iVOD / 164518

Field Value
IVOD_ID 164518
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/164518
日期 2025-10-22
會議資料.會議代碼 委員會-11-4-19-6
會議資料.會議代碼:str 第11屆第4會期經濟委員會第6次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 6
會議資料.種類 委員會
會議資料.委員會代碼[0] 19
會議資料.委員會代碼:str[0] 經濟委員會
會議資料.標題 第11屆第4會期經濟委員會第6次全體委員會議
影片種類 Clip
開始時間 2025-10-22T10:18:02+08:00
結束時間 2025-10-22T10:28:37+08:00
影片長度 00:10:35
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/615807a88c5be4da8ee57c4a405cdc06e072f7c27276b8ae83c966d97180d5d22aeb4f393fa6d6c65ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 謝衣鳯
委員發言時間 10:18:02 - 10:28:37
會議時間 2025-10-22T09:00:00+08:00
會議名稱 立法院第11屆第4會期經濟委員會第6次全體委員會議(事由:邀請經濟部部長列席報告業務概況,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 0.03096875
transcript.pyannote[0].end 1.02659375
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 3.82784375
transcript.pyannote[1].end 5.12721875
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 5.48159375
transcript.pyannote[2].end 7.48971875
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 15.77534375
transcript.pyannote[3].end 18.47534375
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 18.98159375
transcript.pyannote[4].end 20.46659375
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 26.64284375
transcript.pyannote[5].end 27.52034375
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 27.57096875
transcript.pyannote[6].end 37.96596875
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 38.42159375
transcript.pyannote[7].end 39.87284375
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 40.36221875
transcript.pyannote[8].end 41.44221875
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 41.54346875
transcript.pyannote[9].end 43.65284375
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 45.05346875
transcript.pyannote[10].end 48.32721875
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 47.73659375
transcript.pyannote[11].end 51.38159375
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 49.91346875
transcript.pyannote[12].end 50.31846875
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 52.14096875
transcript.pyannote[13].end 55.97159375
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 56.19096875
transcript.pyannote[14].end 56.91659375
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 56.95034375
transcript.pyannote[15].end 60.69659375
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 60.10596875
transcript.pyannote[16].end 60.44346875
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 60.69659375
transcript.pyannote[17].end 61.03409375
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 61.03409375
transcript.pyannote[18].end 61.21971875
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 61.21971875
transcript.pyannote[19].end 61.28721875
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 61.28721875
transcript.pyannote[20].end 61.37159375
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 61.37159375
transcript.pyannote[21].end 61.42221875
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 61.42221875
transcript.pyannote[22].end 61.45596875
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 61.45596875
transcript.pyannote[23].end 61.60784375
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 61.60784375
transcript.pyannote[24].end 61.87784375
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 61.87784375
transcript.pyannote[25].end 62.02971875
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 62.02971875
transcript.pyannote[26].end 68.64471875
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 66.67034375
transcript.pyannote[27].end 71.20971875
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 73.15034375
transcript.pyannote[28].end 74.46659375
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 74.78721875
transcript.pyannote[29].end 75.69846875
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 76.35659375
transcript.pyannote[30].end 76.91346875
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 77.36909375
transcript.pyannote[31].end 86.95409375
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 81.70596875
transcript.pyannote[32].end 82.60034375
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 85.03034375
transcript.pyannote[33].end 85.92471875
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 87.66284375
transcript.pyannote[34].end 89.50221875
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 89.53596875
transcript.pyannote[35].end 90.88596875
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 90.95346875
transcript.pyannote[36].end 95.81346875
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 91.12221875
transcript.pyannote[37].end 91.34159375
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 95.99909375
transcript.pyannote[38].end 96.03284375
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 96.03284375
transcript.pyannote[39].end 96.04971875
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 96.04971875
transcript.pyannote[40].end 98.88471875
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 96.21846875
transcript.pyannote[41].end 104.36909375
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 103.69409375
transcript.pyannote[42].end 106.96784375
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 107.82846875
transcript.pyannote[43].end 108.67221875
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 109.07721875
transcript.pyannote[44].end 110.62971875
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 112.58721875
transcript.pyannote[45].end 116.04659375
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 114.93284375
transcript.pyannote[46].end 119.03346875
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 116.75534375
transcript.pyannote[47].end 118.59471875
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 119.03346875
transcript.pyannote[48].end 119.05034375
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 119.05034375
transcript.pyannote[49].end 120.02909375
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 120.02909375
transcript.pyannote[50].end 123.47159375
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 123.72471875
transcript.pyannote[51].end 127.23471875
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 127.69034375
transcript.pyannote[52].end 128.02784375
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 128.11221875
transcript.pyannote[53].end 128.21346875
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 128.44971875
transcript.pyannote[54].end 141.02159375
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 137.84909375
transcript.pyannote[55].end 139.08096875
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 141.30846875
transcript.pyannote[56].end 142.42221875
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 141.84846875
transcript.pyannote[57].end 142.75971875
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 142.48971875
transcript.pyannote[58].end 145.20659375
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 146.05034375
transcript.pyannote[59].end 153.03659375
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 153.07034375
transcript.pyannote[60].end 155.14596875
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 155.29784375
transcript.pyannote[61].end 156.61409375
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 157.49159375
transcript.pyannote[62].end 158.48721875
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 158.85846875
transcript.pyannote[63].end 160.32659375
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 160.32659375
transcript.pyannote[64].end 160.68096875
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 160.68096875
transcript.pyannote[65].end 160.69784375
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 160.69784375
transcript.pyannote[66].end 160.73159375
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 160.73159375
transcript.pyannote[67].end 160.79909375
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 160.79909375
transcript.pyannote[68].end 160.93409375
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 160.93409375
transcript.pyannote[69].end 161.03534375
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 161.03534375
transcript.pyannote[70].end 161.13659375
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 161.13659375
transcript.pyannote[71].end 163.39784375
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 162.65534375
transcript.pyannote[72].end 165.99659375
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 163.97159375
transcript.pyannote[73].end 164.73096875
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 166.14846875
transcript.pyannote[74].end 168.88221875
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 167.90346875
transcript.pyannote[75].end 169.28721875
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 169.28721875
transcript.pyannote[76].end 177.87659375
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 177.97784375
transcript.pyannote[77].end 177.99471875
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 178.02846875
transcript.pyannote[78].end 182.82096875
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 180.77909375
transcript.pyannote[79].end 181.33596875
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 182.82096875
transcript.pyannote[80].end 183.20909375
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 183.41159375
transcript.pyannote[81].end 189.16596875
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 190.00971875
transcript.pyannote[82].end 192.23721875
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 192.27096875
transcript.pyannote[83].end 201.94034375
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 202.31159375
transcript.pyannote[84].end 203.86409375
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 203.96534375
transcript.pyannote[85].end 204.01596875
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 204.01596875
transcript.pyannote[86].end 204.18471875
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 204.18471875
transcript.pyannote[87].end 205.16346875
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 204.20159375
transcript.pyannote[88].end 204.40409375
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 205.70346875
transcript.pyannote[89].end 206.24346875
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 206.63159375
transcript.pyannote[90].end 207.84659375
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 207.57659375
transcript.pyannote[91].end 209.24721875
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 207.94784375
transcript.pyannote[92].end 207.96471875
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 208.72409375
transcript.pyannote[93].end 213.61784375
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 209.80409375
transcript.pyannote[94].end 210.68159375
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 212.94284375
transcript.pyannote[95].end 227.48909375
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 220.67159375
transcript.pyannote[96].end 221.00909375
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 227.77596875
transcript.pyannote[97].end 231.38721875
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 231.65721875
transcript.pyannote[98].end 234.57659375
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 235.55534375
transcript.pyannote[99].end 238.81221875
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 239.25096875
transcript.pyannote[100].end 245.25846875
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 245.34284375
transcript.pyannote[101].end 251.18159375
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 251.40096875
transcript.pyannote[102].end 252.70034375
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 253.44284375
transcript.pyannote[103].end 254.18534375
transcript.pyannote[104].speaker SPEAKER_01
transcript.pyannote[104].start 254.79284375
transcript.pyannote[104].end 264.49596875
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 264.96846875
transcript.pyannote[105].end 304.08471875
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 304.33784375
transcript.pyannote[106].end 314.46284375
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 308.92784375
transcript.pyannote[107].end 308.99534375
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 314.95221875
transcript.pyannote[108].end 325.21221875
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 320.03159375
transcript.pyannote[109].end 320.06534375
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 320.20034375
transcript.pyannote[110].end 320.31846875
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 325.26284375
transcript.pyannote[111].end 329.80221875
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 325.36409375
transcript.pyannote[112].end 325.88721875
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 329.80221875
transcript.pyannote[113].end 335.35409375
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 331.45596875
transcript.pyannote[114].end 331.54034375
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 331.57409375
transcript.pyannote[115].end 331.65846875
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 331.67534375
transcript.pyannote[116].end 332.14784375
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 335.35409375
transcript.pyannote[117].end 336.45096875
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 336.45096875
transcript.pyannote[118].end 342.03659375
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 336.50159375
transcript.pyannote[119].end 336.80534375
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 337.42971875
transcript.pyannote[120].end 338.56034375
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 340.85534375
transcript.pyannote[121].end 341.09159375
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 342.03659375
transcript.pyannote[122].end 344.23034375
transcript.pyannote[123].speaker SPEAKER_01
transcript.pyannote[123].start 342.55971875
transcript.pyannote[123].end 345.91784375
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 346.40721875
transcript.pyannote[124].end 352.70159375
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 346.44096875
transcript.pyannote[125].end 347.31846875
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 353.32596875
transcript.pyannote[126].end 355.30034375
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 355.41846875
transcript.pyannote[127].end 361.62846875
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 361.62846875
transcript.pyannote[128].end 374.35221875
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 361.84784375
transcript.pyannote[129].end 361.96596875
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 367.38284375
transcript.pyannote[130].end 367.80471875
transcript.pyannote[131].speaker SPEAKER_01
transcript.pyannote[131].start 373.37346875
transcript.pyannote[131].end 376.30971875
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 376.03971875
transcript.pyannote[132].end 382.45221875
transcript.pyannote[133].speaker SPEAKER_01
transcript.pyannote[133].start 377.49096875
transcript.pyannote[133].end 380.81534375
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 382.45221875
transcript.pyannote[134].end 382.80659375
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 382.80659375
transcript.pyannote[135].end 384.67971875
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 384.67971875
transcript.pyannote[136].end 387.37971875
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 387.37971875
transcript.pyannote[137].end 387.70034375
transcript.pyannote[138].speaker SPEAKER_01
transcript.pyannote[138].start 387.70034375
transcript.pyannote[138].end 398.56784375
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 387.80159375
transcript.pyannote[139].end 389.10096875
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 390.38346875
transcript.pyannote[140].end 391.63221875
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 399.00659375
transcript.pyannote[141].end 400.22159375
transcript.pyannote[142].speaker SPEAKER_00
transcript.pyannote[142].start 400.22159375
transcript.pyannote[142].end 406.29659375
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 406.29659375
transcript.pyannote[143].end 414.51471875
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 406.33034375
transcript.pyannote[144].end 406.97159375
transcript.pyannote[145].speaker SPEAKER_01
transcript.pyannote[145].start 415.57784375
transcript.pyannote[145].end 416.03346875
transcript.pyannote[146].speaker SPEAKER_00
transcript.pyannote[146].start 416.03346875
transcript.pyannote[146].end 417.94034375
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 417.94034375
transcript.pyannote[147].end 419.00346875
transcript.pyannote[148].speaker SPEAKER_00
transcript.pyannote[148].start 419.00346875
transcript.pyannote[148].end 419.02034375
transcript.pyannote[149].speaker SPEAKER_01
transcript.pyannote[149].start 419.02034375
transcript.pyannote[149].end 419.27346875
transcript.pyannote[150].speaker SPEAKER_00
transcript.pyannote[150].start 419.03721875
transcript.pyannote[150].end 422.15909375
transcript.pyannote[151].speaker SPEAKER_01
transcript.pyannote[151].start 419.83034375
transcript.pyannote[151].end 421.38284375
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 421.51784375
transcript.pyannote[152].end 465.89909375
transcript.pyannote[153].speaker SPEAKER_00
transcript.pyannote[153].start 466.48971875
transcript.pyannote[153].end 508.27221875
transcript.pyannote[154].speaker SPEAKER_01
transcript.pyannote[154].start 479.31471875
transcript.pyannote[154].end 479.82096875
transcript.pyannote[155].speaker SPEAKER_01
transcript.pyannote[155].start 485.00159375
transcript.pyannote[155].end 485.38971875
transcript.pyannote[156].speaker SPEAKER_01
transcript.pyannote[156].start 507.98534375
transcript.pyannote[156].end 509.57159375
transcript.pyannote[157].speaker SPEAKER_00
transcript.pyannote[157].start 509.77409375
transcript.pyannote[157].end 510.41534375
transcript.pyannote[158].speaker SPEAKER_01
transcript.pyannote[158].start 510.16221875
transcript.pyannote[158].end 511.54596875
transcript.pyannote[159].speaker SPEAKER_00
transcript.pyannote[159].start 512.17034375
transcript.pyannote[159].end 518.02596875
transcript.pyannote[160].speaker SPEAKER_01
transcript.pyannote[160].start 514.21221875
transcript.pyannote[160].end 514.85346875
transcript.pyannote[161].speaker SPEAKER_01
transcript.pyannote[161].start 514.90409375
transcript.pyannote[161].end 515.61284375
transcript.pyannote[162].speaker SPEAKER_00
transcript.pyannote[162].start 518.44784375
transcript.pyannote[162].end 519.86534375
transcript.pyannote[163].speaker SPEAKER_01
transcript.pyannote[163].start 518.48159375
transcript.pyannote[163].end 521.18159375
transcript.pyannote[164].speaker SPEAKER_00
transcript.pyannote[164].start 520.94534375
transcript.pyannote[164].end 522.26159375
transcript.pyannote[165].speaker SPEAKER_01
transcript.pyannote[165].start 521.72159375
transcript.pyannote[165].end 524.53971875
transcript.pyannote[166].speaker SPEAKER_00
transcript.pyannote[166].start 525.11346875
transcript.pyannote[166].end 528.52221875
transcript.pyannote[167].speaker SPEAKER_00
transcript.pyannote[167].start 528.91034375
transcript.pyannote[167].end 537.31409375
transcript.pyannote[168].speaker SPEAKER_01
transcript.pyannote[168].start 533.97284375
transcript.pyannote[168].end 534.66471875
transcript.pyannote[169].speaker SPEAKER_00
transcript.pyannote[169].start 537.58409375
transcript.pyannote[169].end 539.37284375
transcript.pyannote[170].speaker SPEAKER_01
transcript.pyannote[170].start 539.37284375
transcript.pyannote[170].end 544.67159375
transcript.pyannote[171].speaker SPEAKER_00
transcript.pyannote[171].start 539.52471875
transcript.pyannote[171].end 540.95909375
transcript.pyannote[172].speaker SPEAKER_00
transcript.pyannote[172].start 542.68034375
transcript.pyannote[172].end 543.11909375
transcript.pyannote[173].speaker SPEAKER_00
transcript.pyannote[173].start 544.45221875
transcript.pyannote[173].end 546.44346875
transcript.pyannote[174].speaker SPEAKER_00
transcript.pyannote[174].start 546.73034375
transcript.pyannote[174].end 555.50534375
transcript.pyannote[175].speaker SPEAKER_00
transcript.pyannote[175].start 555.94409375
transcript.pyannote[175].end 556.83846875
transcript.pyannote[176].speaker SPEAKER_00
transcript.pyannote[176].start 557.53034375
transcript.pyannote[176].end 560.33159375
transcript.pyannote[177].speaker SPEAKER_01
transcript.pyannote[177].start 558.61034375
transcript.pyannote[177].end 558.79596875
transcript.pyannote[178].speaker SPEAKER_00
transcript.pyannote[178].start 560.55096875
transcript.pyannote[178].end 566.23784375
transcript.pyannote[179].speaker SPEAKER_01
transcript.pyannote[179].start 566.06909375
transcript.pyannote[179].end 566.49096875
transcript.pyannote[180].speaker SPEAKER_01
transcript.pyannote[180].start 566.91284375
transcript.pyannote[180].end 581.59409375
transcript.pyannote[181].speaker SPEAKER_00
transcript.pyannote[181].start 574.72596875
transcript.pyannote[181].end 575.41784375
transcript.pyannote[182].speaker SPEAKER_00
transcript.pyannote[182].start 576.36284375
transcript.pyannote[182].end 577.13909375
transcript.pyannote[183].speaker SPEAKER_00
transcript.pyannote[183].start 581.59409375
transcript.pyannote[183].end 595.22909375
transcript.pyannote[184].speaker SPEAKER_01
transcript.pyannote[184].start 584.14221875
transcript.pyannote[184].end 584.34471875
transcript.pyannote[185].speaker SPEAKER_01
transcript.pyannote[185].start 589.23846875
transcript.pyannote[185].end 589.30596875
transcript.pyannote[186].speaker SPEAKER_00
transcript.pyannote[186].start 595.83659375
transcript.pyannote[186].end 615.39471875
transcript.pyannote[187].speaker SPEAKER_01
transcript.pyannote[187].start 601.59096875
transcript.pyannote[187].end 601.96221875
transcript.pyannote[188].speaker SPEAKER_01
transcript.pyannote[188].start 602.26596875
transcript.pyannote[188].end 602.70471875
transcript.pyannote[189].speaker SPEAKER_01
transcript.pyannote[189].start 604.64534375
transcript.pyannote[189].end 604.69596875
transcript.pyannote[190].speaker SPEAKER_01
transcript.pyannote[190].start 604.78034375
transcript.pyannote[190].end 604.94909375
transcript.pyannote[191].speaker SPEAKER_00
transcript.pyannote[191].start 616.10346875
transcript.pyannote[191].end 633.02909375
transcript.pyannote[192].speaker SPEAKER_01
transcript.pyannote[192].start 624.22034375
transcript.pyannote[192].end 624.57471875
transcript.pyannote[193].speaker SPEAKER_01
transcript.pyannote[193].start 629.06346875
transcript.pyannote[193].end 629.41784375
transcript.pyannote[194].speaker SPEAKER_01
transcript.pyannote[194].start 633.38346875
transcript.pyannote[194].end 635.30721875
transcript.whisperx[0].start 0.089
transcript.whisperx[0].end 4.492
transcript.whisperx[0].text 請鄭一鋒委員請做詢問好 謝謝主席我想要請工部長我們再請工部長
transcript.whisperx[1].start 27.244
transcript.whisperx[1].end 50.776
transcript.whisperx[1].text 謝偉銘好部長我想請教一下就是現在大家還是最關注的就是關稅的問題那到底美國關稅會不會有可能從28%降到15%你有沒有信心我們持續的努力當中方向上還是你被壽命不可以講你不可以爆點
transcript.whisperx[2].start 52.239
transcript.whisperx[2].end 69.21
transcript.whisperx[2].text 是不是 你不會抱院長的梗還是抱總統的梗不是 因為這個是我們努力的目標啦15%是你努力的目標是不是是整個這個談判團隊本來就努力的目標嘛那對美的投資是3000億還是4000億
transcript.whisperx[3].start 73.411
transcript.whisperx[3].end 95.479
transcript.whisperx[3].text 這個我就沒有辦法知道是嗎政府部門公部門因為這個因為投資的部分還是由民間對主要是民間為主台積電相關的台積電是其中之一對還有生態系啊是不是還有那個EMS啊AI Server的一些廠商啊
transcript.whisperx[4].start 96.392
transcript.whisperx[4].end 110.359
transcript.whisperx[4].text 所以還有EMS AI Server的廠商都會去是不是對 他們有這樣的表達他們原來就在墨西哥那所以台灣廠商赴美投資有可能就是會超過三天一樓
transcript.whisperx[5].start 112.685
transcript.whisperx[5].end 126.723
transcript.whisperx[5].text 這個就要看廠商的盤點了拜託 你們早就在統計了經濟部一定都在統計啦是 但是這個還是個別廠商還是由個別廠商來宣布比較妥當
transcript.whisperx[6].start 127.731
transcript.whisperx[6].end 156.22
transcript.whisperx[6].text 那川普說台積電的你不用管那你台積電以外的相關的工業那麼多你進一步管不到嗎是不是所以那未來我們是支持他們的未來我是說未來那整體我們對美投資就是以台積電為主的這樣子的相關策略到底是決定在台灣還是決定在美國
transcript.whisperx[7].start 157.52
transcript.whisperx[7].end 177.532
transcript.whisperx[7].text 决定在台积电是不是决定在台湾台积电对以台湾为主是不是当然了立足台湾布局全球对是以台积电为主是不是会不会就是因为大家在担心的就是台积电会不会变成美积电不会是不是绝对不会
transcript.whisperx[8].start 178.492
transcript.whisperx[8].end 204.817
transcript.whisperx[8].text 你要做出什么样的做法你有什么样的做法让它不会变成美积电跟委员报告台积电事实上最多的产能最先进的技术最占钱的厂全部都在台湾所以它在台湾会持续的投资而且台积电的董事长魏哲嘉先生他也不断的说在台湾的投资的进程都没有改变比如说它在
transcript.whisperx[9].start 206.738
transcript.whisperx[9].end 234.477
transcript.whisperx[9].text 高雄的部分台中的部分这个已经宣布的部分这个东西你已经说了就是说台湾既有的以及就是供应全球的还有我们N-1带的嘛这个东西对不对但是我们有个问题是去年的数字看起来我们台人赴美去工作就高达了12.8万人
transcript.whisperx[10].start 235.592
transcript.whisperx[10].end 252.061
transcript.whisperx[10].text 那代表了就是是歷史性高喔那代表了整個就是半導體的相關的供應鏈鳳梅的確造成了我們人才外移的這樣一個現象你怎麼樣子減緩
transcript.whisperx[11].start 253.853
transcript.whisperx[11].end 268.6
transcript.whisperx[11].text 報委員據我了解就是說昨天國發會主委他說他說他的朋友也常常就是在台積電工作他們都不想去美國啊那可是問題是如果整個供應鏈
transcript.whisperx[12].start 269.801
transcript.whisperx[12].end 296.339
transcript.whisperx[12].text 就是說都往美國去的時候那我們台灣的人才怎麼留在本地然後我們又希望吸引AI的相關的業者廠商進台灣來那要把整個AI未來的供應鏈都放在台灣能夠讓它在台灣落腳那在這樣子的情況下如果我們的人才一直外移那怎麼樣子
transcript.whisperx[13].start 297.58
transcript.whisperx[13].end 324.395
transcript.whisperx[13].text 能夠確保我們台灣未來在AI的發展上有相關的競爭力呢報告委員通常人才做全球布局它是循環性的先前的幹部比如說他建廠的時候他一定把他會蓋廠的這個這個VP也好或是什麼先派去等到他想蓋好以後他會調回來的或是先前幹部他會先在這邊做處理處理完以後他會回來
transcript.whisperx[14].start 325.636
transcript.whisperx[14].end 352.264
transcript.whisperx[14].text 所以說他人才會一直循環的不會一直待在那邊所以你認為12.8萬是高峰會不會再更高這個數據我可能要再了解一下去年12月的12.8萬是不是高峰我可能要再了解一下未來會不會往下降因為我不了解這12萬到底他的內涵是怎麼樣我可能要再了解一下才能跟您報告
transcript.whisperx[15].start 353.416
transcript.whisperx[15].end 373.104
transcript.whisperx[15].text 所以你也不確定可是我們必須要解決的就是我們的人才外流的這個情況嗎但是我們現在為了招攬國外人才是非常非常的積極的所以有很多包括剛才有很多的外商來這裡設立研發中心我們也期待說他把
transcript.whisperx[16].start 374.384
transcript.whisperx[16].end 398.613
transcript.whisperx[16].text 有什麼外商來設立研發中心有啊 包括NVIDIA AMD啊這個重要的廠商都是啊還有微軟啊 Google啊美光啊這些都是啊就是它會帶動就是他們會有他們會有部分的是從外國來的嘛可是他們其實還是期待我們台灣能夠協助他們就是高階的人才啊
transcript.whisperx[17].start 399.073
transcript.whisperx[17].end 414.25
transcript.whisperx[17].text 他只有部分啦是啊是啊我們去美國投資也是要應用當地的人才啊對啊 也是希望啊所以這個有幾樣的道理啊所以台積電的就是說在美社廠的會讓美國的台積電的人才來台灣受訓是不是
transcript.whisperx[18].start 415.849
transcript.whisperx[18].end 438.603
transcript.whisperx[18].text 有一部分好像會是這樣子是不是來台灣受訓會不會還有昨天我們去車撤中心那看到了就是一些車用電子的部分還有就是汽車零組件的那在這一次的美國關稅當中其實汽車零組件受創的也非常嚴重那未來
transcript.whisperx[19].start 439.884
transcript.whisperx[19].end 462.615
transcript.whisperx[19].text 我們怎麼樣子協助這些汽車零組件能夠擴大就是說海外的市場那當然除了美國以外其他地區以我們半導體就是ICT相關的這樣子的一個領先的技術有沒有辦法協助我們國內的廠商搶到國際的訂單 有沒有
transcript.whisperx[20].start 466.713
transcript.whisperx[20].end 485.69
transcript.whisperx[20].text 報告委員我們的汽車零組件主要是aftermarket就是說等於是維修換零件那是我們非常強這個模式跟其他的競爭對手比較不一樣像韓國跟日本他們主要的零組件區域那邊工藝是要組裝成乘車的他不是
transcript.whisperx[21].start 486.27
transcript.whisperx[21].end 511.393
transcript.whisperx[21].text 不是经营这个aftermarket的那我们是所以市场上是有一点点区隔的但是免不了因为你关税提升还是会受到伤害所以我们尽量帮可能可以脱销市场或是贷款上可以利息的减免或者是他用AI的技术来提升他的这个研发也好或者是转型也好这个我们也都会来支持那自驾车的部分呢自驾车的部分呢
transcript.whisperx[22].start 512.779
transcript.whisperx[22].end 524.127
transcript.whisperx[22].text 自駕車你說無人自駕車無人自駕車我們現在還在實行那無人自駕的汽車零件呢示範當中對美的部分我們有辦法嗎
transcript.whisperx[23].start 525.331
transcript.whisperx[23].end 544.331
transcript.whisperx[23].text 我们现在是有导入部分的零组件是在美国的就是它在次系统里面的零组件而已我们可能现在次系统的部分可能还是在做示范性实验像ASDA相关的我们有办法打进去吗
transcript.whisperx[24].start 544.531
transcript.whisperx[24].end 556.622
transcript.whisperx[24].text 我們現在當然希望就是透過這個經濟部兩個署他們的這個計畫不管是業界科專或法蘭科專就希望把這個次系統的部分把它
transcript.whisperx[25].start 557.571
transcript.whisperx[25].end 577.437
transcript.whisperx[25].text 把它做起來了你才有辦法去出口到別的國家去把它模組以後出口到別的國家去是比較好的那上一次你說到了稀土是不會影響但是其實稀土還是有可能影響到我們的對不對我們半導體還有相關的無人機的相關的發展嗎
transcript.whisperx[26].start 581.658
transcript.whisperx[26].end 601.319
transcript.whisperx[26].text 会不会会间接的影响会尤其是无人机因为它用的这个吸毒比较是泳池性的相关嘛那导致制造业的部分因为半导体的部分导致它现在这一次禁止的部分是没有半导体制成那个部分需要的是是啊
transcript.whisperx[27].start 601.579
transcript.whisperx[27].end 614.307
transcript.whisperx[27].text 跟蓝这个稀土它是没有进的是比较好但是那个部分所以我才说我们自己还是要有警觉自己透过回收的方式也好或者是我们开始做精炼或者是
transcript.whisperx[28].start 616.452
transcript.whisperx[28].end 634.838
transcript.whisperx[28].text 有一个保存量我们自己供应的保存量希望在2030年可以满足我们自己的三分之一上的一些需求我们还是会做那国际供应链的部分因为我们本来是国际供应链的需求者所以我们也会配合国际供应链的相关的一些调整的做法好谢谢