iVOD / 164691

Field Value
IVOD_ID 164691
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/164691
日期 2025-10-23
會議資料.會議代碼 委員會-11-4-19-7
會議資料.會議代碼:str 第11屆第4會期經濟委員會第7次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 7
會議資料.種類 委員會
會議資料.委員會代碼[0] 19
會議資料.委員會代碼:str[0] 經濟委員會
會議資料.標題 第11屆第4會期經濟委員會第7次全體委員會議
影片種類 Clip
開始時間 2025-10-23T12:11:58+08:00
結束時間 2025-10-23T12:18:38+08:00
影片長度 00:06:40
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/1f1f5c91750503d3b1da2b8bd57d2b4ccbd78a287304ef9f226cb2fc3325232710497944ed0372c35ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 徐欣瑩
委員發言時間 12:11:58 - 12:18:38
會議時間 2025-10-23T09:00:00+08:00
會議名稱 立法院第11屆第4會期經濟委員會第7次全體委員會議(事由:邀請農業部部長及財政部關務署首長就「非洲豬瘟防檢疫後續防疫精進作為」進行報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 7.54034375
transcript.pyannote[0].end 10.96596875
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 10.96596875
transcript.pyannote[1].end 11.96159375
transcript.pyannote[2].speaker SPEAKER_02
transcript.pyannote[2].start 18.55971875
transcript.pyannote[2].end 19.09971875
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 19.25159375
transcript.pyannote[3].end 23.84159375
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 24.60096875
transcript.pyannote[4].end 27.46971875
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 27.82409375
transcript.pyannote[5].end 42.89346875
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 43.11284375
transcript.pyannote[6].end 45.13784375
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 45.34034375
transcript.pyannote[7].end 47.38221875
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 47.71971875
transcript.pyannote[8].end 50.58846875
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 51.29721875
transcript.pyannote[9].end 56.49471875
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 57.16971875
transcript.pyannote[10].end 74.07846875
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 73.87596875
transcript.pyannote[11].end 76.30596875
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 75.69846875
transcript.pyannote[12].end 76.00221875
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 76.62659375
transcript.pyannote[13].end 92.40471875
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 90.49784375
transcript.pyannote[14].end 91.57784375
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 93.14721875
transcript.pyannote[15].end 96.89346875
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 95.54346875
transcript.pyannote[16].end 95.86409375
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 97.31534375
transcript.pyannote[17].end 98.02409375
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 98.02409375
transcript.pyannote[18].end 108.63846875
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 108.70596875
transcript.pyannote[19].end 109.14471875
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 109.63409375
transcript.pyannote[20].end 114.07221875
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 114.84846875
transcript.pyannote[21].end 120.87284375
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 117.86909375
transcript.pyannote[22].end 118.18971875
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 121.00784375
transcript.pyannote[23].end 125.26034375
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 121.24409375
transcript.pyannote[24].end 121.46346875
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 124.78784375
transcript.pyannote[25].end 133.46159375
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 133.52909375
transcript.pyannote[26].end 136.07721875
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 134.22096875
transcript.pyannote[27].end 136.14471875
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 136.31346875
transcript.pyannote[28].end 137.10659375
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 137.54534375
transcript.pyannote[29].end 139.01346875
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 139.18221875
transcript.pyannote[30].end 141.64596875
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 141.86534375
transcript.pyannote[31].end 142.86096875
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 142.32096875
transcript.pyannote[32].end 143.94096875
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 144.32909375
transcript.pyannote[33].end 144.63284375
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 145.22346875
transcript.pyannote[34].end 147.58596875
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 147.90659375
transcript.pyannote[35].end 149.34096875
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 149.34096875
transcript.pyannote[36].end 150.92721875
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 150.31971875
transcript.pyannote[37].end 152.61471875
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 152.24346875
transcript.pyannote[38].end 159.14534375
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 159.46596875
transcript.pyannote[39].end 163.53284375
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 164.52846875
transcript.pyannote[40].end 165.54096875
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 164.69721875
transcript.pyannote[41].end 164.98409375
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 166.82346875
transcript.pyannote[42].end 169.82721875
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 168.47721875
transcript.pyannote[43].end 171.73409375
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 171.63284375
transcript.pyannote[44].end 171.76784375
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 171.76784375
transcript.pyannote[45].end 171.85221875
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 171.85221875
transcript.pyannote[46].end 177.37034375
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 171.93659375
transcript.pyannote[47].end 173.69159375
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 178.41659375
transcript.pyannote[48].end 178.43346875
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 178.43346875
transcript.pyannote[49].end 179.22659375
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 179.63159375
transcript.pyannote[50].end 179.93534375
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 179.93534375
transcript.pyannote[51].end 179.95221875
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 179.95221875
transcript.pyannote[52].end 180.03659375
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 180.03659375
transcript.pyannote[53].end 181.55534375
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 182.43284375
transcript.pyannote[54].end 200.55659375
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 190.43159375
transcript.pyannote[55].end 190.58346875
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 190.95471875
transcript.pyannote[56].end 192.01784375
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 199.08846875
transcript.pyannote[57].end 204.25221875
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 204.25221875
transcript.pyannote[58].end 212.30159375
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 206.53034375
transcript.pyannote[59].end 206.59784375
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 206.61471875
transcript.pyannote[60].end 206.64846875
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 210.74909375
transcript.pyannote[61].end 212.28471875
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 212.30159375
transcript.pyannote[62].end 213.65159375
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 212.74034375
transcript.pyannote[63].end 219.18659375
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 216.16596875
transcript.pyannote[64].end 216.48659375
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 219.28784375
transcript.pyannote[65].end 225.37971875
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 226.30784375
transcript.pyannote[66].end 226.32471875
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 226.32471875
transcript.pyannote[67].end 234.30659375
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 233.39534375
transcript.pyannote[68].end 253.07159375
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 249.89909375
transcript.pyannote[69].end 251.48534375
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 252.61596875
transcript.pyannote[70].end 268.51221875
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 268.95096875
transcript.pyannote[71].end 269.69346875
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 269.92971875
transcript.pyannote[72].end 273.08534375
transcript.pyannote[73].speaker SPEAKER_03
transcript.pyannote[73].start 273.08534375
transcript.pyannote[73].end 273.10221875
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 273.10221875
transcript.pyannote[74].end 273.18659375
transcript.pyannote[75].speaker SPEAKER_03
transcript.pyannote[75].start 273.18659375
transcript.pyannote[75].end 274.53659375
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 274.53659375
transcript.pyannote[76].end 274.62096875
transcript.pyannote[77].speaker SPEAKER_03
transcript.pyannote[77].start 274.62096875
transcript.pyannote[77].end 274.63784375
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 275.44784375
transcript.pyannote[78].end 275.46471875
transcript.pyannote[79].speaker SPEAKER_03
transcript.pyannote[79].start 275.46471875
transcript.pyannote[79].end 283.29471875
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 282.48471875
transcript.pyannote[80].end 284.35784375
transcript.pyannote[81].speaker SPEAKER_03
transcript.pyannote[81].start 284.50971875
transcript.pyannote[81].end 285.97784375
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 285.23534375
transcript.pyannote[82].end 285.99471875
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 286.21409375
transcript.pyannote[83].end 286.80471875
transcript.pyannote[84].speaker SPEAKER_03
transcript.pyannote[84].start 286.73721875
transcript.pyannote[84].end 295.66409375
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 287.34471875
transcript.pyannote[85].end 288.39096875
transcript.pyannote[86].speaker SPEAKER_03
transcript.pyannote[86].start 296.00159375
transcript.pyannote[86].end 299.57909375
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 298.97159375
transcript.pyannote[87].end 322.98471875
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 323.52471875
transcript.pyannote[88].end 342.37409375
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 340.87221875
transcript.pyannote[89].end 344.48346875
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 343.97721875
transcript.pyannote[90].end 345.22596875
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 344.68596875
transcript.pyannote[91].end 356.90346875
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 356.04284375
transcript.pyannote[92].end 359.28284375
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 359.40096875
transcript.pyannote[93].end 363.92346875
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 361.67909375
transcript.pyannote[94].end 362.60721875
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 363.34971875
transcript.pyannote[95].end 374.36909375
transcript.pyannote[96].speaker SPEAKER_02
transcript.pyannote[96].start 372.05721875
transcript.pyannote[96].end 372.22596875
transcript.pyannote[97].speaker SPEAKER_02
transcript.pyannote[97].start 373.08659375
transcript.pyannote[97].end 376.29284375
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 375.61784375
transcript.pyannote[98].end 378.70596875
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 378.48659375
transcript.pyannote[99].end 380.44409375
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 379.71846875
transcript.pyannote[100].end 380.56221875
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 380.78159375
transcript.pyannote[101].end 385.65846875
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 386.23221875
transcript.pyannote[102].end 391.00784375
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 388.86471875
transcript.pyannote[103].end 390.14721875
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 390.72096875
transcript.pyannote[104].end 391.22721875
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 391.15971875
transcript.pyannote[105].end 395.98596875
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 392.57721875
transcript.pyannote[106].end 392.99909375
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 395.49659375
transcript.pyannote[107].end 400.12034375
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 399.09096875
transcript.pyannote[108].end 400.15409375
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 400.81221875
transcript.pyannote[109].end 400.96409375
transcript.whisperx[0].start 8.505
transcript.whisperx[0].end 11.549
transcript.whisperx[0].text 謝謝主席 本席有請部長 陳部長我們再請陳部長部長好我想我們的邊境防疫
transcript.whisperx[1].start 25.173
transcript.whisperx[1].end 44.269
transcript.whisperx[1].text 出現了危機大家都覺得應該要想辦法改進但是有些委員一直覺得這跟沒宣費有關我想應該不是所以我今天要就邊境防疫的危機我們覺得防線潰堤的部分要來跟部長來討論我們這一次114年邊境查驗的
transcript.whisperx[2].start 51.345
transcript.whisperx[2].end 74.852
transcript.whisperx[2].text 截至114年10月21號邊境查驗了9507件其中有996件病毒查驗是陽性等於是我們的病毒陽性率高達10%那這是不是已經證明我們邊境防線出現了系統性的潰堤嚴重危險我想不能用這個數據因為
transcript.whisperx[3].start 76.753
transcript.whisperx[3].end 91.104
transcript.whisperx[3].text 我們邊境查驗是看到就是夾帶了以後我們去查驗那查驗的時候有一些不同的國家那這些是針對可能的包括你剛才說10%那這10%裡面也有80%是從氣質它放在垃圾桶裡面我們去檢查的
transcript.whisperx[4].start 98.63
transcript.whisperx[4].end 110.776
transcript.whisperx[4].text 所以它本身就是有可能是肉製品的我們又去查然後有非洲豬瘟陽性的是10%那其中大概有八成是來自中國的部分所以我們現在在機場我們現在在機場的檢驗
transcript.whisperx[5].start 114.878
transcript.whisperx[5].end 138.476
transcript.whisperx[5].text 一般認為是不是有需要改善比如說你高度的仰賴人力那你X光機的判讀可能有一些問題或是什麼我跟委員報告我們從開始啟動整個邊境的防疫是由跨部會不同的機關來處理分幾個層次而且我們一直在精進好沒關係我問重點好了現在有我們這個如果被這個發現是財閥20萬對不對20萬他如果他
transcript.whisperx[6].start 145.742
transcript.whisperx[6].end 165.284
transcript.whisperx[6].text 據入境他就可以不用罰他以後就不能再入境了以後就不能再入境大概有600多 629個人所以我們的這個檢查的制度是不是要調整我們現在對於入境的旅客你是看依據區域是不是高風險區域你才查還是都查
transcript.whisperx[7].start 166.877
transcript.whisperx[7].end 180.885
transcript.whisperx[7].text 都會去查但是高風險區的話我記得我們出國回來好像都不是高風險區的部分是百分之百然後非高風險區的話是用抽查的方式通道的時候嘛
transcript.whisperx[8].start 182.726
transcript.whisperx[8].end 191.971
transcript.whisperx[8].text 那是分兩個部分如果說是在我們檢疫之前那我們有設我們的藍線跟紅線綠線跟紅線那那個部分是提醒如果在那個地方如果有檢驗這個違規的產品的話你丟棄那麼你在進來海關的時候你不會被罰我說的問題是你綠線給他自主性的走綠線但實際上他搞不好夾帶進來那這樣到海關的時候他一定被罰
transcript.whisperx[9].start 209.46
transcript.whisperx[9].end 224.758
transcript.whisperx[9].text 那只要租的製品被查出來他到海關他怎麼會被查到我們有兩道防線啦我們的叫做預防性我們的是設在前面叫預防性那如果民眾配合在那個時候守規矩的話可能在後面被海關截下來的時候就不會被罰
transcript.whisperx[10].start 226.363
transcript.whisperx[10].end 243.966
transcript.whisperx[10].text 你海關你用什麼檢查X光對啊 所以我們就說你這X光可能人力的配置我們分兩個層次一個層次就是說我們在入關之前我們會提醒你如果主動丟棄的話我們是不罰的可是一旦入關你又被查到的時候那你就會被罰
transcript.whisperx[11].start 244.767
transcript.whisperx[11].end 265.834
transcript.whisperx[11].text 然後另外委員一直關心的就是X光機的部分的判試我們現在也盡快用AI化就是AI化的方式去進行因為我時間的關係那我想請教我們是否應該擴大WOAH國際合作共享病毒株序列可以做到超前預測變異風險讓我們的篩檢試劑跑在病毒前面這個可以嗎
transcript.whisperx[12].start 270.16
transcript.whisperx[12].end 295.355
transcript.whisperx[12].text 我想這個部分我請我們的受益所來回應因為比較技術面的問題是有關那個病毒株序列的事情我們都會公佈在上面我們也因為分享在網路上我們能做到超前預測嗎基本上比較不容易對 因為這病毒它也是DNA病毒變異本身就比RNA病毒還要小變異的機率比較小而且它病毒的基因序列又比較大
transcript.whisperx[13].start 296.135
transcript.whisperx[13].end 322.81
transcript.whisperx[13].text 所以我们不容易做到预测病毒会往哪个方向去是不是可以看看仿效其他国家有更先进的我们想办法来做那接着最后最后一个问题就是有关我们画质数据的部分画质数据这个部分部长我们应该要能够有及时的机动的监测而不是事后才发现现在像我很快举例像我们现在
transcript.whisperx[14].start 323.75
transcript.whisperx[14].end 341.61
transcript.whisperx[14].text 銀行他不是有很多警示帳戶嗎只要有有異常的他就會跳出來現在你們對畫質數據有沒有動態的數據只要畫質車你的數據重量你隨時你等於有一個機制那發現異常他就跳出來我們現在就有這個機制
transcript.whisperx[15].start 344.313
transcript.whisperx[15].end 358.058
transcript.whisperx[15].text 現在什麼時候我們畫製廠本身的這些後台的數據那我們有設定不同規模的時候它的不同百分比的異常死亡那就變成異常 異常的話它自動跳出來這一次怎麼會那麼慢
transcript.whisperx[16].start 359.691
transcript.whisperx[16].end 384.724
transcript.whisperx[16].text 這就是我們有 我們才一直提醒可是也是事後耶 也是事後因為當你發現那個死亡的豬隻的重量車輛的數量異常的時候你應該馬上就可以發現對 這一次就是因為異常 我們看到異常你們也是事後嘛 不是即時的監測算是即時的 就是即時的算是即時 然後我們也通報地方政府地方政府同步也可以看到這個數據啦
transcript.whisperx[17].start 386.254
transcript.whisperx[17].end 399.58
transcript.whisperx[17].text 好 所以我們還是希望預防勝於菩薩我們大家一起來努力包含邊境的防疫還有我們這個即時的監測數據我想我們會持續的精進也不會把這個強度降低好 謝謝