iVOD / 164297

Field Value
IVOD_ID 164297
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/164297
日期 2025-10-16
會議資料.會議代碼 委員會-11-4-23-3
會議資料.會議代碼:str 第11屆第4會期交通委員會第3次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 3
會議資料.種類 委員會
會議資料.委員會代碼[0] 23
會議資料.委員會代碼:str[0] 交通委員會
會議資料.標題 第11屆第4會期交通委員會第3次全體委員會議
影片種類 Clip
開始時間 2025-10-16T10:41:32+08:00
結束時間 2025-10-16T10:50:50+08:00
影片長度 00:09:18
支援功能[0] ai-transcript
支援功能[1] gazette
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/6022c9f6d63255a3e33ea9b0c734264c1c5687840456a864d77ab6ef5aede898e8ce97be1a103f415ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 林俊憲
委員發言時間 10:41:32 - 10:50:50
會議時間 2025-10-16T09:00:00+08:00
會議名稱 立法院第11屆第4會期交通委員會第3次全體委員會議(事由:一、邀請國家運輸安全調查委員會主任委員林信得列席報告業務概況,並備質詢。 二、邀請交通部部長陳世凱、衛生福利部次長及台灣高速鐵路股份有限公司董事長史哲列席就「高鐵公司推動寧靜車廂所引發正反意見,政策上路近一個月的成效及後續宣導因應」進行專題報告,並備質詢。 【10月15日及16日二天一次會】)
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 2.03909375
transcript.pyannote[0].end 2.84909375
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 3.43971875
transcript.pyannote[1].end 5.02596875
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 6.30846875
transcript.pyannote[2].end 7.20284375
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 7.74284375
transcript.pyannote[3].end 8.41784375
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 14.81346875
transcript.pyannote[4].end 16.46721875
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 17.31096875
transcript.pyannote[5].end 19.53846875
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 20.04471875
transcript.pyannote[6].end 24.39846875
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 25.02284375
transcript.pyannote[7].end 29.47784375
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 29.84909375
transcript.pyannote[8].end 31.31721875
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 32.19471875
transcript.pyannote[9].end 46.25159375
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 36.48096875
transcript.pyannote[10].end 36.63284375
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 46.79159375
transcript.pyannote[11].end 48.56346875
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 48.78284375
transcript.pyannote[12].end 53.22096875
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 53.37284375
transcript.pyannote[13].end 55.16159375
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 56.27534375
transcript.pyannote[14].end 59.49846875
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 60.13971875
transcript.pyannote[15].end 62.11409375
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 62.75534375
transcript.pyannote[16].end 63.31221875
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 63.53159375
transcript.pyannote[17].end 64.30784375
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 65.28659375
transcript.pyannote[18].end 72.86346875
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 73.26846875
transcript.pyannote[19].end 74.38221875
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 74.68596875
transcript.pyannote[20].end 76.99784375
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 77.48721875
transcript.pyannote[21].end 81.43596875
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 81.99284375
transcript.pyannote[22].end 82.88721875
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 83.42721875
transcript.pyannote[23].end 89.02971875
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 89.02971875
transcript.pyannote[24].end 89.60346875
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 89.97471875
transcript.pyannote[25].end 89.99159375
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 89.99159375
transcript.pyannote[26].end 90.80159375
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 91.18971875
transcript.pyannote[27].end 100.70721875
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 100.75784375
transcript.pyannote[28].end 114.44346875
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 101.23034375
transcript.pyannote[29].end 101.28096875
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 109.66784375
transcript.pyannote[30].end 109.78596875
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 114.54471875
transcript.pyannote[31].end 123.10034375
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 119.48909375
transcript.pyannote[32].end 119.99534375
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 123.10034375
transcript.pyannote[33].end 123.45471875
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 123.45471875
transcript.pyannote[34].end 123.47159375
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 123.47159375
transcript.pyannote[35].end 123.48846875
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 123.48846875
transcript.pyannote[36].end 123.97784375
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 123.97784375
transcript.pyannote[37].end 130.27221875
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 130.62659375
transcript.pyannote[38].end 131.67284375
transcript.pyannote[39].speaker SPEAKER_01
transcript.pyannote[39].start 131.84159375
transcript.pyannote[39].end 132.66846875
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 133.42784375
transcript.pyannote[40].end 138.77721875
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 133.56284375
transcript.pyannote[41].end 134.52471875
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 136.41471875
transcript.pyannote[42].end 137.05596875
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 139.01346875
transcript.pyannote[43].end 139.04721875
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 139.08096875
transcript.pyannote[44].end 146.70846875
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 147.36659375
transcript.pyannote[45].end 148.12596875
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 148.32846875
transcript.pyannote[46].end 154.03221875
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 154.23471875
transcript.pyannote[47].end 155.70284375
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 156.22596875
transcript.pyannote[48].end 162.01409375
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 163.17846875
transcript.pyannote[49].end 163.49909375
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 164.46096875
transcript.pyannote[50].end 168.15659375
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 168.44346875
transcript.pyannote[51].end 175.36221875
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 175.96971875
transcript.pyannote[52].end 178.38284375
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 178.72034375
transcript.pyannote[53].end 180.15471875
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 180.22221875
transcript.pyannote[54].end 181.18409375
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 181.18409375
transcript.pyannote[55].end 181.23471875
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 181.23471875
transcript.pyannote[56].end 181.36971875
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 181.36971875
transcript.pyannote[57].end 181.99409375
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 181.99409375
transcript.pyannote[58].end 182.01096875
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 182.48346875
transcript.pyannote[59].end 185.45346875
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 183.76596875
transcript.pyannote[60].end 183.90096875
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 185.45346875
transcript.pyannote[61].end 186.17909375
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 186.01034375
transcript.pyannote[62].end 189.68909375
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 189.68909375
transcript.pyannote[63].end 196.21971875
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 191.78159375
transcript.pyannote[64].end 191.88284375
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 192.50721875
transcript.pyannote[65].end 193.11471875
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 195.88221875
transcript.pyannote[66].end 206.64846875
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 197.19846875
transcript.pyannote[67].end 197.70471875
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 200.75909375
transcript.pyannote[68].end 200.92784375
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 203.99909375
transcript.pyannote[69].end 204.47159375
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 207.74534375
transcript.pyannote[70].end 210.69846875
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 210.96846875
transcript.pyannote[71].end 214.15784375
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 214.42784375
transcript.pyannote[72].end 221.02596875
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 219.86159375
transcript.pyannote[73].end 220.51971875
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 221.02596875
transcript.pyannote[74].end 238.30596875
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 222.10596875
transcript.pyannote[75].end 222.61221875
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 237.39471875
transcript.pyannote[76].end 237.90096875
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 238.01909375
transcript.pyannote[77].end 244.81971875
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 244.98846875
transcript.pyannote[78].end 253.08846875
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 246.37221875
transcript.pyannote[79].end 246.52409375
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 249.44346875
transcript.pyannote[80].end 249.81471875
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 253.96596875
transcript.pyannote[81].end 254.94471875
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 254.94471875
transcript.pyannote[82].end 254.99534375
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 255.21471875
transcript.pyannote[83].end 256.02471875
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 256.02471875
transcript.pyannote[84].end 257.29034375
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 257.61096875
transcript.pyannote[85].end 268.54596875
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 269.05221875
transcript.pyannote[86].end 289.08284375
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 290.04471875
transcript.pyannote[87].end 290.97284375
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 290.97284375
transcript.pyannote[88].end 298.34721875
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 298.63409375
transcript.pyannote[89].end 304.97909375
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 305.29971875
transcript.pyannote[90].end 307.79721875
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 308.25284375
transcript.pyannote[91].end 311.17221875
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 311.84721875
transcript.pyannote[92].end 313.09596875
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 314.12534375
transcript.pyannote[93].end 314.41221875
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 315.10409375
transcript.pyannote[94].end 315.96471875
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 316.82534375
transcript.pyannote[95].end 318.09096875
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 319.12034375
transcript.pyannote[96].end 321.63471875
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 321.97221875
transcript.pyannote[97].end 324.58784375
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 325.07721875
transcript.pyannote[98].end 328.72221875
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 328.85721875
transcript.pyannote[99].end 333.29534375
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 333.97034375
transcript.pyannote[100].end 336.99096875
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 337.32846875
transcript.pyannote[101].end 338.42534375
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 338.81346875
transcript.pyannote[102].end 341.66534375
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 342.42471875
transcript.pyannote[103].end 344.53409375
transcript.pyannote[104].speaker SPEAKER_01
transcript.pyannote[104].start 344.92221875
transcript.pyannote[104].end 346.08659375
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 346.57596875
transcript.pyannote[105].end 348.09471875
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 348.56721875
transcript.pyannote[106].end 351.92534375
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 352.26284375
transcript.pyannote[107].end 357.57846875
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 358.08471875
transcript.pyannote[108].end 361.79721875
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 362.67471875
transcript.pyannote[109].end 364.04159375
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 364.59846875
transcript.pyannote[110].end 367.09596875
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 367.33221875
transcript.pyannote[111].end 371.68596875
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 371.92221875
transcript.pyannote[112].end 377.94659375
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 378.33471875
transcript.pyannote[113].end 380.89971875
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 382.14846875
transcript.pyannote[114].end 383.43096875
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 384.10596875
transcript.pyannote[115].end 385.86096875
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 386.48534375
transcript.pyannote[116].end 388.03784375
transcript.pyannote[117].speaker SPEAKER_01
transcript.pyannote[117].start 388.54409375
transcript.pyannote[117].end 396.54284375
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 397.03221875
transcript.pyannote[118].end 398.02784375
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 398.46659375
transcript.pyannote[119].end 401.80784375
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 403.12409375
transcript.pyannote[120].end 406.97159375
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 403.41096875
transcript.pyannote[121].end 404.22096875
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 406.97159375
transcript.pyannote[122].end 409.58721875
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 407.30909375
transcript.pyannote[123].end 407.88284375
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 409.97534375
transcript.pyannote[124].end 411.94971875
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 412.32096875
transcript.pyannote[125].end 419.40846875
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 419.96534375
transcript.pyannote[126].end 421.34909375
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 421.73721875
transcript.pyannote[127].end 426.27659375
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 422.02409375
transcript.pyannote[128].end 425.06159375
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 426.63096875
transcript.pyannote[129].end 427.87971875
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 428.30159375
transcript.pyannote[130].end 428.57159375
transcript.pyannote[131].speaker SPEAKER_01
transcript.pyannote[131].start 429.07784375
transcript.pyannote[131].end 430.96784375
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 431.82846875
transcript.pyannote[132].end 433.61721875
transcript.pyannote[133].speaker SPEAKER_01
transcript.pyannote[133].start 433.88721875
transcript.pyannote[133].end 436.92471875
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 437.43096875
transcript.pyannote[134].end 444.07971875
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 444.53534375
transcript.pyannote[135].end 447.21846875
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 447.60659375
transcript.pyannote[136].end 451.45409375
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 452.44971875
transcript.pyannote[137].end 454.12034375
transcript.pyannote[138].speaker SPEAKER_01
transcript.pyannote[138].start 454.52534375
transcript.pyannote[138].end 459.63846875
transcript.pyannote[139].speaker SPEAKER_01
transcript.pyannote[139].start 460.19534375
transcript.pyannote[139].end 464.63346875
transcript.pyannote[140].speaker SPEAKER_01
transcript.pyannote[140].start 465.30846875
transcript.pyannote[140].end 469.42596875
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 470.20221875
transcript.pyannote[141].end 473.10471875
transcript.pyannote[142].speaker SPEAKER_01
transcript.pyannote[142].start 474.04971875
transcript.pyannote[142].end 478.97721875
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 480.20909375
transcript.pyannote[143].end 481.17096875
transcript.pyannote[144].speaker SPEAKER_01
transcript.pyannote[144].start 482.01471875
transcript.pyannote[144].end 483.31409375
transcript.pyannote[145].speaker SPEAKER_01
transcript.pyannote[145].start 483.70221875
transcript.pyannote[145].end 488.86596875
transcript.pyannote[146].speaker SPEAKER_01
transcript.pyannote[146].start 489.59159375
transcript.pyannote[146].end 492.03846875
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 492.42659375
transcript.pyannote[147].end 497.86034375
transcript.pyannote[148].speaker SPEAKER_01
transcript.pyannote[148].start 498.36659375
transcript.pyannote[148].end 500.67846875
transcript.pyannote[149].speaker SPEAKER_01
transcript.pyannote[149].start 501.38721875
transcript.pyannote[149].end 505.09971875
transcript.pyannote[150].speaker SPEAKER_00
transcript.pyannote[150].start 505.09971875
transcript.pyannote[150].end 505.13346875
transcript.pyannote[151].speaker SPEAKER_00
transcript.pyannote[151].start 505.30221875
transcript.pyannote[151].end 505.35284375
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 505.35284375
transcript.pyannote[152].end 506.38221875
transcript.pyannote[153].speaker SPEAKER_00
transcript.pyannote[153].start 506.38221875
transcript.pyannote[153].end 506.46659375
transcript.pyannote[154].speaker SPEAKER_00
transcript.pyannote[154].start 506.66909375
transcript.pyannote[154].end 507.44534375
transcript.pyannote[155].speaker SPEAKER_00
transcript.pyannote[155].start 508.00221875
transcript.pyannote[155].end 515.27534375
transcript.pyannote[156].speaker SPEAKER_00
transcript.pyannote[156].start 515.44409375
transcript.pyannote[156].end 528.74159375
transcript.pyannote[157].speaker SPEAKER_01
transcript.pyannote[157].start 517.03034375
transcript.pyannote[157].end 517.41846875
transcript.pyannote[158].speaker SPEAKER_01
transcript.pyannote[158].start 517.99221875
transcript.pyannote[158].end 519.07221875
transcript.pyannote[159].speaker SPEAKER_01
transcript.pyannote[159].start 528.74159375
transcript.pyannote[159].end 534.59721875
transcript.pyannote[160].speaker SPEAKER_00
transcript.pyannote[160].start 532.42034375
transcript.pyannote[160].end 533.09534375
transcript.pyannote[161].speaker SPEAKER_00
transcript.pyannote[161].start 533.33159375
transcript.pyannote[161].end 533.38221875
transcript.pyannote[162].speaker SPEAKER_01
transcript.pyannote[162].start 534.85034375
transcript.pyannote[162].end 539.06909375
transcript.pyannote[163].speaker SPEAKER_01
transcript.pyannote[163].start 539.44034375
transcript.pyannote[163].end 542.54534375
transcript.pyannote[164].speaker SPEAKER_01
transcript.pyannote[164].start 542.81534375
transcript.pyannote[164].end 544.84034375
transcript.pyannote[165].speaker SPEAKER_01
transcript.pyannote[165].start 544.97534375
transcript.pyannote[165].end 545.53221875
transcript.pyannote[166].speaker SPEAKER_00
transcript.pyannote[166].start 545.11034375
transcript.pyannote[166].end 545.48159375
transcript.pyannote[167].speaker SPEAKER_01
transcript.pyannote[167].start 545.95409375
transcript.pyannote[167].end 549.41346875
transcript.pyannote[168].speaker SPEAKER_01
transcript.pyannote[168].start 549.73409375
transcript.pyannote[168].end 556.97346875
transcript.pyannote[169].speaker SPEAKER_00
transcript.pyannote[169].start 553.44659375
transcript.pyannote[169].end 554.22284375
transcript.pyannote[170].speaker SPEAKER_01
transcript.pyannote[170].start 557.17596875
transcript.pyannote[170].end 559.21784375
transcript.whisperx[0].start 2.065
transcript.whisperx[0].end 6.913
transcript.whisperx[0].text 感謝主席 本期邀請我們高鐵高鐵是董事長 施董事長請
transcript.whisperx[1].start 14.881
transcript.whisperx[1].end 28.947
transcript.whisperx[1].text 委員長董事長你好董事長這個想不到高鐵這個臨近車廂竟然引起社會很大討論我看也驚動了我們召委今天還特地排了一個專案大家來討論這個事情
transcript.whisperx[2].start 32.388
transcript.whisperx[2].end 55.049
transcript.whisperx[2].text 當然其實我也是高鐵的算是重度使用者而且我來自於距離台北大車最久的站台南高雄特快車還比我們多很多所以我是覺得這次的臨近車廂引起一個最大誤會就是好像是針對幼童
transcript.whisperx[3].start 56.334
transcript.whisperx[3].end 70.786
transcript.whisperx[3].text 事實上沒有事實上沒有而且個案上高鐵公佈的統計個案幼童也很少我看高鐵的統計主要三個樣態車廂內講電話49%這佔了快一半是對不對大聲交談佔了27%使用3C沒有佩戴耳機24%是那因為幼童
transcript.whisperx[4].start 84.177
transcript.whisperx[4].end 99.135
transcript.whisperx[4].text 然後來就是說然後來處理的案件很少啦就只有零星個案是不是這樣子是 我可以跟委員報告我們到8月為止我們平均來講我們幼童也就是12歲以下搭乘高鐵的比例是2.3%對
transcript.whisperx[5].start 101.757
transcript.whisperx[5].end 121.968
transcript.whisperx[5].text 2.3意思就是說一台全滿的車事實上總共幼童只有20個人分配在每一個車廂其實只有1到2人所以這個也如實的反映說為什麼我們在這個這個勸導案例的分析裡面一天的幼童案例只有零星個案但是他雖然少但是他的意見我們一樣重視謝謝
transcript.whisperx[6].start 124.009
transcript.whisperx[6].end 145.63
transcript.whisperx[6].text 但是會引起社會討論就是有的人誤會說你推行這樣的零件車廂會造成驗童事實上是沒有所以這個誤會一定要先澄清紙同行也是我們重要的課員沒有錯所以我看高鐵有些車廂還把它畫得很可愛讓小孩子看著也高興當然是歡喜兒童
transcript.whisperx[7].start 147.452
transcript.whisperx[7].end 174.142
transcript.whisperx[7].text 但是你一不小心就會形成討論就失焦了變成一種社會對立那對立到什麼程度呢高鐵上面這個臨近同行這個車牌臨近的牌子現在高鐵把它撤下來我知道你撤下來是因為很多人會拿這個牌子去給隔壁看就是說如果你知道聲音乘客對乘客我就拿這個牌子給你看這個臨近車廂
transcript.whisperx[8].start 176.781
transcript.whisperx[8].end 200.831
transcript.whisperx[8].text 所以你現在不敢放這張啦那表示你推行有問題但是我也是有放一張啊你也有放這張 這張沒有啦我這張有 這張有啦也是一樣有放這張你放這張變成大家都拿起來互相看所以我們其實都有放這個也不錯我們只是把它變成比較軟化比較可愛我不用制止你啦我拿這張給你看啦寧靜同行啦美好高鐵寧靜同行是不是這樣
transcript.whisperx[9].start 205.713
transcript.whisperx[9].end 222.339
transcript.whisperx[9].text 這個其實我覺得我們高鐵同仁的教育訓練也很重要你告訴我們同仁 同仁說如果遇到有必須要處理的時候那大概也是什麼樣的樣態要怎麼高鐵已經開通18年了事實上
transcript.whisperx[10].start 222.979
transcript.whisperx[10].end 241.94
transcript.whisperx[10].text 幼童的問題不是始於今天事實上所有關於車上各種樣態的處理事實上高鐵的同仁事實上都有一套SOP也行之多年我們平常也有經常性的客服跟客訴的統計如果遇到你講的這三個我相信高鐵同仁沒有問題你說的開通18號遇到車廂內講電話的
transcript.whisperx[11].start 245.123
transcript.whisperx[11].end 267.19
transcript.whisperx[11].text 大聲交談使用3C沒戴耳機的我覺得都不是問題那遇到如果有小朋友在哭鬧吵鬧的那這個要訓練我們高磊同仁怎麼處理我想高磊同仁基本上是秉持著協助安撫的角色來進行基本上我們不會主動去介入我們也必須要承認
transcript.whisperx[12].start 269.158
transcript.whisperx[12].end 288.695
transcript.whisperx[12].text 比較年幼的孩童他的聲音其實也是這個社會共同的一環這個沒有辦法說有任何強制性的做法所以這個做法其實已經行之多年不是死於今天大家也都知道說我們確實會碰到一些小孩子的問題可是大家也互相包容高鐵也盡其可能的安撫處理
transcript.whisperx[13].start 290.12
transcript.whisperx[13].end 312.777
transcript.whisperx[13].text 其實台灣人的素質全世界最高的大家都可以彼此的尊重包容絕大部分人這個絕對沒有問題只是你遇到小H的時候確實我們的同仁你要讓他告訴他們那怎麼來處理又或者啦台鐵有一個做法我覺得高鐵是不是可以考量一下就所謂的座位就是你買買車票的時候
transcript.whisperx[14].start 319.161
transcript.whisperx[14].end 340.326
transcript.whisperx[14].text 我們有辦法考量到說如果你有帶小孩因為有些父母他也會覺得我自己不好意思啦因為小孩子會發出聲音嘛那有時候有些爸媽我也曾經遇到隔壁的一直跟我們道歉我覺得那個父母也非常好啦那像台鐵就是我有幾個座位就是這裡面如果你有帶小孩我讓你來特別來買這裡的座位
transcript.whisperx[15].start 342.486
transcript.whisperx[15].end 366.169
transcript.whisperx[15].text 那跟你同車廂的客人你心裡就要知道這個車廂裡面有座位是特別化給有孩子同行有帶孩子的家庭來買車所以也希望你特別有包容心的我覺得台鐵這個做法不錯可以給高鐵做個參考就是他在哪一個車次 哪一個班次
transcript.whisperx[16].start 367.506
transcript.whisperx[16].end 387.779
transcript.whisperx[16].text 那裡面有畫設可以特別就是說像親子座位這不是整個車廂啦就特別畫有親子座位讓帶小孩的家長你可以來這裡那也讓同車廂的客人了解到這個有親子座
transcript.whisperx[17].start 388.595
transcript.whisperx[17].end 401.307
transcript.whisperx[17].text 我們有讓長輩的座位嘛 這個是親子座要坐這個車上的也請大家多多體諒帶小孩的家長我覺得台鐵這個規劃親子友善措施 這不錯
transcript.whisperx[18].start 404.214
transcript.whisperx[18].end 430.766
transcript.whisperx[18].text 我們會來研究一下不過因為高鐵本身的這個進出啊但是因為這個你不必改它的硬體啦要叫你做親子車廂你不可以啦沒有辦法做到像台鐵那樣因為台鐵他是把椅子拆掉讓孩子在那裡坐嘛那我們高鐵恐怕這麼做這個你們一定排斥反彈嘛食物上不可行有困難啦那我體諒你的話不然你也用這個座位不過國際間呢那怎麼做
transcript.whisperx[19].start 432.735
transcript.whisperx[19].end 459.276
transcript.whisperx[19].text 國際當中怎麼處理啊全世界都有類似這樣的大眾運輸的一個問題那這種會在車廂內可能會有形成這種聲音全世界都會有又不是只有我們那別的國家怎麼做英國 德國 日本 美國就世界先進國家的這種大眾運輸怎麼做國際上我比較一下啦我給你看這個表英國 德國 日本 義大利 荷蘭比利時 奧地利 瑞士 法國
transcript.whisperx[20].start 460.256
transcript.whisperx[20].end 488.626
transcript.whisperx[20].text 挪威 西班牙都是先進國家如果以這些國家的經濟力來看都是世界比較先進的國家常見的做法都是設立靜音區但是有需要的時候你購票的時候我讓你知道你可以買 特別買哪幾個車廂或者是我們相對的我帶小孩的家長我鼓勵你坐哪個車廂那裡有親子座位
transcript.whisperx[21].start 489.693
transcript.whisperx[21].end 499.897
transcript.whisperx[21].text 也許你也可以來做這樣的一個推廣尤其在帶小孩在買票的時候如果他是臨櫃買票你們也可以這麼跟他建議或者是高鐵也可以這樣來推廣
transcript.whisperx[22].start 501.431
transcript.whisperx[22].end 524.409
transcript.whisperx[22].text 或是你在車上遇到的時候也可以請他到那個車廂換個位置也可以我想福地上大部分都是針對長程因為長程確實它的忍耐度確實是受到挑戰那高鐵本身的我們平均我台北到台南最長也要兩個小時是 但是高鐵整體平均搭乘時間是一個小時
transcript.whisperx[23].start 525.59
transcript.whisperx[23].end 545.409
transcript.whisperx[23].text 那大概只有我們南部其實上是要搭比較久啦台南台南沒有南部高雄特快車比台南都很多台南台南最吃虧你知道嗎這個部分我另外再跟你討論好那今天這個今天這個臨近車廂我想您應該了解到啦高鐵不是要製造對立啦不可能
transcript.whisperx[24].start 546.09
transcript.whisperx[24].end 557.416
transcript.whisperx[24].text 那也不是說 會讓大家產生所謂厭同你有這樣的誤會啊 告你應該要來澄清是 是 好不好好 那也特別感謝主席今天特別安排這樣的一個專題啦好 謝謝喔 謝謝好 謝謝
gazette.lineno 437
gazette.blocks[0][0] 林委員俊憲:(10時41分)感謝主席,本席邀請高鐵史董事長。
gazette.blocks[1][0] 主席:請史董事長。
gazette.blocks[2][0] 史董事長哲:委員早。
gazette.blocks[3][0] 林委員俊憲:董事長,您好。董事長,想不到高鐵的寧靜車廂竟然引起社會很大的討論,我看也驚動了我們召委,今天還特地排了一個專案,大家來討論這件事情。其實我也算是高鐵的重度使用者,而且我來自於距離臺北搭車最久的站──臺南,高雄的特快車還比我們多很多,所以我覺得這次寧靜車廂引起一個最大的誤會,好像是針對幼童。
gazette.blocks[4][0] 史董事長哲:事實上沒有。
gazette.blocks[5][0] 林委員俊憲:事實上沒有啦!而且在高鐵公布的統計個案上,幼童也很少,我看高鐵的統計主要是三個樣態,車廂內講電話49%,占了快一半,對不對?大聲交談占了27%;使用3C沒有佩戴耳機占24%。因為幼童需處理的案件很少,就只有零星個案,是不是這樣子?
gazette.blocks[6][0] 史董事長哲:是!我可以跟委員報告,到8月為止,我們平均來講,幼童(12歲以下)搭乘高鐵的比例是2.3%,2.3%的意思就是一臺全滿的車,事實上幼童總共只有20個人,分配在每一個車廂,其實只有1到2人,這個也如實反映為什麼我們在勸導案例的分析裡面,一天的幼童案例只有零星個案,雖然人數少,但是他的意見我們一樣重視,謝謝。
gazette.blocks[7][0] 林委員俊憲:對,但是會引起社會討論,就是有的人誤會了,說你推行寧靜車廂會造成厭童。
gazette.blocks[8][0] 史董事長哲:事實上是沒有。
gazette.blocks[9][0] 林委員俊憲:所以這個誤會一定要先澄清。
gazette.blocks[10][0] 史董事長哲:親子同行也是我們重要的客源。
gazette.blocks[11][0] 林委員俊憲:沒有錯,所以我看高鐵還把有些車廂畫得很可愛,就是讓小孩子看了也高興,當然是歡迎兒童嘛!但是你一不小心就會形成……討論就失焦了,變成一種社會對立。對立到什麼程度呢?高鐵上面「寧靜同行」的牌子,現在高鐵把它撤下來了,我知道你撤下來是因為很多人會拿這個牌子去給隔壁看,如果你製造聲音,乘客對乘客,我就拿這個牌子給你看,提醒你這裡是寧靜車廂,所以你現在不敢放這張牌了!那表示你推行有問題。
gazette.blocks[12][0] 史董事長哲:但是現在我們也有放一張啊!
gazette.blocks[13][0] 林委員俊憲:哪有放這一張?這張沒有放了!
gazette.blocks[14][0] 史董事長哲:這張有放啦!也是一樣有放這一張。
gazette.blocks[15][0] 林委員俊憲:你放這一張,變成大家都拿起來互相給對方看。
gazette.blocks[16][0] 史董事長哲:我們其實都有放、都有放。
gazette.blocks[17][0] 林委員俊憲:這個方法也不錯。
gazette.blocks[18][0] 史董事長哲:我們只是把它變得比較軟化、比較可愛。
gazette.blocks[19][0] 林委員俊憲:我不是制止你,我拿這張給你看「美好高鐵,寧靜同行」,是不是這樣?
gazette.blocks[20][0] 史董事長哲:是。
gazette.blocks[21][0] 林委員俊憲:我覺得高鐵同仁的教育訓練也很重要,你有沒有訓練同仁當遇到必須要處理的狀況時,大概是什麼樣態、用什麼SOP處理?
gazette.blocks[22][0] 史董事長哲:高鐵已經開通18年了,事實上,幼童的問題不是僅在今天……
gazette.blocks[23][0] 林委員俊憲:不是幼童啦!
gazette.blocks[24][0] 史董事長哲:所有關於車上各種樣態的處理,高鐵同仁事實上都有一套SOP,也行之多年,我們平常也有經常性的客服跟客訴的統計。
gazette.blocks[25][0] 林委員俊憲:好,如果遇到你講的這三個,我相信高鐵同仁沒有問題,像你說的開通18年,遇到車廂內講電話、大聲交談、使用3C沒戴耳機的,我覺得都不是問題,但如果遇到有小朋友在哭鬧、吵鬧,這個就要訓練。請問高鐵同仁怎麼處理?
gazette.blocks[26][0] 史董事長哲:我想高鐵同仁基本上是秉持協助安撫的角色來進行,基本上,我們不會主動去介入,我們也必須要承認比較年幼的孩童,他的聲音其實也是這個社會共同的一環,沒有辦法說有任何強制性的作法,這個作法其實已經行之多年,不是始於今天,大家也都知道我們確實會碰到有些小孩子的問題,可是大家也互相包容,高鐵也盡其可能的安撫處理。
gazette.blocks[27][0] 林委員俊憲:我看臺灣人的素質是全世界最高的,大家都可以彼此尊重、包容,絕大部分的人這個絕對沒有問題,只是你遇到小孩子的時候,確實你要告訴同仁如何來處理。又或者臺鐵有一個作法我覺得高鐵是不是可以考量一下,就是所謂的座位,當你買車票的時候,我們有沒有辦法考量到,如果你有帶小孩,有些父母也會覺得自己不好意思,因為小孩子會發出聲音,我也曾經遇到隔壁的一直跟我們道歉,我覺得那種父母也非常好。像臺鐵就是有幾個座位,如果你有帶小孩,我讓你特別來買這裡的座位,跟你同車廂的客人心裡就知道這個車廂裡面有座位是特別劃給有孩子同行、有帶小孩的家長來買的,所以也希望你特別有包容心。我覺得臺鐵這個作法不錯,可以給高鐵做為參考,在哪一個車次、哪一個班次裡面有劃設特別座位,像是親子座位,這不是整個車廂,而是特別劃有親子座位,讓帶小孩的家長可以來這裡,也讓同車廂的客人了解到這裡有親子座,我們有禮讓長輩的座位,而這個是親子座,要坐這個車廂的人,也請大家多多體諒帶小孩的家長,我覺得臺鐵親子友善措施的規劃不錯。
gazette.blocks[28][0] 史董事長哲:委員,我們會來研究一下,不過因為高鐵本身的進出……
gazette.blocks[29][0] 林委員俊憲:因為你不必改它的硬體,請你規劃親子車廂,你們不要嘛!沒有辦法做到像臺鐵那樣,臺鐵是把椅子拆掉,讓小孩在那邊跑。恐怕高鐵要這麼做,你們一定排斥反彈,你們一定沒辦法實行啦!
gazette.blocks[30][0] 史董事長哲:實務上不可行。
gazette.blocks[31][0] 林委員俊憲:有困難啦!
gazette.blocks[32][0] 史董事長哲:對啦。
gazette.blocks[33][0] 林委員俊憲:我能體諒你們,但你們也要規劃這種座位。國際間是怎麼做?國際當中是如何處理?全世界都有類似這樣的大眾運輸問題,在車廂內可能會形成這種聲音,全世界都會有,又不是只有我們,那別的國家怎麼做?英國、德國、日本、美國,世界先進國家的大眾運輸是怎麼做的?在國際上,我們比較一下,我給你看這張表,英國、德國、日本、義大利、荷蘭、比利時、奧地利、瑞士、法國、挪威、西班牙都是先進國家,如果以這些國家的經濟來看,都是世界上比較先進的國家,常見作法都是設立「靜音區」,當你有需要、在購票的時候,我讓你知道,你可以特別買哪幾個車廂。我們相對的,對帶小孩的家長鼓勵他坐哪個車廂,那裡有親子座位,也許你也可以來做這樣的推廣,尤其是帶小孩的家長在買票的時候,如果他是臨櫃買票,你們也可以這麼跟他建議,或者是高鐵也可以這樣來推廣,或者是你在車上遇到的時候,也可以請他到那個車廂,換個位置也可以。
gazette.blocks[34][0] 史董事長哲:我想國際上大部分都是針對長程,因為長程他的忍耐度確實是受到挑戰,高鐵本身平均的搭乘……
gazette.blocks[35][0] 林委員俊憲:臺北到臺南最長也要2個小時。
gazette.blocks[36][0] 史董事長哲:是,但是高鐵整體平均搭乘時間是1個小時,大概只有南部的縣市要搭比較久。
gazette.blocks[37][0] 林委員俊憲:我是說臺南,因為高雄的特快車比臺南多很多。
gazette.blocks[38][0] 史董事長哲:是。
gazette.blocks[39][0] 林委員俊憲:臺南最吃虧,你知道嗎?這個部分我另外再跟你討論。
gazette.blocks[40][0] 史董事長哲:好。
gazette.blocks[41][0] 林委員俊憲:今天寧靜車廂這個議題,我想你應該了解到了,高鐵不是要製造對立。
gazette.blocks[42][0] 史董事長哲:不可能。
gazette.blocks[43][0] 林委員俊憲:也不是說要讓大家產生所謂的厭童,有這樣的誤會高鐵應該要澄清,好不好?
gazette.blocks[44][0] 史董事長哲:好,謝謝。
gazette.blocks[45][0] 林委員俊憲:也特別感謝主席今天安排這樣的專題,謝謝。
gazette.blocks[46][0] 史董事長哲:謝謝。
gazette.blocks[47][0] 主席:好,謝謝。
gazette.blocks[47][1] 接下來請魯明哲委員質詢。魯明哲委員質詢完畢之後,我們休息10分鐘,休息完畢回來處理臨時提案。
gazette.agenda.page_end 372
gazette.agenda.meet_id 委員會-11-4-23-3
gazette.agenda.speakers[0] 洪孟楷
gazette.agenda.speakers[1] 李昆澤
gazette.agenda.speakers[2] 蔡其昌
gazette.agenda.speakers[3] 陳素月
gazette.agenda.speakers[4] 許智傑
gazette.agenda.speakers[5] 何欣純
gazette.agenda.speakers[6] 林俊憲
gazette.agenda.speakers[7] 魯明哲
gazette.agenda.speakers[8] 黃健豪
gazette.agenda.speakers[9] 廖先翔
gazette.agenda.speakers[10] 徐富癸
gazette.agenda.speakers[11] 王育敏
gazette.agenda.speakers[12] 張嘉郡
gazette.agenda.speakers[13] 黃國昌
gazette.agenda.speakers[14] 邱若華
gazette.agenda.speakers[15] 邱志偉
gazette.agenda.speakers[16] 林月琴
gazette.agenda.speakers[17] 張雅琳
gazette.agenda.speakers[18] 陳冠廷
gazette.agenda.speakers[19] 林國成
gazette.agenda.speakers[20] 游顥
gazette.agenda.page_start 311
gazette.agenda.meetingDate[0] 2025-10-16
gazette.agenda.gazette_id 1148401
gazette.agenda.agenda_lcidc_ids[0] 1148401_00007
gazette.agenda.meet_name 立法院第11屆第4會期交通委員會第3次全體委員會議紀錄
gazette.agenda.content 一、邀請國家運輸安全調查委員會主任委員林信得列席報告業務概況,並備質詢;二、邀請交通 部部長陳世凱、衛生福利部次長及台灣高速鐵路股份有限公司董事長史哲列席就「高鐵公司推動 寧靜車廂所引發正反意見,政策上路近一個月的成效及後續宣導因應」進行專題報告,並備質詢
gazette.agenda.agenda_id 1148401_00006