iVOD / 164586

Field Value
IVOD_ID 164586
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/164586
日期 2025-10-22
會議資料.會議代碼 委員會-11-4-20-3
會議資料.會議代碼:str 第11屆第4會期財政委員會第3次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 3
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第4會期財政委員會第3次全體委員會議
影片種類 Clip
開始時間 2025-10-22T11:40:52+08:00
結束時間 2025-10-22T11:51:35+08:00
影片長度 00:10:43
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/615807a88c5be4da6d44156560af7a77e29853ba2d60c06d83c966d97180d5d26df76adf96966f6f5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 羅明才
委員發言時間 11:40:52 - 11:51:35
會議時間 2025-10-22T09:00:00+08:00
會議名稱 立法院第11屆第4會期財政委員會第3次全體委員會議(事由:邀請行政院主計總處、財政部就「中央對直轄市及縣(市)政府補助辦法修正後,一般性補助款審查與評比基準、財務計畫檢核基礎、撥款方式等規範及作業程序為何?修改財力級次計算公式之合理性及對各縣市補助款影響為何?計畫型補助款範圍與業務定義?對各縣市未來整體財政補助金額之影響」進行專題報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 8.65409375
transcript.pyannote[0].end 11.80971875
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 12.23159375
transcript.pyannote[1].end 14.45909375
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 14.61096875
transcript.pyannote[2].end 18.66096875
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 15.97784375
transcript.pyannote[3].end 17.37846875
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 18.69471875
transcript.pyannote[4].end 19.04909375
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 21.85034375
transcript.pyannote[5].end 25.15784375
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 23.16659375
transcript.pyannote[6].end 23.79096875
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 26.08596875
transcript.pyannote[7].end 30.01784375
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 30.43971875
transcript.pyannote[8].end 35.87346875
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 36.71721875
transcript.pyannote[9].end 42.37034375
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 40.46346875
transcript.pyannote[10].end 44.69909375
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 44.42909375
transcript.pyannote[11].end 44.63159375
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 44.69909375
transcript.pyannote[12].end 44.86784375
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 45.49221875
transcript.pyannote[13].end 47.98971875
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 48.83346875
transcript.pyannote[14].end 50.45346875
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 50.75721875
transcript.pyannote[15].end 51.41534375
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 50.95971875
transcript.pyannote[16].end 52.05659375
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 52.14096875
transcript.pyannote[17].end 53.27159375
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 53.27159375
transcript.pyannote[18].end 53.32221875
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 53.32221875
transcript.pyannote[19].end 56.24159375
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 53.40659375
transcript.pyannote[20].end 55.97159375
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 56.24159375
transcript.pyannote[21].end 56.41034375
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 56.41034375
transcript.pyannote[22].end 56.96721875
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 56.52846875
transcript.pyannote[23].end 56.54534375
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 56.96721875
transcript.pyannote[24].end 56.98409375
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 56.98409375
transcript.pyannote[25].end 57.82784375
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 57.64221875
transcript.pyannote[26].end 64.88159375
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 64.88159375
transcript.pyannote[27].end 67.66596875
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 65.60721875
transcript.pyannote[28].end 67.12596875
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 67.83471875
transcript.pyannote[29].end 72.79596875
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 71.29409375
transcript.pyannote[30].end 72.27284375
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 73.48784375
transcript.pyannote[31].end 76.91346875
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 77.13284375
transcript.pyannote[32].end 79.22534375
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 79.22534375
transcript.pyannote[33].end 81.46971875
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 81.58784375
transcript.pyannote[34].end 82.85346875
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 82.85346875
transcript.pyannote[35].end 83.02221875
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 83.02221875
transcript.pyannote[36].end 83.17409375
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 83.34284375
transcript.pyannote[37].end 83.35971875
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 83.35971875
transcript.pyannote[38].end 83.42721875
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 83.42721875
transcript.pyannote[39].end 86.31284375
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 86.43096875
transcript.pyannote[40].end 94.75034375
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 95.32409375
transcript.pyannote[41].end 95.74596875
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 96.20159375
transcript.pyannote[42].end 97.78784375
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 98.44596875
transcript.pyannote[43].end 99.27284375
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 99.62721875
transcript.pyannote[44].end 101.97284375
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 102.49596875
transcript.pyannote[45].end 105.01034375
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 105.93846875
transcript.pyannote[46].end 107.32221875
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 107.98034375
transcript.pyannote[47].end 112.89096875
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 113.29596875
transcript.pyannote[48].end 114.17346875
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 114.52784375
transcript.pyannote[49].end 116.01284375
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 116.73846875
transcript.pyannote[50].end 125.15909375
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 126.00284375
transcript.pyannote[51].end 127.38659375
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 128.19659375
transcript.pyannote[52].end 129.58034375
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 131.08221875
transcript.pyannote[53].end 132.14534375
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 132.80346875
transcript.pyannote[54].end 133.93409375
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 134.52471875
transcript.pyannote[55].end 136.06034375
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 136.65096875
transcript.pyannote[56].end 137.15721875
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 137.66346875
transcript.pyannote[57].end 138.70971875
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 139.40159375
transcript.pyannote[58].end 139.82346875
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 140.34659375
transcript.pyannote[59].end 141.29159375
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 141.54471875
transcript.pyannote[60].end 142.33784375
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 142.62471875
transcript.pyannote[61].end 143.35034375
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 143.70471875
transcript.pyannote[62].end 144.91971875
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 145.59471875
transcript.pyannote[63].end 146.15159375
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 147.18096875
transcript.pyannote[64].end 147.77159375
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 148.85159375
transcript.pyannote[65].end 169.27034375
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 171.21096875
transcript.pyannote[66].end 172.13909375
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 173.26971875
transcript.pyannote[67].end 174.36659375
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 174.73784375
transcript.pyannote[68].end 180.88034375
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 181.53846875
transcript.pyannote[69].end 182.68596875
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 183.39471875
transcript.pyannote[70].end 184.77846875
transcript.pyannote[71].speaker SPEAKER_02
transcript.pyannote[71].start 185.14971875
transcript.pyannote[71].end 190.75221875
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 190.75221875
transcript.pyannote[72].end 190.97159375
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 190.97159375
transcript.pyannote[73].end 192.69284375
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 192.43971875
transcript.pyannote[74].end 192.65909375
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 192.69284375
transcript.pyannote[75].end 193.84034375
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 193.84034375
transcript.pyannote[76].end 195.24096875
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 194.76846875
transcript.pyannote[77].end 197.18159375
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 197.35034375
transcript.pyannote[78].end 198.73409375
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 199.12221875
transcript.pyannote[79].end 200.53971875
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 201.09659375
transcript.pyannote[80].end 201.28221875
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 201.28221875
transcript.pyannote[81].end 201.97409375
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 201.97409375
transcript.pyannote[82].end 210.27659375
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 210.61409375
transcript.pyannote[83].end 227.64096875
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 227.97846875
transcript.pyannote[84].end 234.54284375
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 234.66096875
transcript.pyannote[85].end 235.26846875
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 234.74534375
transcript.pyannote[86].end 234.88034375
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 235.13346875
transcript.pyannote[87].end 237.02346875
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 237.02346875
transcript.pyannote[88].end 238.86284375
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 239.68971875
transcript.pyannote[89].end 245.46096875
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 244.07721875
transcript.pyannote[90].end 247.68846875
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 248.07659375
transcript.pyannote[91].end 256.42971875
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 254.48909375
transcript.pyannote[92].end 268.83284375
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 258.25221875
transcript.pyannote[93].end 258.28596875
transcript.pyannote[94].speaker SPEAKER_02
transcript.pyannote[94].start 258.35346875
transcript.pyannote[94].end 258.50534375
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 269.32221875
transcript.pyannote[95].end 276.19034375
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 276.46034375
transcript.pyannote[96].end 277.54034375
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 278.06346875
transcript.pyannote[97].end 279.83534375
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 280.57784375
transcript.pyannote[98].end 283.68284375
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 284.34096875
transcript.pyannote[99].end 291.27659375
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 291.42846875
transcript.pyannote[100].end 293.77409375
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 294.65159375
transcript.pyannote[101].end 295.84971875
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 297.04784375
transcript.pyannote[102].end 298.16159375
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 298.54971875
transcript.pyannote[103].end 299.41034375
transcript.pyannote[104].speaker SPEAKER_01
transcript.pyannote[104].start 300.08534375
transcript.pyannote[104].end 302.56596875
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 302.90346875
transcript.pyannote[105].end 306.49784375
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 306.80159375
transcript.pyannote[106].end 310.24409375
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 310.76721875
transcript.pyannote[107].end 335.35409375
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 335.42159375
transcript.pyannote[108].end 348.48284375
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 335.62409375
transcript.pyannote[109].end 336.02909375
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 336.02909375
transcript.pyannote[110].end 336.48471875
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 336.48471875
transcript.pyannote[111].end 336.53534375
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 337.66596875
transcript.pyannote[112].end 337.68284375
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 348.48284375
transcript.pyannote[113].end 351.53721875
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 348.51659375
transcript.pyannote[114].end 348.58409375
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 348.71909375
transcript.pyannote[115].end 349.79909375
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 351.75659375
transcript.pyannote[116].end 363.46784375
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 361.93221875
transcript.pyannote[117].end 362.33721875
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 363.53534375
transcript.pyannote[118].end 371.98971875
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 371.23034375
transcript.pyannote[119].end 374.18346875
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 375.48284375
transcript.pyannote[120].end 375.70221875
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 376.32659375
transcript.pyannote[121].end 377.03534375
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 377.35596875
transcript.pyannote[122].end 378.08159375
transcript.pyannote[123].speaker SPEAKER_01
transcript.pyannote[123].start 378.06471875
transcript.pyannote[123].end 378.58784375
transcript.pyannote[124].speaker SPEAKER_02
transcript.pyannote[124].start 379.38096875
transcript.pyannote[124].end 379.39784375
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 379.39784375
transcript.pyannote[125].end 379.53284375
transcript.pyannote[126].speaker SPEAKER_02
transcript.pyannote[126].start 379.53284375
transcript.pyannote[126].end 381.77721875
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 381.77721875
transcript.pyannote[127].end 384.96659375
transcript.pyannote[128].speaker SPEAKER_02
transcript.pyannote[128].start 381.82784375
transcript.pyannote[128].end 382.40159375
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 385.15221875
transcript.pyannote[129].end 386.92409375
transcript.pyannote[130].speaker SPEAKER_02
transcript.pyannote[130].start 385.40534375
transcript.pyannote[130].end 385.47284375
transcript.pyannote[131].speaker SPEAKER_02
transcript.pyannote[131].start 387.54846875
transcript.pyannote[131].end 390.36659375
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 390.36659375
transcript.pyannote[132].end 391.53096875
transcript.pyannote[133].speaker SPEAKER_02
transcript.pyannote[133].start 391.53096875
transcript.pyannote[133].end 391.54784375
transcript.pyannote[134].speaker SPEAKER_02
transcript.pyannote[134].start 391.63221875
transcript.pyannote[134].end 419.61096875
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 392.50971875
transcript.pyannote[135].end 393.23534375
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 418.95284375
transcript.pyannote[136].end 422.00721875
transcript.pyannote[137].speaker SPEAKER_02
transcript.pyannote[137].start 420.89346875
transcript.pyannote[137].end 421.97346875
transcript.pyannote[138].speaker SPEAKER_02
transcript.pyannote[138].start 422.00721875
transcript.pyannote[138].end 422.05784375
transcript.pyannote[139].speaker SPEAKER_01
transcript.pyannote[139].start 422.05784375
transcript.pyannote[139].end 422.17596875
transcript.pyannote[140].speaker SPEAKER_02
transcript.pyannote[140].start 422.17596875
transcript.pyannote[140].end 423.03659375
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 423.03659375
transcript.pyannote[141].end 424.23471875
transcript.pyannote[142].speaker SPEAKER_01
transcript.pyannote[142].start 424.42034375
transcript.pyannote[142].end 427.77846875
transcript.pyannote[143].speaker SPEAKER_02
transcript.pyannote[143].start 425.95596875
transcript.pyannote[143].end 426.34409375
transcript.pyannote[144].speaker SPEAKER_01
transcript.pyannote[144].start 427.87971875
transcript.pyannote[144].end 430.46159375
transcript.pyannote[145].speaker SPEAKER_01
transcript.pyannote[145].start 430.78221875
transcript.pyannote[145].end 431.96346875
transcript.pyannote[146].speaker SPEAKER_02
transcript.pyannote[146].start 431.96346875
transcript.pyannote[146].end 448.70346875
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 448.70346875
transcript.pyannote[147].end 452.60159375
transcript.pyannote[148].speaker SPEAKER_02
transcript.pyannote[148].start 453.51284375
transcript.pyannote[148].end 471.21471875
transcript.pyannote[149].speaker SPEAKER_01
transcript.pyannote[149].start 457.36034375
transcript.pyannote[149].end 457.93409375
transcript.pyannote[150].speaker SPEAKER_01
transcript.pyannote[150].start 461.95034375
transcript.pyannote[150].end 462.38909375
transcript.pyannote[151].speaker SPEAKER_01
transcript.pyannote[151].start 468.49784375
transcript.pyannote[151].end 469.35846875
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 471.21471875
transcript.pyannote[152].end 480.59721875
transcript.pyannote[153].speaker SPEAKER_02
transcript.pyannote[153].start 471.23159375
transcript.pyannote[153].end 471.24846875
transcript.pyannote[154].speaker SPEAKER_02
transcript.pyannote[154].start 480.71534375
transcript.pyannote[154].end 484.07346875
transcript.pyannote[155].speaker SPEAKER_01
transcript.pyannote[155].start 482.68971875
transcript.pyannote[155].end 483.16221875
transcript.pyannote[156].speaker SPEAKER_01
transcript.pyannote[156].start 484.07346875
transcript.pyannote[156].end 495.09284375
transcript.pyannote[157].speaker SPEAKER_02
transcript.pyannote[157].start 493.87784375
transcript.pyannote[157].end 496.91534375
transcript.pyannote[158].speaker SPEAKER_02
transcript.pyannote[158].start 497.28659375
transcript.pyannote[158].end 497.97846875
transcript.pyannote[159].speaker SPEAKER_01
transcript.pyannote[159].start 497.28659375
transcript.pyannote[159].end 498.40034375
transcript.pyannote[160].speaker SPEAKER_02
transcript.pyannote[160].start 498.40034375
transcript.pyannote[160].end 515.61284375
transcript.pyannote[161].speaker SPEAKER_01
transcript.pyannote[161].start 503.83409375
transcript.pyannote[161].end 504.15471875
transcript.pyannote[162].speaker SPEAKER_01
transcript.pyannote[162].start 515.29221875
transcript.pyannote[162].end 520.35471875
transcript.pyannote[163].speaker SPEAKER_02
transcript.pyannote[163].start 520.32096875
transcript.pyannote[163].end 527.74596875
transcript.pyannote[164].speaker SPEAKER_01
transcript.pyannote[164].start 520.74284375
transcript.pyannote[164].end 522.88596875
transcript.pyannote[165].speaker SPEAKER_01
transcript.pyannote[165].start 526.59846875
transcript.pyannote[165].end 527.66159375
transcript.pyannote[166].speaker SPEAKER_01
transcript.pyannote[166].start 527.74596875
transcript.pyannote[166].end 528.97784375
transcript.pyannote[167].speaker SPEAKER_01
transcript.pyannote[167].start 529.11284375
transcript.pyannote[167].end 530.91846875
transcript.pyannote[168].speaker SPEAKER_02
transcript.pyannote[168].start 529.21409375
transcript.pyannote[168].end 529.83846875
transcript.pyannote[169].speaker SPEAKER_01
transcript.pyannote[169].start 531.30659375
transcript.pyannote[169].end 536.33534375
transcript.pyannote[170].speaker SPEAKER_01
transcript.pyannote[170].start 536.58846875
transcript.pyannote[170].end 537.41534375
transcript.pyannote[171].speaker SPEAKER_01
transcript.pyannote[171].start 537.56721875
transcript.pyannote[171].end 540.04784375
transcript.pyannote[172].speaker SPEAKER_01
transcript.pyannote[172].start 540.65534375
transcript.pyannote[172].end 542.66346875
transcript.pyannote[173].speaker SPEAKER_01
transcript.pyannote[173].start 543.11909375
transcript.pyannote[173].end 551.37096875
transcript.pyannote[174].speaker SPEAKER_02
transcript.pyannote[174].start 551.37096875
transcript.pyannote[174].end 552.34971875
transcript.pyannote[175].speaker SPEAKER_01
transcript.pyannote[175].start 552.34971875
transcript.pyannote[175].end 559.48784375
transcript.pyannote[176].speaker SPEAKER_02
transcript.pyannote[176].start 553.04159375
transcript.pyannote[176].end 553.42971875
transcript.pyannote[177].speaker SPEAKER_02
transcript.pyannote[177].start 559.48784375
transcript.pyannote[177].end 559.65659375
transcript.pyannote[178].speaker SPEAKER_01
transcript.pyannote[178].start 559.65659375
transcript.pyannote[178].end 562.37346875
transcript.pyannote[179].speaker SPEAKER_02
transcript.pyannote[179].start 559.69034375
transcript.pyannote[179].end 559.72409375
transcript.pyannote[180].speaker SPEAKER_01
transcript.pyannote[180].start 563.74034375
transcript.pyannote[180].end 564.49971875
transcript.pyannote[181].speaker SPEAKER_02
transcript.pyannote[181].start 563.92596875
transcript.pyannote[181].end 564.36471875
transcript.pyannote[182].speaker SPEAKER_02
transcript.pyannote[182].start 564.98909375
transcript.pyannote[182].end 569.79846875
transcript.pyannote[183].speaker SPEAKER_01
transcript.pyannote[183].start 567.09846875
transcript.pyannote[183].end 570.49034375
transcript.pyannote[184].speaker SPEAKER_02
transcript.pyannote[184].start 570.49034375
transcript.pyannote[184].end 570.96284375
transcript.pyannote[185].speaker SPEAKER_01
transcript.pyannote[185].start 570.96284375
transcript.pyannote[185].end 571.03034375
transcript.pyannote[186].speaker SPEAKER_01
transcript.pyannote[186].start 571.30034375
transcript.pyannote[186].end 577.12221875
transcript.pyannote[187].speaker SPEAKER_02
transcript.pyannote[187].start 573.40971875
transcript.pyannote[187].end 576.36284375
transcript.pyannote[188].speaker SPEAKER_02
transcript.pyannote[188].start 577.12221875
transcript.pyannote[188].end 577.13909375
transcript.pyannote[189].speaker SPEAKER_01
transcript.pyannote[189].start 577.13909375
transcript.pyannote[189].end 577.45971875
transcript.pyannote[190].speaker SPEAKER_01
transcript.pyannote[190].start 577.89846875
transcript.pyannote[190].end 584.74971875
transcript.pyannote[191].speaker SPEAKER_02
transcript.pyannote[191].start 577.94909375
transcript.pyannote[191].end 578.75909375
transcript.pyannote[192].speaker SPEAKER_02
transcript.pyannote[192].start 582.87659375
transcript.pyannote[192].end 583.60221875
transcript.pyannote[193].speaker SPEAKER_01
transcript.pyannote[193].start 585.22221875
transcript.pyannote[193].end 589.10346875
transcript.pyannote[194].speaker SPEAKER_02
transcript.pyannote[194].start 587.28096875
transcript.pyannote[194].end 587.31471875
transcript.pyannote[195].speaker SPEAKER_00
transcript.pyannote[195].start 587.31471875
transcript.pyannote[195].end 587.73659375
transcript.pyannote[196].speaker SPEAKER_02
transcript.pyannote[196].start 587.73659375
transcript.pyannote[196].end 587.75346875
transcript.pyannote[197].speaker SPEAKER_00
transcript.pyannote[197].start 587.75346875
transcript.pyannote[197].end 587.80409375
transcript.pyannote[198].speaker SPEAKER_02
transcript.pyannote[198].start 587.80409375
transcript.pyannote[198].end 587.90534375
transcript.pyannote[199].speaker SPEAKER_00
transcript.pyannote[199].start 589.93034375
transcript.pyannote[199].end 590.13284375
transcript.pyannote[200].speaker SPEAKER_01
transcript.pyannote[200].start 590.13284375
transcript.pyannote[200].end 590.94284375
transcript.pyannote[201].speaker SPEAKER_01
transcript.pyannote[201].start 591.46596875
transcript.pyannote[201].end 593.00159375
transcript.pyannote[202].speaker SPEAKER_01
transcript.pyannote[202].start 593.69346875
transcript.pyannote[202].end 599.38034375
transcript.pyannote[203].speaker SPEAKER_01
transcript.pyannote[203].start 599.76846875
transcript.pyannote[203].end 602.13096875
transcript.pyannote[204].speaker SPEAKER_02
transcript.pyannote[204].start 602.43471875
transcript.pyannote[204].end 603.97034375
transcript.pyannote[205].speaker SPEAKER_01
transcript.pyannote[205].start 603.39659375
transcript.pyannote[205].end 608.05409375
transcript.pyannote[206].speaker SPEAKER_01
transcript.pyannote[206].start 608.32409375
transcript.pyannote[206].end 611.14221875
transcript.pyannote[207].speaker SPEAKER_01
transcript.pyannote[207].start 611.73284375
transcript.pyannote[207].end 612.25596875
transcript.pyannote[208].speaker SPEAKER_01
transcript.pyannote[208].start 612.72846875
transcript.pyannote[208].end 614.70284375
transcript.pyannote[209].speaker SPEAKER_01
transcript.pyannote[209].start 614.98971875
transcript.pyannote[209].end 640.87596875
transcript.pyannote[210].speaker SPEAKER_01
transcript.pyannote[210].start 640.89284375
transcript.pyannote[210].end 640.92659375
transcript.pyannote[211].speaker SPEAKER_00
transcript.pyannote[211].start 640.92659375
transcript.pyannote[211].end 641.26409375
transcript.pyannote[212].speaker SPEAKER_01
transcript.pyannote[212].start 641.26409375
transcript.pyannote[212].end 643.96409375
transcript.whisperx[0].start 8.646
transcript.whisperx[0].end 35.698
transcript.whisperx[0].text 主席貴文初列席官員大家好主席可否請財政部阮次長請阮次主席總署還有陳主席陳主席長好兩位都是很重要的財經官員謝謝那我們看到整個全世界的變化請問一下現在新加坡的人均GDP是多少
transcript.whisperx[1].start 36.843
transcript.whisperx[1].end 55.08
transcript.whisperx[1].text 新加坡人均9萬5千美元 左右台灣人均的GDP是多少3萬8千美元
transcript.whisperx[2].start 56.562
transcript.whisperx[2].end 60.223
transcript.whisperx[2].text 如果用總數來算的話今年預估是26兆多 明年預估28兆多人均的話大概是3萬5左右 明年預估是超過4萬
transcript.whisperx[3].start 78.369
transcript.whisperx[3].end 104.768
transcript.whisperx[3].text 來來來 主計這邊三萬四 人均是三萬四比較大聲的沒關係人均三萬四 明年差不多三萬八明年三萬八三萬八是一個大家聽起來就比較振奮的數字雖然多數人的無感那我們現在就看著怎麼樣在你的施政上可以匆匆隆隆下一句
transcript.whisperx[4].start 106.004
transcript.whisperx[4].end 129.35
transcript.whisperx[4].text 游刃有餘你不要捉襟見肘所以要把餅做大在30年前台灣是四小龍之首我們人均GDP那時候贏過新加坡就新加坡現在的成長人均GDP到9萬5千美元
transcript.whisperx[5].start 131.107
transcript.whisperx[5].end 147.429
transcript.whisperx[5].text 我們就一直在思考應該怎麼做把餅做大把台灣做強讓我們在國際更有競爭的一個優勢所以 卵次長
transcript.whisperx[6].start 148.905
transcript.whisperx[6].end 169.054
transcript.whisperx[6].text 先請教你一下因為今天大概討論很多了就是一般型補助 計畫型補助當然在我們地方的立場是越多越好可是我們新北減少了很多等一下麻煩請主計長這邊再來說明一下首先就是請阮次長把餅做大這個很重要你看我們累積大概
transcript.whisperx[7].start 177.287
transcript.whisperx[7].end 200.119
transcript.whisperx[7].text 六七年來稅收大概超過一兆八千億這個錢到底跑去哪裡我跟委員報告基本上它就是第一個它就是用來還債這是第一個因為我們沒有還多少我們還債你還債 我們國債中也是差不多它一直在升高
transcript.whisperx[8].start 201.484
transcript.whisperx[8].end 225.537
transcript.whisperx[8].text 現在國債中的情況是多少另外我也跟委員報告其實大家可能看到的那些所謂時增數超過預算數都是總預算如果我們加計特別預算的話以過去從101年到去年為止113年為止這13年當中只有4年是有剩餘的其他都是赤字
transcript.whisperx[9].start 228.118
transcript.whisperx[9].end 247.495
transcript.whisperx[9].text 所以我是講說不能只看總預算要看包括總預算跟特別預算統籌來看是 所以你有沒有發現特別預算變成是一個巧門也不會 因為所有的預算都要經過立法院這邊通過這十年來你有沒有算過特別預算加一加總額多少
transcript.whisperx[10].start 248.437
transcript.whisperx[10].end 277.15
transcript.whisperx[10].text 特別預算我這邊手上因為一直在增加最近的數字可能我請同仁再會合我是不是再提供給這個數字你要多清楚一點就是說我們感覺稅收都超增啊結果錢一兆八千億到底跑去哪裡大家覺得那沒有的話你要把這個實質的好處讓人民有感嘛或者是軍公家要調心嘛結果好像
transcript.whisperx[11].start 278.177
transcript.whisperx[11].end 302.445
transcript.whisperx[11].text 也沒有那種快樂指數上升的感覺沒有啊所以我們在想說應該要好好來思考一下什麼樣的一個方法可以像新加坡一樣讓我們人均GDP可以急起直追至少有機會到新加坡了你不要說一樣至少要打八折吧
transcript.whisperx[12].start 302.912
transcript.whisperx[12].end 324.052
transcript.whisperx[12].text 我跟委員報告,以我對產業的了解,我們跟新加坡的產業結構是非常不一樣的。我們的產業結構比較類似像韓國,或甚至跟日本比較類似。所以新加坡畢竟是一個城市國家,它的主要的收入來源最主要是靠投資、靠金融。
transcript.whisperx[13].start 324.693
transcript.whisperx[13].end 354.353
transcript.whisperx[13].text 那我們是靠一般的這個製造業所以像我們製造業我們包括我們ICT產業就占我們出口就占百分之七成五全部都是靠IC產業所以很重要一部分電池產業所以我的意思是說最近這幾年為什麼我們能夠超越韓國就是因為我們在這些方面比韓國還要強還要強那表示這個警訊已經出現了我們現在全部都靠護國神山
transcript.whisperx[14].start 355.253
transcript.whisperx[14].end 378.305
transcript.whisperx[14].text 現在又有漁工要移山把這座山移到美國去那我們剩下什麼山我們只剩阿里山我覺得我想不管是我們院的長官就是卓院長也一再強調還有很多的相關的卓院長是不是辭了好幾次要請辭是不是你有沒有聽過哪位卓院長
transcript.whisperx[15].start 379.454
transcript.whisperx[15].end 386.553
transcript.whisperx[15].text 我不曉得 這個是長官的事我們不會怎麼會知道你當次長不是要請辭三次 四次都被拒絕啊
transcript.whisperx[16].start 389.352
transcript.whisperx[16].end 412.639
transcript.whisperx[16].text 這個我不太清楚你再問問看但是我是覺得有消息跟我講一下我們的產業就是說剛才講說戶口神山戶口神山到其他國家去投資到底是不是會不會就是說影響到台灣的經濟發展其實到目前的所有的研究報告都認為是擴大我們對這個產業的影響力而不是掏空我們國內的經濟
transcript.whisperx[17].start 418.181
transcript.whisperx[17].end 438.356
transcript.whisperx[17].text 所以市長的說法是有點正面因為最主要是核心留在台灣好 金娘你這樣說台灣的股市有沒有機會破三萬點我不是股市分析師但是最近股市真的是非常的強真的很強
transcript.whisperx[18].start 438.996
transcript.whisperx[18].end 452.025
transcript.whisperx[18].text 那最主要也是因為我們的就是AI的產業高速運算產業這一部分這個是可以講說是成長非常的快市長 你現在那個國安基金要不要擴大它的規模
transcript.whisperx[19].start 454.287
transcript.whisperx[19].end 480.422
transcript.whisperx[19].text 如果委員支持的話我就樂觀其成因為為什麼現在總共五千億嗎現在五千億但是實際上可以用的只有兩千億因為另外三千億是要跟其他基金借但是其他基金其實已經沒有錢因為錢都投進去了所以我們能夠只有能夠用的大概就兩千億因為以前最多的話大概是一萬多點在談國安基金的時候是五千億現在我們整個台灣的股市的市值是多少
transcript.whisperx[20].start 480.922
transcript.whisperx[20].end 493.466
transcript.whisperx[20].text 現在都超過40兆以上了40兆以上了嘛40兆那40兆你要40的調升調升的話有沒有可能5000億往上調調到1兆左右如果可以的話我絕對都關起程我覺得1兆也還勉強啦
transcript.whisperx[21].start 497.427
transcript.whisperx[21].end 520.056
transcript.whisperx[21].text 也沒有多多少啦我所謂一兆是說扣除那個就是扣除那些從基金借的假定是說我們可以從行戶那邊借到7000億的話我是覺得對股市的穩定民心的穩定還有投資的信心一定有很大的幫助所以你現在算起來就是加起來你可以運作的希望可以達到超過一兆以上
transcript.whisperx[22].start 520.977
transcript.whisperx[22].end 539.794
transcript.whisperx[22].text 差不多啦 差不多那個金額如果可以的話如果委員支持的話我就覺得這個是一個很好的方向支持我要再研究一下看你會不會匆匆容容好那最重要的是你要把一些好的一些說則把它提出來修法
transcript.whisperx[23].start 540.695
transcript.whisperx[23].end 562.26
transcript.whisperx[23].text 你起碼跟那個新加坡一樣嘛為什麼人家你說是城市國家會發展的很好那好的地方在哪裡你可以通盤檢討一下吧是好不好那我也希望說趕快啦把一些外在的環境排除以後希望股市可以上看多少
transcript.whisperx[24].start 565.972
transcript.whisperx[24].end 592.792
transcript.whisperx[24].text 这个我没办法说这个数字是三万三万是OK的意思OK那有很多的因素我帮次长讲三万点三万点吧因为一万我也请你吃过鸡排喝过珍奶两万也吃过了等着这个三万我会加倍奉还可是请你要注意一下因为
transcript.whisperx[25].start 593.912
transcript.whisperx[25].end 610.614
transcript.whisperx[25].text 現在台灣的這個結構有錢的賺了很多AI周邊賺很多傳統產業苦哈哈傳統產業的部分大概平均三分之二不漲反跌跌破20年平均線
transcript.whisperx[26].start 611.835
transcript.whisperx[26].end 638.42
transcript.whisperx[26].text 所以本席也希望竹記總書這邊也注意這個問題就對於弱勢關懷比如說新北市需要照顧不管是你一般補助或計畫型的補助你要增加他的關愛的眼神金額要多一點因為必須我們400多萬人人數最多人均來講我們是最辛苦的請多多照顧
transcript.whisperx[27].start 639.48
transcript.whisperx[27].end 640.603
transcript.whisperx[27].text 新北市 好不好好 謝謝