接受這些所謂的年金的調整可是今天非常卑微是什麼因為已經砍到傷筋動骨了嘛我講白了 人事長你做人事長喔
transcript.whisperx[30].start 678.294
transcript.whisperx[30].end 686.29
transcript.whisperx[30].text 公務人員體系的所有的用人的狀況你是最了解的你真的我不勉強你說這句話但我相信心知肚明
transcript.whisperx[31].start 687.276
transcript.whisperx[31].end 714.144
transcript.whisperx[31].text 現在公務員其實光榮感是受很大的一個所謂的折損那他生活保障跟退休保障的待遇他也被現在政府尤其是退休保障有非常大的削減的時候他當然降低了他對所謂的職業的選擇的吸引力啊那為什麼我們今天要主張停砍停砍才是真改革因為你砍過頭你傷害的是國家啦
transcript.whisperx[32].start 715.686
transcript.whisperx[32].end 740.821
transcript.whisperx[32].text 當年那麼多的文官奠基出來的台灣經濟的榮景今天你這樣去傷害他們不要講不公道你已經妨礙了國家的運作很多地方公務員也找不到老師也找不到人都有這個問題開始出現一個國家如果沒有好的文官來做支撐請問如何去因應多變的局面跟複雜的跟重要的國家建設跟政策呢
transcript.whisperx[33].start 741.701
transcript.whisperx[33].end 752.772
transcript.whisperx[33].text 所以這邊我還是要再次呼籲一件事情真的也拜託今天我們的執政者或中央政府高抬貴手年金這個題目停砍才是真的改革謝謝
gazette.lineno 382
gazette.blocks[0][0] 羅委員智強:(10時12分)謝謝主席,有請人事長。
gazette.blocks[1][0] 主席:請人事長。
gazette.blocks[2][0] 蘇人事長俊榮:委員早安。
gazette.blocks[3][0] 羅委員智強:人事長早。請問人事長知道什麼是十大建設?有哪10個建設?
gazette.blocks[4][0] 蘇人事長俊榮:是蔣經國時代的嗎?
gazette.blocks[5][0] 羅委員智強:對、對、對。
gazette.blocks[6][0] 蘇人事長俊榮:大概有高速公路、中鋼、中船。
gazette.blocks[7][0] 羅委員智強:高速公路、中鋼、中船、中正國際機場,對不對?
gazette.blocks[8][0] 蘇人事長俊榮:機場,大概是以交通為主體,還有一些產業的……
gazette.blocks[9][0] 羅委員智強:中山高速公路。
gazette.blocks[10][0] 蘇人事長俊榮:以交通為主體,陸、海、空,還有船港……
gazette.blocks[11][0] 羅委員智強:臺中港、蘇澳港、石化工業、核能發電廠。我想請教一下人事長,你知道當時十大建設,對我們臺灣帶來什麼樣的效益?
gazette.blocks[12][0] 蘇人事長俊榮:就像小孩要轉大人那樣,就是政府引領一個國家要轉型一個很重要、重大的投資。
gazette.blocks[13][0] 羅委員智強:對,第一個,是抵抗當時石油危機帶來的經濟不景氣,這是短期面,長期就是你說的轉大人,臺灣創造現代化的基礎建設,也改善我們的投資環境,包括鋼鐵、造船、石化工業,都可以提高我們一些原料的自主度,降低對外依賴的程度,為我們的工業轉型奠定非常好的基礎,所以臺灣今天所謂的經濟奇蹟跟這個十大基礎建設有非常高度的關係,對不對?
gazette.blocks[14][0] 蘇人事長俊榮:一定是非常有關啦!
gazette.blocks[15][0] 羅委員智強:我想請教您,你覺得十大建設最大的功臣有哪些人?
gazette.blocks[16][0] 蘇人事長俊榮:大概有孫運璿,還有我們中鋼趙耀東,帶頭的是我們蔣經國前總統,當然這裡面默默奉獻的有更多人啦!
gazette.blocks[17][0] 羅委員智強:默默奉獻更多的是指哪一些人?
gazette.blocks[18][0] 蘇人事長俊榮:有些人都沒出名,他就默默做。
gazette.blocks[19][0] 羅委員智強:我跟人事長說,就是你!你知道嗎?就是跟你一樣,奉公守法、兢兢業業,為國家服務、打拚的公務員,對不對?沒有這些文官,沒有辦法執行這些政務官的政策嘛!
gazette.blocks[20][0] 蘇人事長俊榮:公務人員本來就是國家安定、穩定,還有發展一個非常、非常重要的因素,可是他們平常很少被highlight出來。
gazette.blocks[21][0] 羅委員智強:沒錯。
gazette.blocks[22][0] 蘇人事長俊榮:他們是默默在做,很默默在做。
gazette.blocks[23][0] 羅委員智強:就是無名英雄。當年,你會發現除了一些優秀的政務官,我們講的一些專業的國營事業經營者,還有一些非常優秀的文官,專業、認真、忠誠,為我們國家建設在打拚的公務員,是他們打造了今天臺灣堅實的基礎建設跟經濟基礎。
gazette.blocks[23][1] 那我再問,你知道現在臺灣其實我們的經濟產業裡面重中之重是高科技產業,對不對?
gazette.blocks[24][0] 蘇人事長俊榮:從10年前的資通訊產業,這五、六年就直接跨到半導體,當然未來還是會以AI為主體的產業,它會延展出來,譬如像光通訊,還有量子運算相關的領域,還有醫療科技的部分,我覺得是臺灣非常有機會的區塊。
gazette.blocks[25][0] 羅委員智強:非常好,但其中有一個我們講的,等於是臺灣高科技產業的孵化器,就是新竹科學園區,包括台積電,當年在奠基的時候,也是你剛剛講的那些人,包括孫運璿、李國鼎等很多優秀的政務官,打造這些高科技的搖籃,還是有一群默默無名的英雄,是誰?你剛講過了嘛!
gazette.blocks[26][0] 蘇人事長俊榮:從工研院出來的這一些人,坦白講,工研院對臺灣來講很重要,這裡面大家耳熟能詳的就是孫運璿以前在台電,後來有李國鼎K.T.,還有相關的這些人,我覺得他always在這個領域會是大家認為非常無可取代的位置。
gazette.blocks[27][0] 羅委員智強:我覺得人事長講得很好,我為什麼要問你這些事情,知道嗎?因為你會看到,在那個年代當中,第一個,我們整個社會的景象是這樣,有一些非常優秀、有遠見、前瞻力、魄力的政務官,帶著一群有專業、熱情來為國家奉獻的公務員,所以兩個合作起來打拚,打造了今天臺灣非常堅實,不管是產業的基礎,還是我們講的工業基礎,乃至於經濟發展的基礎,當時的公務員說實在話,人事長,你也是一路公務員上來,公務員在當時應該還算是一個蠻光榮的行業,對不對?
gazette.blocks[28][0] 蘇人事長俊榮:穩定啦!光榮的話,我覺得就是奉獻國家一個蠻好的途徑。
gazette.blocks[29][0] 羅委員智強:非常好,我跟人事長講,我當兵退伍也考上公務員,考過高考分派到公平交易委員會,我印象非常深刻,當我回去跟爸爸、媽媽講,我考上公務員之後,我媽、爸那開心的樣子,我相信人事長,你應該有經歷過這個過程吧?
gazette.blocks[30][0] 蘇人事長俊榮:沒有,我被罵,問我為什麼要去公家機關。
gazette.blocks[31][0] 羅委員智強:代表你的能力很好,你父母親不希望你當公務員,是這個意思嗎?我要講一件事,拉回來一個重點,事實上,過去我們政治環境或是政府環境裡面,公務員是很有光榮感的,那時候國家也很照顧公務員,國家也很需要有優秀的文官作為我們今天政府的支柱,但是我想請問你,跟過去比起來,公務員還是一個吸引人的職業選擇嗎?還是嗎?
gazette.blocks[32][0] 蘇人事長俊榮:整體來講是啦!
gazette.blocks[33][0] 羅委員智強:是嗎?
gazette.blocks[34][0] 蘇人事長俊榮:可是有些不一樣的時空環境,現在年輕人對他工作的期待,很多人不願意選擇朝九晚五,他希望他的上班時間可以更加輕鬆。
gazette.blocks[35][0] 羅委員智強:人事長,你講這個我不是很認同啦!我也不認為時代會改變什麼樣人的習性啦!你也可以講我在當兵退伍那一年,我可能也不一定喜歡朝九晚五的工作,如果自由自在又有好薪水、又有好待遇、又有好的退休保障,然後又有光榮感的工作,我還是願意去做,不要朝九晚五啊,所以這跟時代無關。基本上有一個比較彈性自由的工作環境,那是每個時代都會有人嚮往的,可是為什麼以前……我就只問你一件事,跟以前比、跟20年前、跟30年前比,我們就講跟10年前相比好了,你覺得公務員還是一個吸引人的職業選擇嗎?
gazette.blocks[36][0] 蘇人事長俊榮:我覺得換個角度來看,以前選擇的機會比較少,所以很多人選擇當老師、公務人員,因為生活比較安定,但現在選擇也比較多,所以我想……
gazette.blocks[37][0] 羅委員智強:以前選擇也很多啦!在經濟蓬勃發展過程當中,商業環境優渥,還是有很多不一樣的選擇。我拿一個客觀的數據來講,因為講感覺不準,我講個客觀數據,你知道在馬英九執政的時候,公務人員報考人數最高可以到多少人?哪一年最高?是2009年,50萬人啦!
gazette.blocks[38][0] 蘇人事長俊榮:30、40萬以上……
gazette.blocks[39][0] 羅委員智強:最高50萬人,它平均大概保持將近40萬,但是最高曾經到50萬,對不對?那你知道去年公務人員報考人數剩多少?16萬啦!
gazette.blocks[40][0] 蘇人事長俊榮:大概不到20。
gazette.blocks[41][0] 羅委員智強:16萬啦!如果從國民黨執政馬政府時候的50萬最高點來算,到現在16萬,那是掉七成、70%,就算以40萬來算,那也掉到六成啦,少了六成耶!我想請問你,這客觀數據到底展現出什麼樣的狀況?今天公務人員為什麼報考人數大減?你不要跟我講少子化喔!臺灣的少子化也沒有少到會讓今天掉六成、七成喔,沒有喔,沒錯吧!
gazette.blocks[42][0] 蘇人事長俊榮:沒有到七成啦,今年大概會到11萬左右啦!降的幅度還是蠻大的……
gazette.blocks[43][0] 羅委員智強:降的幅度大啊!但是我也跟你講,影響也沒有大到會讓今天公務人員報考人數跌幅這麼深,沒錯吧?
gazette.blocks[44][0] 蘇人事長俊榮:我覺得比較客觀來講,應該是整個經濟環境跟以前真的很不一樣。
gazette.blocks[45][0] 羅委員智強:我要跟人事長講,你講經濟環境、講年輕人選擇職業多樣化,這些每個時代都有,經濟有繁榮、有低迷,臺灣這麼多年來都是如此,但以前公務人員報考的人數是一直在上升的啊!回頭看為什麼我要問你這些,我想跟你講一件事情,請問你贊成今天國民黨主張的停砍公務員年金嗎?
gazette.blocks[46][0] 蘇人事長俊榮:我覺得這個議題是要從國家整體潛藏負債的角度來看……
gazette.blocks[47][0] 羅委員智強:我跟人事長講,你知道我向來不為難你,現在主要執政的政策不是……你也不敢講出跟執政政策不一樣的方向。我今天很客觀告訴你,如果今天公務人員報考人數還是一樣維持在40萬、50萬,年金一直砍它還是維持這麼多報考人數,代表這個起碼有個客觀指標,即公務員還是一個吸引人的職業,但現在不是啊!我們沒有反對今天所謂退休金或年金要做適度的調整,公務人員也沒反對,雖然他們為國家一輩子付出奉獻,所得替代率一直砍、砍、砍,現在砍到七成以下,他們還是願意接受這些所謂的年金調整。可是今天非常卑微是什麼?因為已經砍到傷筋見骨了,我講白了,你作為人事長,公務人員體系所有用人的狀況,你是最了解的,真的,我不勉強你說這句話,但我相信你心知肚明,其實現在公務員光榮感是受到很大的折損,他生活保障跟退休保障的待遇也被政府……尤其退休保障上有非常大的刪減、削減的時候,當然會降低了對他職業選擇的吸引力啊!
gazette.blocks[47][1] 為什麼我們今天要主張停砍?停砍才是真改革,因為你砍過頭,你傷害的是國家啦!當年那麼多的文官奠基出來臺灣經濟的榮景,今天你這樣去傷害他們,不要講不公道,你已經妨礙了國家的運作,其實很多地方找不到公務員,連老師也找不到,都有這些問題已經開始出現。一個國家如果沒有好的文官來支撐,請問如何去因應多變的局面,以及執行複雜的、重要的國家建設跟政策呢?所以我還是要再次呼籲一件事情,真的也拜託今天我們的執政者、中央政府高抬貴手,針對年金這個題目,停砍才是真的改革,謝謝。
gazette.blocks[48][0] 蘇人事長俊榮:謝謝委員。
gazette.blocks[49][0] 主席:謝謝羅智強委員。召委主持會議時不只要讓議事順暢,我也要注意大家的健康,我剛剛看到會議室ppm監測一直飆,從1,600降到1,100,二氧化碳應該要在1,000 ppm以內……
gazette.blocks[50][0] 羅委員智強:我上去時就到1,400……
gazette.blocks[51][0] 主席:沒有,沒有,你剛到1,100,現在又上去了,奇怪了,窗戶都已經打開了……
gazette.blocks[52][0] 羅委員智強:我剛才是1,600,我有特別看。
gazette.blocks[53][0] 主席:超過1,600 ppm人會嘔吐、會頭暈、會胸悶,所以我要注意大家的健康,再打開一個窗戶好不好?因為又升到1,400,這個就比較奇怪了,因為今天大家都有氣無力的,你看人事長說到快打瞌睡,質詢的大家都快要睡著了,這個就很怪,主席有義務維持會場……
gazette.blocks[54][0] 羅委員智強:你昨天熬夜,現在怪它……
gazette.blocks[55][0] 主席:不是,不是,我是真的在盯二氧化碳的濃度,像現在1,400了,等等看王鴻薇委員質詢的時候會不會再降下來。
gazette.blocks[55][1] 我們現在請王鴻薇委員詢答。
gazette.agenda.page_end 332
gazette.agenda.meet_id 委員會-11-4-36-5
gazette.agenda.speakers[0] 莊瑞雄
gazette.agenda.speakers[1] 吳宗憲
gazette.agenda.speakers[2] 陳培瑜
gazette.agenda.speakers[3] 黃國昌
gazette.agenda.speakers[4] 林倩綺
gazette.agenda.speakers[5] 王義川
gazette.agenda.speakers[6] 羅智強
gazette.agenda.speakers[7] 王鴻薇
gazette.agenda.speakers[8] 吳思瑤
gazette.agenda.speakers[9] 翁曉玲
gazette.agenda.speakers[10] 葉元之
gazette.agenda.speakers[11] 伍麗華Saidhai‧Tahovecahe
gazette.agenda.speakers[12] 沈發惠
gazette.agenda.speakers[13] 傅崐萁
gazette.agenda.page_start 279
gazette.agenda.meetingDate[0] 2025-10-29
gazette.agenda.gazette_id 1148901
gazette.agenda.agenda_lcidc_ids[0] 1148901_00007
gazette.agenda.meet_name 立法院第11屆第4會期司法及法制委員會第5次全體委員會議紀錄
gazette.agenda.content 邀請行政院人事行政總處人事長列席報告業務概況及立法計畫,並備質詢
gazette.agenda.agenda_id 1148901_00006