iVOD / 164275

Field Value
IVOD_ID 164275
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/164275
日期 2025-10-16
會議資料.會議代碼 委員會-11-4-15-5
會議資料.會議代碼:str 第11屆第4會期內政委員會第5次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 5
會議資料.種類 委員會
會議資料.委員會代碼[0] 15
會議資料.委員會代碼:str[0] 內政委員會
會議資料.標題 第11屆第4會期內政委員會第5次全體委員會議
影片種類 Clip
開始時間 2025-10-16T09:35:09+08:00
結束時間 2025-10-16T09:50:11+08:00
影片長度 00:15:02
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/6022c9f6d63255a3bbfe8c187ff72e1aa3b07049f443442ad77ab6ef5aede89856a65096fc31f86f5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 張智倫
委員發言時間 09:35:09 - 09:50:11
會議時間 2025-10-16T09:00:00+08:00
會議名稱 立法院第11屆第4會期內政委員會第5次全體委員會議(事由:邀請內政部部長、海洋委員會主任委員、內政部警政署署長、內政部消防署署長就「警察、消防、海巡、移民及空中勤務總隊人員危勞津貼及退休權益之保障」進行專題報告並備質詢,另請行政院人事行政總處、行政院主計總處、銓敘部派員列席備詢。)
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 0.48659375
transcript.pyannote[0].end 0.60471875
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 1.26284375
transcript.pyannote[1].end 3.99659375
transcript.pyannote[2].speaker SPEAKER_02
transcript.pyannote[2].start 4.33409375
transcript.pyannote[2].end 5.44784375
transcript.pyannote[3].speaker SPEAKER_02
transcript.pyannote[3].start 6.66284375
transcript.pyannote[3].end 8.29971875
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 8.72159375
transcript.pyannote[4].end 10.05471875
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 12.87284375
transcript.pyannote[5].end 13.02471875
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 14.15534375
transcript.pyannote[6].end 15.03284375
transcript.pyannote[7].speaker SPEAKER_02
transcript.pyannote[7].start 21.74909375
transcript.pyannote[7].end 22.62659375
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 23.85846875
transcript.pyannote[8].end 24.11159375
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 24.29721875
transcript.pyannote[9].end 30.74346875
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 31.16534375
transcript.pyannote[10].end 33.86534375
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 34.27034375
transcript.pyannote[11].end 35.09721875
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 35.65409375
transcript.pyannote[12].end 41.50971875
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 42.10034375
transcript.pyannote[13].end 42.97784375
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 43.23096875
transcript.pyannote[14].end 52.69784375
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 52.96784375
transcript.pyannote[15].end 56.47784375
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 56.93346875
transcript.pyannote[16].end 57.81096875
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 57.82784375
transcript.pyannote[17].end 58.60409375
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 58.99221875
transcript.pyannote[18].end 65.18534375
transcript.pyannote[19].speaker SPEAKER_03
transcript.pyannote[19].start 66.58596875
transcript.pyannote[19].end 82.12784375
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 82.44846875
transcript.pyannote[20].end 87.54471875
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 88.11846875
transcript.pyannote[21].end 91.32471875
transcript.pyannote[22].speaker SPEAKER_03
transcript.pyannote[22].start 91.62846875
transcript.pyannote[22].end 96.48846875
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 96.47159375
transcript.pyannote[23].end 105.68534375
transcript.pyannote[24].speaker SPEAKER_03
transcript.pyannote[24].start 96.50534375
transcript.pyannote[24].end 96.52221875
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 105.92159375
transcript.pyannote[25].end 110.10659375
transcript.pyannote[26].speaker SPEAKER_03
transcript.pyannote[26].start 111.35534375
transcript.pyannote[26].end 115.05096875
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 114.52784375
transcript.pyannote[27].end 116.50221875
transcript.pyannote[28].speaker SPEAKER_03
transcript.pyannote[28].start 117.29534375
transcript.pyannote[28].end 117.76784375
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 118.32471875
transcript.pyannote[29].end 120.73784375
transcript.pyannote[30].speaker SPEAKER_03
transcript.pyannote[30].start 121.48034375
transcript.pyannote[30].end 124.77096875
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 124.92284375
transcript.pyannote[31].end 132.93846875
transcript.pyannote[32].speaker SPEAKER_03
transcript.pyannote[32].start 126.08721875
transcript.pyannote[32].end 127.01534375
transcript.pyannote[33].speaker SPEAKER_03
transcript.pyannote[33].start 133.24221875
transcript.pyannote[33].end 138.96284375
transcript.pyannote[34].speaker SPEAKER_03
transcript.pyannote[34].start 139.30034375
transcript.pyannote[34].end 146.42159375
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 147.92346875
transcript.pyannote[35].end 148.96971875
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 149.67846875
transcript.pyannote[36].end 151.61909375
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 152.34471875
transcript.pyannote[37].end 152.80034375
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 153.23909375
transcript.pyannote[38].end 158.01471875
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 158.35221875
transcript.pyannote[39].end 160.05659375
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 160.17471875
transcript.pyannote[40].end 161.59221875
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 161.96346875
transcript.pyannote[41].end 163.61721875
transcript.pyannote[42].speaker SPEAKER_03
transcript.pyannote[42].start 165.37221875
transcript.pyannote[42].end 178.06221875
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 169.54034375
transcript.pyannote[43].end 172.29096875
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 179.22659375
transcript.pyannote[44].end 181.48784375
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 186.21284375
transcript.pyannote[45].end 186.71909375
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 188.72721875
transcript.pyannote[46].end 189.23346875
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 189.45284375
transcript.pyannote[47].end 192.57471875
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 193.18221875
transcript.pyannote[48].end 200.40471875
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 200.80971875
transcript.pyannote[49].end 205.33221875
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 205.72034375
transcript.pyannote[50].end 213.16221875
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 212.03159375
transcript.pyannote[51].end 212.13284375
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 212.94284375
transcript.pyannote[52].end 222.51096875
transcript.pyannote[53].speaker SPEAKER_02
transcript.pyannote[53].start 218.22471875
transcript.pyannote[53].end 231.62346875
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 228.58596875
transcript.pyannote[54].end 232.34909375
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 232.55159375
transcript.pyannote[55].end 235.84221875
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 235.87596875
transcript.pyannote[56].end 238.52534375
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 238.72784375
transcript.pyannote[57].end 242.87909375
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 242.92971875
transcript.pyannote[58].end 244.17846875
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 244.54971875
transcript.pyannote[59].end 246.10221875
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 246.35534375
transcript.pyannote[60].end 247.84034375
transcript.pyannote[61].speaker SPEAKER_02
transcript.pyannote[61].start 249.02159375
transcript.pyannote[61].end 254.10096875
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 254.79284375
transcript.pyannote[62].end 258.87659375
transcript.pyannote[63].speaker SPEAKER_02
transcript.pyannote[63].start 259.04534375
transcript.pyannote[63].end 259.45034375
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 260.04096875
transcript.pyannote[64].end 260.61471875
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 260.98596875
transcript.pyannote[65].end 263.07846875
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 263.44971875
transcript.pyannote[66].end 269.81159375
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 270.13221875
transcript.pyannote[67].end 277.97909375
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 278.14784375
transcript.pyannote[68].end 280.34159375
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 281.23596875
transcript.pyannote[69].end 282.45096875
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 283.05846875
transcript.pyannote[70].end 283.34534375
transcript.pyannote[71].speaker SPEAKER_02
transcript.pyannote[71].start 283.75034375
transcript.pyannote[71].end 293.33534375
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 293.47034375
transcript.pyannote[72].end 297.80721875
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 298.34721875
transcript.pyannote[73].end 303.10596875
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 303.54471875
transcript.pyannote[74].end 311.49284375
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 311.74596875
transcript.pyannote[75].end 313.58534375
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 320.09909375
transcript.pyannote[76].end 320.63909375
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 321.63471875
transcript.pyannote[77].end 322.37721875
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 323.27159375
transcript.pyannote[78].end 327.22034375
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 327.60846875
transcript.pyannote[79].end 329.70096875
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 330.05534375
transcript.pyannote[80].end 331.65846875
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 331.92846875
transcript.pyannote[81].end 335.53971875
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 335.91096875
transcript.pyannote[82].end 339.91034375
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 340.53471875
transcript.pyannote[83].end 341.54721875
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 341.96909375
transcript.pyannote[84].end 357.78096875
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 358.01721875
transcript.pyannote[85].end 359.02971875
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 358.52346875
transcript.pyannote[86].end 359.70471875
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 359.50221875
transcript.pyannote[87].end 367.95659375
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 368.15909375
transcript.pyannote[88].end 381.50721875
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 381.57471875
transcript.pyannote[89].end 384.32534375
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 384.73034375
transcript.pyannote[90].end 385.43909375
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 386.35034375
transcript.pyannote[91].end 391.76721875
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 391.93596875
transcript.pyannote[92].end 394.90596875
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 395.56409375
transcript.pyannote[93].end 399.52971875
transcript.pyannote[94].speaker SPEAKER_02
transcript.pyannote[94].start 399.73221875
transcript.pyannote[94].end 401.99346875
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 402.41534375
transcript.pyannote[95].end 403.09034375
transcript.pyannote[96].speaker SPEAKER_02
transcript.pyannote[96].start 403.64721875
transcript.pyannote[96].end 405.70596875
transcript.pyannote[97].speaker SPEAKER_02
transcript.pyannote[97].start 405.94221875
transcript.pyannote[97].end 407.34284375
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 407.74784375
transcript.pyannote[98].end 428.43659375
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 414.41346875
transcript.pyannote[99].end 414.76784375
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 426.12471875
transcript.pyannote[100].end 436.06409375
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 436.08096875
transcript.pyannote[101].end 436.09784375
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 436.43534375
transcript.pyannote[102].end 439.72596875
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 439.74284375
transcript.pyannote[103].end 444.61971875
transcript.pyannote[104].speaker SPEAKER_01
transcript.pyannote[104].start 443.18534375
transcript.pyannote[104].end 449.29409375
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 446.49284375
transcript.pyannote[105].end 447.92721875
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 448.28159375
transcript.pyannote[106].end 450.22221875
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 450.93096875
transcript.pyannote[107].end 453.24284375
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 453.04034375
transcript.pyannote[108].end 469.66221875
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 459.31784375
transcript.pyannote[109].end 459.40221875
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 459.40221875
transcript.pyannote[110].end 460.70159375
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 466.77659375
transcript.pyannote[111].end 468.54846875
transcript.pyannote[112].speaker SPEAKER_02
transcript.pyannote[112].start 469.12221875
transcript.pyannote[112].end 473.05409375
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 472.95284375
transcript.pyannote[113].end 475.65284375
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 473.96534375
transcript.pyannote[114].end 477.99846875
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 478.21784375
transcript.pyannote[115].end 498.41721875
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 498.60284375
transcript.pyannote[116].end 500.22284375
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 500.22284375
transcript.pyannote[117].end 503.76659375
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 503.96909375
transcript.pyannote[118].end 505.23471875
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 505.35284375
transcript.pyannote[119].end 509.41971875
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 509.72346875
transcript.pyannote[120].end 516.18659375
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 516.86159375
transcript.pyannote[121].end 522.90284375
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 523.40909375
transcript.pyannote[122].end 524.70846875
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 524.87721875
transcript.pyannote[123].end 527.03721875
transcript.pyannote[124].speaker SPEAKER_02
transcript.pyannote[124].start 527.35784375
transcript.pyannote[124].end 530.44596875
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 530.58096875
transcript.pyannote[125].end 533.44971875
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 533.44971875
transcript.pyannote[126].end 537.14534375
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 533.71971875
transcript.pyannote[127].end 535.28909375
transcript.pyannote[128].speaker SPEAKER_02
transcript.pyannote[128].start 535.69409375
transcript.pyannote[128].end 547.86096875
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 537.16221875
transcript.pyannote[129].end 537.17909375
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 547.35471875
transcript.pyannote[130].end 558.52596875
transcript.pyannote[131].speaker SPEAKER_02
transcript.pyannote[131].start 555.43784375
transcript.pyannote[131].end 566.25471875
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 564.75284375
transcript.pyannote[132].end 564.85409375
transcript.pyannote[133].speaker SPEAKER_01
transcript.pyannote[133].start 565.88346875
transcript.pyannote[133].end 569.69721875
transcript.pyannote[134].speaker SPEAKER_02
transcript.pyannote[134].start 568.34721875
transcript.pyannote[134].end 573.22409375
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 573.22409375
transcript.pyannote[135].end 573.24096875
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 574.21971875
transcript.pyannote[136].end 588.14159375
transcript.pyannote[137].speaker SPEAKER_02
transcript.pyannote[137].start 581.52659375
transcript.pyannote[137].end 586.45409375
transcript.pyannote[138].speaker SPEAKER_02
transcript.pyannote[138].start 587.07846875
transcript.pyannote[138].end 591.95534375
transcript.pyannote[139].speaker SPEAKER_02
transcript.pyannote[139].start 592.20846875
transcript.pyannote[139].end 592.78221875
transcript.pyannote[140].speaker SPEAKER_02
transcript.pyannote[140].start 593.03534375
transcript.pyannote[140].end 595.54971875
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 596.17409375
transcript.pyannote[141].end 599.00909375
transcript.pyannote[142].speaker SPEAKER_02
transcript.pyannote[142].start 599.07659375
transcript.pyannote[142].end 607.98659375
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 607.64909375
transcript.pyannote[143].end 624.35534375
transcript.pyannote[144].speaker SPEAKER_02
transcript.pyannote[144].start 619.57971875
transcript.pyannote[144].end 621.72284375
transcript.pyannote[145].speaker SPEAKER_02
transcript.pyannote[145].start 622.83659375
transcript.pyannote[145].end 626.11034375
transcript.pyannote[146].speaker SPEAKER_01
transcript.pyannote[146].start 625.04721875
transcript.pyannote[146].end 625.60409375
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 627.66284375
transcript.pyannote[147].end 639.71159375
transcript.pyannote[148].speaker SPEAKER_02
transcript.pyannote[148].start 631.03784375
transcript.pyannote[148].end 635.02034375
transcript.pyannote[149].speaker SPEAKER_02
transcript.pyannote[149].start 638.24346875
transcript.pyannote[149].end 648.99284375
transcript.pyannote[150].speaker SPEAKER_01
transcript.pyannote[150].start 648.53721875
transcript.pyannote[150].end 650.71409375
transcript.pyannote[151].speaker SPEAKER_01
transcript.pyannote[151].start 651.45659375
transcript.pyannote[151].end 672.95534375
transcript.pyannote[152].speaker SPEAKER_02
transcript.pyannote[152].start 656.75534375
transcript.pyannote[152].end 660.19784375
transcript.pyannote[153].speaker SPEAKER_02
transcript.pyannote[153].start 666.20534375
transcript.pyannote[153].end 667.04909375
transcript.pyannote[154].speaker SPEAKER_02
transcript.pyannote[154].start 670.25534375
transcript.pyannote[154].end 675.67221875
transcript.pyannote[155].speaker SPEAKER_01
transcript.pyannote[155].start 673.22534375
transcript.pyannote[155].end 673.36034375
transcript.pyannote[156].speaker SPEAKER_01
transcript.pyannote[156].start 675.67221875
transcript.pyannote[156].end 676.88721875
transcript.pyannote[157].speaker SPEAKER_02
transcript.pyannote[157].start 676.31346875
transcript.pyannote[157].end 683.21534375
transcript.pyannote[158].speaker SPEAKER_02
transcript.pyannote[158].start 683.24909375
transcript.pyannote[158].end 683.99159375
transcript.pyannote[159].speaker SPEAKER_02
transcript.pyannote[159].start 684.48096875
transcript.pyannote[159].end 688.93596875
transcript.pyannote[160].speaker SPEAKER_02
transcript.pyannote[160].start 689.00346875
transcript.pyannote[160].end 691.53471875
transcript.pyannote[161].speaker SPEAKER_01
transcript.pyannote[161].start 689.10471875
transcript.pyannote[161].end 689.50971875
transcript.pyannote[162].speaker SPEAKER_02
transcript.pyannote[162].start 692.15909375
transcript.pyannote[162].end 695.39909375
transcript.pyannote[163].speaker SPEAKER_01
transcript.pyannote[163].start 693.84659375
transcript.pyannote[163].end 694.92659375
transcript.pyannote[164].speaker SPEAKER_01
transcript.pyannote[164].start 695.78721875
transcript.pyannote[164].end 735.15659375
transcript.pyannote[165].speaker SPEAKER_02
transcript.pyannote[165].start 703.02659375
transcript.pyannote[165].end 704.69721875
transcript.pyannote[166].speaker SPEAKER_02
transcript.pyannote[166].start 731.81534375
transcript.pyannote[166].end 744.40409375
transcript.pyannote[167].speaker SPEAKER_01
transcript.pyannote[167].start 735.59534375
transcript.pyannote[167].end 739.17284375
transcript.pyannote[168].speaker SPEAKER_02
transcript.pyannote[168].start 744.55596875
transcript.pyannote[168].end 749.56784375
transcript.pyannote[169].speaker SPEAKER_01
transcript.pyannote[169].start 744.82596875
transcript.pyannote[169].end 745.11284375
transcript.pyannote[170].speaker SPEAKER_01
transcript.pyannote[170].start 747.10409375
transcript.pyannote[170].end 747.77909375
transcript.pyannote[171].speaker SPEAKER_01
transcript.pyannote[171].start 748.03221875
transcript.pyannote[171].end 748.08284375
transcript.pyannote[172].speaker SPEAKER_01
transcript.pyannote[172].start 748.79159375
transcript.pyannote[172].end 750.00659375
transcript.pyannote[173].speaker SPEAKER_01
transcript.pyannote[173].start 750.44534375
transcript.pyannote[173].end 761.26221875
transcript.pyannote[174].speaker SPEAKER_02
transcript.pyannote[174].start 751.03596875
transcript.pyannote[174].end 751.54221875
transcript.pyannote[175].speaker SPEAKER_02
transcript.pyannote[175].start 759.15284375
transcript.pyannote[175].end 764.77221875
transcript.pyannote[176].speaker SPEAKER_01
transcript.pyannote[176].start 765.02534375
transcript.pyannote[176].end 765.39659375
transcript.pyannote[177].speaker SPEAKER_01
transcript.pyannote[177].start 765.95346875
transcript.pyannote[177].end 767.77596875
transcript.pyannote[178].speaker SPEAKER_02
transcript.pyannote[178].start 767.26971875
transcript.pyannote[178].end 768.68721875
transcript.pyannote[179].speaker SPEAKER_01
transcript.pyannote[179].start 768.60284375
transcript.pyannote[179].end 783.68909375
transcript.pyannote[180].speaker SPEAKER_02
transcript.pyannote[180].start 769.93596875
transcript.pyannote[180].end 770.64471875
transcript.pyannote[181].speaker SPEAKER_02
transcript.pyannote[181].start 778.10346875
transcript.pyannote[181].end 779.41971875
transcript.pyannote[182].speaker SPEAKER_02
transcript.pyannote[182].start 781.51221875
transcript.pyannote[182].end 787.51971875
transcript.pyannote[183].speaker SPEAKER_01
transcript.pyannote[183].start 785.93346875
transcript.pyannote[183].end 797.86409375
transcript.pyannote[184].speaker SPEAKER_02
transcript.pyannote[184].start 794.89409375
transcript.pyannote[184].end 796.04159375
transcript.pyannote[185].speaker SPEAKER_02
transcript.pyannote[185].start 797.40846875
transcript.pyannote[185].end 811.11096875
transcript.pyannote[186].speaker SPEAKER_01
transcript.pyannote[186].start 797.94846875
transcript.pyannote[186].end 798.03284375
transcript.pyannote[187].speaker SPEAKER_01
transcript.pyannote[187].start 798.06659375
transcript.pyannote[187].end 804.52971875
transcript.pyannote[188].speaker SPEAKER_00
transcript.pyannote[188].start 804.52971875
transcript.pyannote[188].end 804.58034375
transcript.pyannote[189].speaker SPEAKER_02
transcript.pyannote[189].start 811.36409375
transcript.pyannote[189].end 825.84284375
transcript.pyannote[190].speaker SPEAKER_00
transcript.pyannote[190].start 811.53284375
transcript.pyannote[190].end 811.83659375
transcript.pyannote[191].speaker SPEAKER_01
transcript.pyannote[191].start 820.39221875
transcript.pyannote[191].end 832.86284375
transcript.pyannote[192].speaker SPEAKER_02
transcript.pyannote[192].start 828.81284375
transcript.pyannote[192].end 832.42409375
transcript.pyannote[193].speaker SPEAKER_01
transcript.pyannote[193].start 833.28471875
transcript.pyannote[193].end 847.93221875
transcript.pyannote[194].speaker SPEAKER_02
transcript.pyannote[194].start 836.33909375
transcript.pyannote[194].end 839.19096875
transcript.pyannote[195].speaker SPEAKER_02
transcript.pyannote[195].start 846.07596875
transcript.pyannote[195].end 849.43409375
transcript.pyannote[196].speaker SPEAKER_01
transcript.pyannote[196].start 849.68721875
transcript.pyannote[196].end 854.64846875
transcript.pyannote[197].speaker SPEAKER_01
transcript.pyannote[197].start 854.95221875
transcript.pyannote[197].end 864.16596875
transcript.pyannote[198].speaker SPEAKER_02
transcript.pyannote[198].start 859.18784375
transcript.pyannote[198].end 860.89221875
transcript.pyannote[199].speaker SPEAKER_01
transcript.pyannote[199].start 864.68909375
transcript.pyannote[199].end 873.71721875
transcript.pyannote[200].speaker SPEAKER_02
transcript.pyannote[200].start 870.76409375
transcript.pyannote[200].end 874.89846875
transcript.pyannote[201].speaker SPEAKER_01
transcript.pyannote[201].start 875.15159375
transcript.pyannote[201].end 875.59034375
transcript.pyannote[202].speaker SPEAKER_01
transcript.pyannote[202].start 876.06284375
transcript.pyannote[202].end 882.05346875
transcript.pyannote[203].speaker SPEAKER_02
transcript.pyannote[203].start 882.10409375
transcript.pyannote[203].end 888.65159375
transcript.pyannote[204].speaker SPEAKER_01
transcript.pyannote[204].start 882.59346875
transcript.pyannote[204].end 894.92909375
transcript.pyannote[205].speaker SPEAKER_02
transcript.pyannote[205].start 891.30096875
transcript.pyannote[205].end 892.06034375
transcript.pyannote[206].speaker SPEAKER_02
transcript.pyannote[206].start 894.25409375
transcript.pyannote[206].end 901.03784375
transcript.pyannote[207].speaker SPEAKER_01
transcript.pyannote[207].start 899.85659375
transcript.pyannote[207].end 901.45971875
transcript.pyannote[208].speaker SPEAKER_00
transcript.pyannote[208].start 902.89409375
transcript.pyannote[208].end 902.91096875
transcript.pyannote[209].speaker SPEAKER_00
transcript.pyannote[209].start 902.92784375
transcript.pyannote[209].end 902.96159375
transcript.pyannote[210].speaker SPEAKER_00
transcript.pyannote[210].start 902.97846875
transcript.pyannote[210].end 903.61971875
transcript.whisperx[0].start 1.276
transcript.whisperx[0].end 10.964
transcript.whisperx[0].text 好好謝謝主席各位委員各位觀點大家早我是先請這個行政院主計處的專委李專委請李專委專委好
transcript.whisperx[1].start 24.526
transcript.whisperx[1].end 34.846
transcript.whisperx[1].text 今天我們要請教有關於我們要幫助警察消防海巡移民空勤總隊的危老津貼跟退休權益之保障那基本上
transcript.whisperx[2].start 35.68
transcript.whisperx[2].end 64.967
transcript.whisperx[2].text 大家都知道在立法院這個今年三讀通過在114年1月7號三讀通過這個我們要就警察人士條例的修正案將這些退休所的替代率調高到50%那這個總統在4月25的時候公布修正條文那我想要先請教依照這個預算編制原則跟預算的編制程序什麼時候應該要編列相關的預算
transcript.whisperx[3].start 66.79
transcript.whisperx[3].end 90.997
transcript.whisperx[3].text 依照我們相關的規定我們是在大概是在七月底之前會開這個行政院內部會開這個預算審議會議那在八月中下旬的時候會踢爆行政院會議通過之後在八月底之前送到大院審議所以意思是在講說在編列的時候應該四五月起就開始編列了吧才有辦法在這個七八月的時候送到行政院來核定是嗎
transcript.whisperx[4].start 91.847
transcript.whisperx[4].end 115.492
transcript.whisperx[4].text 我們大概各機關提報概算大概是在6月左右那我請教一下那我現在看到115年度的預算的時候居然沒有編這一筆的預算所以當時照你的說法當時是有編這筆預算可是不知道為什麼原因這筆預算現在送到立法院來的時候不見了嗎我們依照各機關提報的需求不過這一筆的預算所以當時各機關都有編列預算一開始當時各機關都有編列預算嗎
transcript.whisperx[5].start 121.647
transcript.whisperx[5].end 146.395
transcript.whisperx[5].text 這部分當時機關應該是沒有提報啦沒有提報預算跟你剛剛講了五六月就要編列預算七月八月就要送到行政院啊當時到底有沒有編列預算我的意思是說當時各機關沒有在概算的時候沒有納入這個部分但是他們有跟行政院報告說有這個就是人事條例這個部分有可能有一些疑義需要代處理什麼意思
transcript.whisperx[6].start 149.741
transcript.whisperx[6].end 177.808
transcript.whisperx[6].text 就依照你們這個組計處的規定是不是應該要編列預算就你剛剛提的嘛又應該要編列預算嘛那為什麼後來你們自己各部會的組計處自己決定說不編列預算根本報告就是說我們一般在作業上會先核定一個概算額度嘛所以當時都已經核定算出來概算額度了因為這一筆預算是比較後期所以這個當時在核定的時候啊還沒有再考慮到這個部分
transcript.whisperx[7].start 179.281
transcript.whisperx[7].end 181.345
transcript.whisperx[7].text 好那是不是有請有請內政部部長好謝謝部長那你剛剛聽完我們主計這個同仁
transcript.whisperx[8].start 193.437
transcript.whisperx[8].end 211.005
transcript.whisperx[8].text 提出來的這個看法跟他所表達的意見您認為是否是當時其實各部會都有編列預算那其實是有送到行政院來那到底為什麼行政院後來他是沒有把這筆預算加到我們115年度的行政整個總體的預算是不是可以請
transcript.whisperx[9].start 211.905
transcript.whisperx[9].end 229.12
transcript.whisperx[9].text 部長這邊說明一下報告委員因為這是由行政院要回覆的部分我沒有辦法帶行政院來回覆那你看到你自己本部內裡面沒有編列這樣的預算所以部長我要跟你報告的點就是說依照整體我們這次立法院通過整體的行政程序來講基本上來講應該要編列應該要編列預算
transcript.whisperx[10].start 234.743
transcript.whisperx[10].end 258.51
transcript.whisperx[10].text 應該要編列預算然後在115年的總體預算來講因為我要說的就是行政程序對我們來講尤其是人民大家都要依照行政程序來編列預算來做事情如果沒有編列預算的話就是因為行政院長他自己個人的意思然後來不去編列我想各部會應該要跟行政院長講說這是不應該做的事情那
transcript.whisperx[11].start 260.157
transcript.whisperx[11].end 282.309
transcript.whisperx[11].text 是不是有請部長是不是稍微來對於我們這次沒有編列預算您的看法你自己本身作為內政部長您的看法是什麼報告委員我們還是一樣行政院是整體的那院長他站在行政院的高度他認為這件事情是需要尋求釋憲那我們就按照院長的指示來辦理好謝謝部長好
transcript.whisperx[12].start 283.857
transcript.whisperx[12].end 313.429
transcript.whisperx[12].text 所以本席在這邊還是要嚴正的強調立法院我們是五權分立的國家立法院要求要編列預算其實剛剛主計處也特別提出來說其實依照依法行政依照行政規定來講應該編列這個預算可是我們現在在115年度預算裡面沒有看到這樣的預算所以我們希望當然內政部部長他也無可奈何大家都聽行政院長的一個人的看法好那接下來我要強請這個海巡署的管碧玲管主委
transcript.whisperx[13].start 323.315
transcript.whisperx[13].end 339.423
transcript.whisperx[13].text 昨天我有看到你在政黨協商你針對這個海委會的預算做這個強力的守護我覺得我基本上對所有這個景蕭海巡的預算我們都是支持的可是我們昨天在看到海巡署的一些特別預算的時候其實我有提
transcript.whisperx[14].start 340.578
transcript.whisperx[14].end 356.516
transcript.whisperx[14].text 一個這個提案就是要凍結這個海巡相關10%的預算就是針對海巡裡面採買無人機的部分我本來是要凍結10%那因為我本身是非常支持海巡的預算所以後來我有簽了一張組決議
transcript.whisperx[15].start 358.126
transcript.whisperx[15].end 381.846
transcript.whisperx[15].text 希望說海巡可以好好來利用這筆預算可是我看到這筆預算我今天因為本來你們海巡早上應該提供我相關的說明可是我還是沒有看到那裡面的有關於的預算就是在海巡署要採買無人機的部分他花了40億要採買無人機的部分那我現在算了一下總共要採買無人機的這個數量是451架這個數字對嗎是
transcript.whisperx[16].start 386.38
transcript.whisperx[16].end 407.069
transcript.whisperx[16].text 那如果這個數字對的話40億才買451架的無人機裡面包含了這個進程機412架中程機18架以及這個遠程機有可能21架等等的請問一下你們進程機一台的這個大概的價格是多少錢
transcript.whisperx[17].start 407.953
transcript.whisperx[17].end 427.703
transcript.whisperx[17].text 跟委員報告我們還必須要經過仿商的程序來處理那進程機它是比較是小型的無人機它當然會是一個經費上規模最小的一個那基本上我們建載的部分它就非常是一個重度功能的無人機的設計主委為什麼我對這筆預算相當有意見因為我本身是學會計的這412架的無人機
transcript.whisperx[18].start 436.508
transcript.whisperx[18].end 444.052
transcript.whisperx[18].text 加上我們剛講的近程中程跟遠程的其實喔40億的經費除以451架的無人機一台的經費齁一台的經費喔高達800多萬
transcript.whisperx[19].start 451.004
transcript.whisperx[19].end 475.841
transcript.whisperx[19].text 一台無人機的經費高達八百多萬跟委員報告有一些無人機一台可能就要接近一億那基本上跟委員報告這個經費除了無人機本體的經費以外它還涉及因為它要做的是徵收的任務所以主委你的意思是說你有買這次的經費裡面有買上億的無人機的經費嗎沒有但是我的意思是說那您最貴的無人機的經費是買多少錢
transcript.whisperx[20].start 478.743
transcript.whisperx[20].end 498.235
transcript.whisperx[20].text 各種型的大概它的價位會差距非常非常的巨大但是其中有很重要的部分是籌載的部分那籌載譬如說如果我們是要有夜視功能的籌載在上面的話那就非常的貴所以基本上這個預算不是只有無人機本體的預算在上面
transcript.whisperx[21].start 498.695
transcript.whisperx[21].end 521.463
transcript.whisperx[21].text 很抱歉我們因為主委這個預算明年明天都要通過了你現在根本連最基本的進城的無人機的一台多少錢你也沒辦法回答遠程的最貴的都沒辦法回答剛剛還回答我要採買將近一億元的我剛剛幫你算過啦這個我我從邊有一個對照表給你來參考最近國防部軍備局啊採買這個
transcript.whisperx[22].start 523.744
transcript.whisperx[22].end 539.883
transcript.whisperx[22].text 這個五萬台的無人機總共花的是五百億一台平均的價格如果用粗略來算是一百萬可是你現在的算法一台會將近到一千萬所以第二個這個國防部才買的都是軍事用的無人機
transcript.whisperx[23].start 540.806
transcript.whisperx[23].end 559.42
transcript.whisperx[23].text 難道海巡現在也要採買的是軍事用的無人機現在整體的單價是比軍事用的無人機還要再高不會 還是跟委員報告就是說譬如說以艦載機來講我們目前以艦載機來講的話它會是一個比較所以你有沒有任何一個可以明確跟我講的一個數字到底進程機的經費
transcript.whisperx[24].start 561.361
transcript.whisperx[24].end 572.978
transcript.whisperx[24].text 大概一台是多少錢這麼基礎的問題現在都不能回答明天要如何通過這筆預算我們不能夠內定某一個款我沒有款項我只說大概的經費是多少錢如果沒有這樣你怎麼編列預算
transcript.whisperx[25].start 574.281
transcript.whisperx[25].end 595.011
transcript.whisperx[25].text 我們事後來辦公室跟委員說明好嗎每一個項目其實我們會有細項來跟委員說明我想我不公開在這裡說明主委我要特別跟你講的海巡的400多架的這個無人機啊那我再請教主委你知道你們現在海巡啊你們現在總共有幾台無人機嗎
transcript.whisperx[26].start 596.463
transcript.whisperx[26].end 621.426
transcript.whisperx[26].text 我們現在18架你們現在只有18架無人機你們未來是要採購40億高端的無人機未來你們要如何去使用這批無人機不會的 我們的人力現在都已經開始在培訓然後陸陸續續也都已經不斷的在考證了 在考照了所以跟委員報告就是說 以這400架的400架無人機 我想要請教主委
transcript.whisperx[27].start 623.307
transcript.whisperx[27].end 650.554
transcript.whisperx[27].text 40亿的400架无人机要400亿的经费没有400架40亿这个资料有没有错误你现在能回答我本席的是说包含的是上面的丑仔科仪那些仪器那你可不可以回答我一台最贵的无人机你们买多少钱你们大概是不是用军规的无人机未来如果你们在执行上你们真的是要用类军规的无人机很少数其中有少数是的
transcript.whisperx[28].start 651.733
transcript.whisperx[28].end 674.008
transcript.whisperx[28].text 我記得有請同仁來跟委員主委我要再次強調明天這筆預算就要通過了我們其中有一部分確實是跟國防部一起共同採購其中有一部分確實是那是比較高功能但是我們基本上還是在做徵收我的意思是說我再給主委一個數字好不好如果進城的無人機
transcript.whisperx[29].start 675.009
transcript.whisperx[29].end 690.589
transcript.whisperx[29].text 一台啊進程不會進來無人機假如一台外面呢假設的價格是十萬塊啦你這個這些喔你剛剛講的這些這些你說的這些比較高端的無人機一台要將近就像你講要上億的經費啊那海巡署為什麼要購買這麼多
transcript.whisperx[30].start 692.236
transcript.whisperx[30].end 713.267
transcript.whisperx[30].text 上亿的无人机就像你刚刚讲的大实话我们其实海巡他在救难的时候尤其是他在救生救难的时候用军用的无人机去救难我们的舰队我们的舰队要出去救生救难的时候那我们的无人机要赶快先飞上去
transcript.whisperx[31].start 713.727
transcript.whisperx[31].end 731.446
transcript.whisperx[31].text 在我们未抵达灾害现场的时候无人机侦搜的画面就会回到我们舰艇上面甚至于是我们的指挥中心就了解现场的状况委员这样的一个海空一体的侦搜跟救生救难是非常重要的
transcript.whisperx[32].start 731.906
transcript.whisperx[32].end 746.775
transcript.whisperx[32].text 所以我們在欠債的部分我們會買非常重要的無人機因為我今天跟主委報告我今天問你的問題你大概沒有一個可以回答的都是很多很空泛的這個內容明天就要通過這樣子的40億採購無人機的特別預算
transcript.whisperx[33].start 750.558
transcript.whisperx[33].end 762.332
transcript.whisperx[33].text 我們會給委員很具體的說明那確實如同我剛剛所說請問主委你到底清不清楚你們買的無人機的這些內容跟資訊
transcript.whisperx[34].start 766.056
transcript.whisperx[34].end 783.629
transcript.whisperx[34].text 我當然了解那有沒有人要幫你回答我請署長來回答好謝謝那基本上我們當然了解那以建載的來講的話它是非常高規格的一種無人機那它是軍事用的嗎不是我們會用來做的那你們剛剛不是說跟國防部配合
transcript.whisperx[35].start 784.329
transcript.whisperx[35].end 810.858
transcript.whisperx[35].text 要一起共同采买的那跟国防部不是买军事的模组化的无人机它上面的功能是借着模组化的一个调配我们的筹载会非常的不一样所以它的功能就非常不一样主委这些都是人民的纳税钱要采买什么东西我觉得都是合理我们都会支持可是就是说你应该要让人民有知的权利而且立法委员在审查预算的时候应该要有明确的资讯
transcript.whisperx[36].start 811.798
transcript.whisperx[36].end 835.351
transcript.whisperx[36].text 明天就要通過這筆預算因為我昨天看到你啊在這個我們的協商的時候你是很認真在守護你們的海巡的預算我們是強烈支持可是你們不能不了解自己的預算裡面到底是含著什麼東西啊絕對不會不了解那還有沒有人可以再詳細的回答我剛剛有問的任何問題我甚至於都已經舉例了畸形譬如說
transcript.whisperx[37].start 835.831
transcript.whisperx[37].end 863.556
transcript.whisperx[37].text 如果國防部那一台機型大概的金額是多少錢而我們買的也是VBAT的話那我們的VBAT跟國防部的VBAT它模組化的結果我們的功能絕對會不一樣所以加起來金額是你們有買幾台上億的無人機有接近億元的無人機大概會是在這當中譬如說我們的艦載有買幾台大概知道嗎艦載的部分就會比較是高功能的無人機
transcript.whisperx[38].start 864.776
transcript.whisperx[38].end 881.255
transcript.whisperx[38].text 是在這個部分我們就會比較是高功能的無人機但是除了無人機的本體以外那我想請教一下有上億的無人機算是軍用等級的嗎在我們這裡的時候我們就不會是用來跟作戰相關
transcript.whisperx[39].start 882.156
transcript.whisperx[39].end 901.28
transcript.whisperx[39].text 好所以你们有这个军用类似无人机来去救灾然后不会用来做军事的功能我们不会是一个军事的功能在这里的无人机都没有军事的功能在上面好那需要这个组委后续的时候再把你刚刚讲的那些资料再提供一份报告给本席好的谢谢好谢谢