iVOD / 164270

Field Value
IVOD_ID 164270
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/164270
日期 2025-10-16
會議資料.會議代碼 委員會-11-4-20-2
會議資料.會議代碼:str 第11屆第4會期財政委員會第2次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 2
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第4會期財政委員會第2次全體委員會議
影片種類 Clip
開始時間 2025-10-16T11:07:45+08:00
結束時間 2025-10-16T11:21:01+08:00
影片長度 00:13:16
支援功能[0] ai-transcript
支援功能[1] gazette
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/6022c9f6d63255a3681cd5fda80371029ba2ba11b833fe0ad77ab6ef5aede8983af37138b611437b5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 王世堅
委員發言時間 11:07:45 - 11:21:01
會議時間 2025-10-16T09:00:00+08:00
會議名稱 立法院第11屆第4會期財政委員會第2次全體委員會議(事由:邀請財政部莊部長翠雲率所屬機關首長暨國營事業董事長、總經理(含各轉投資事業機構公股代表之董、監事)列席業務報告,並備質詢。 【10月13日、15日及16日三天一次會】)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 1.11096875
transcript.pyannote[0].end 1.31346875
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 1.48221875
transcript.pyannote[1].end 2.17409375
transcript.pyannote[2].speaker SPEAKER_02
transcript.pyannote[2].start 2.71409375
transcript.pyannote[2].end 3.38909375
transcript.pyannote[3].speaker SPEAKER_02
transcript.pyannote[3].start 3.52409375
transcript.pyannote[3].end 5.00909375
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 5.38034375
transcript.pyannote[4].end 6.30846875
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 11.01659375
transcript.pyannote[5].end 13.58159375
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 13.96971875
transcript.pyannote[6].end 18.08721875
transcript.pyannote[7].speaker SPEAKER_02
transcript.pyannote[7].start 19.13346875
transcript.pyannote[7].end 19.79159375
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 20.56784375
transcript.pyannote[8].end 23.55471875
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 24.14534375
transcript.pyannote[9].end 25.73159375
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 26.13659375
transcript.pyannote[10].end 26.89596875
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 27.79034375
transcript.pyannote[11].end 33.52784375
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 34.18596875
transcript.pyannote[12].end 49.59284375
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 51.19596875
transcript.pyannote[13].end 53.99721875
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 54.55409375
transcript.pyannote[14].end 56.56221875
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 57.32159375
transcript.pyannote[15].end 59.32971875
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 59.73471875
transcript.pyannote[16].end 69.45471875
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 70.11284375
transcript.pyannote[17].end 70.73721875
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 71.53034375
transcript.pyannote[18].end 81.60471875
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 82.75221875
transcript.pyannote[19].end 83.32596875
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 83.59596875
transcript.pyannote[20].end 89.13096875
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 89.48534375
transcript.pyannote[21].end 90.56534375
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 90.88596875
transcript.pyannote[22].end 93.78846875
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 94.88534375
transcript.pyannote[23].end 105.49971875
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 106.27596875
transcript.pyannote[24].end 115.91159375
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 116.29971875
transcript.pyannote[25].end 116.99159375
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 117.39659375
transcript.pyannote[26].end 122.03721875
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 123.18471875
transcript.pyannote[27].end 123.62346875
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 124.43346875
transcript.pyannote[28].end 126.67784375
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 127.30221875
transcript.pyannote[29].end 136.38096875
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 137.47784375
transcript.pyannote[30].end 138.40596875
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 139.03034375
transcript.pyannote[31].end 141.17346875
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 142.01721875
transcript.pyannote[32].end 142.38846875
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 142.48971875
transcript.pyannote[33].end 144.16034375
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 144.73409375
transcript.pyannote[34].end 145.81409375
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 146.43846875
transcript.pyannote[35].end 147.88971875
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 148.54784375
transcript.pyannote[36].end 150.65721875
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 151.02846875
transcript.pyannote[37].end 156.02346875
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 157.12034375
transcript.pyannote[38].end 162.13221875
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 163.27971875
transcript.pyannote[39].end 164.29221875
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 165.22034375
transcript.pyannote[40].end 169.32096875
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 170.02971875
transcript.pyannote[41].end 185.08221875
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 185.33534375
transcript.pyannote[42].end 189.60471875
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 190.73534375
transcript.pyannote[43].end 193.33409375
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 193.78971875
transcript.pyannote[44].end 194.68409375
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 195.46034375
transcript.pyannote[45].end 197.02971875
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 197.48534375
transcript.pyannote[46].end 198.46409375
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 198.58221875
transcript.pyannote[47].end 199.54409375
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 200.48909375
transcript.pyannote[48].end 208.03221875
transcript.pyannote[49].speaker SPEAKER_03
transcript.pyannote[49].start 208.03221875
transcript.pyannote[49].end 208.20096875
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 208.20096875
transcript.pyannote[50].end 208.33596875
transcript.pyannote[51].speaker SPEAKER_03
transcript.pyannote[51].start 208.65659375
transcript.pyannote[51].end 218.00534375
transcript.pyannote[52].speaker SPEAKER_03
transcript.pyannote[52].start 218.29221875
transcript.pyannote[52].end 226.10534375
transcript.pyannote[53].speaker SPEAKER_03
transcript.pyannote[53].start 226.45971875
transcript.pyannote[53].end 244.19534375
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 243.46971875
transcript.pyannote[54].end 244.12784375
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 244.19534375
transcript.pyannote[55].end 244.27971875
transcript.pyannote[56].speaker SPEAKER_03
transcript.pyannote[56].start 244.27971875
transcript.pyannote[56].end 244.33034375
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 244.33034375
transcript.pyannote[57].end 251.95784375
transcript.pyannote[58].speaker SPEAKER_03
transcript.pyannote[58].start 244.34721875
transcript.pyannote[58].end 244.78596875
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 252.24471875
transcript.pyannote[59].end 253.96596875
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 254.67471875
transcript.pyannote[60].end 262.09971875
transcript.pyannote[61].speaker SPEAKER_02
transcript.pyannote[61].start 262.97721875
transcript.pyannote[61].end 268.19159375
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 269.72721875
transcript.pyannote[62].end 270.87471875
transcript.pyannote[63].speaker SPEAKER_02
transcript.pyannote[63].start 271.71846875
transcript.pyannote[63].end 272.39346875
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 272.64659375
transcript.pyannote[64].end 275.19471875
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 275.97096875
transcript.pyannote[65].end 279.80159375
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 280.08846875
transcript.pyannote[66].end 281.94471875
transcript.pyannote[67].speaker SPEAKER_02
transcript.pyannote[67].start 282.55221875
transcript.pyannote[67].end 284.27346875
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 285.87659375
transcript.pyannote[68].end 287.66534375
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 287.68221875
transcript.pyannote[69].end 287.91846875
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 289.65659375
transcript.pyannote[70].end 290.43284375
transcript.pyannote[71].speaker SPEAKER_02
transcript.pyannote[71].start 291.07409375
transcript.pyannote[71].end 291.85034375
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 292.22159375
transcript.pyannote[72].end 292.93034375
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 293.50409375
transcript.pyannote[73].end 294.22971875
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 294.58409375
transcript.pyannote[74].end 295.34346875
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 295.78221875
transcript.pyannote[75].end 296.55846875
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 297.46971875
transcript.pyannote[76].end 298.54971875
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 300.81096875
transcript.pyannote[77].end 301.08096875
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 303.20721875
transcript.pyannote[78].end 304.18596875
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 304.74284375
transcript.pyannote[79].end 305.43471875
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 305.97471875
transcript.pyannote[80].end 311.02034375
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 313.14659375
transcript.pyannote[81].end 313.60221875
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 313.92284375
transcript.pyannote[82].end 314.96909375
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 316.45409375
transcript.pyannote[83].end 317.04471875
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 317.51721875
transcript.pyannote[84].end 318.44534375
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 319.13721875
transcript.pyannote[85].end 319.39034375
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 319.71096875
transcript.pyannote[86].end 320.50409375
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 321.56721875
transcript.pyannote[87].end 322.46159375
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 323.38971875
transcript.pyannote[88].end 325.68471875
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 326.71409375
transcript.pyannote[89].end 328.30034375
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 328.84034375
transcript.pyannote[90].end 329.98784375
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 331.16909375
transcript.pyannote[91].end 333.66659375
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 335.25284375
transcript.pyannote[92].end 335.67471875
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 336.78846875
transcript.pyannote[93].end 337.48034375
transcript.pyannote[94].speaker SPEAKER_02
transcript.pyannote[94].start 338.77971875
transcript.pyannote[94].end 343.72409375
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 344.60159375
transcript.pyannote[95].end 347.33534375
transcript.pyannote[96].speaker SPEAKER_02
transcript.pyannote[96].start 347.60534375
transcript.pyannote[96].end 348.83721875
transcript.pyannote[97].speaker SPEAKER_02
transcript.pyannote[97].start 349.63034375
transcript.pyannote[97].end 352.24596875
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 352.68471875
transcript.pyannote[98].end 353.30909375
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 353.68034375
transcript.pyannote[99].end 359.56971875
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 360.44721875
transcript.pyannote[100].end 364.39596875
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 364.85159375
transcript.pyannote[101].end 369.03659375
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 371.98971875
transcript.pyannote[102].end 372.52971875
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 373.55909375
transcript.pyannote[103].end 374.74034375
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 375.14534375
transcript.pyannote[104].end 377.15346875
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 379.75221875
transcript.pyannote[105].end 381.55784375
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 383.14409375
transcript.pyannote[106].end 383.75159375
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 385.75971875
transcript.pyannote[107].end 386.46846875
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 388.42596875
transcript.pyannote[108].end 389.65784375
transcript.pyannote[109].speaker SPEAKER_02
transcript.pyannote[109].start 390.09659375
transcript.pyannote[109].end 391.96971875
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 392.47596875
transcript.pyannote[110].end 393.57284375
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 394.18034375
transcript.pyannote[111].end 394.95659375
transcript.pyannote[112].speaker SPEAKER_02
transcript.pyannote[112].start 396.40784375
transcript.pyannote[112].end 397.42034375
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 397.79159375
transcript.pyannote[113].end 399.66471875
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 400.40721875
transcript.pyannote[114].end 401.53784375
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 401.95971875
transcript.pyannote[115].end 402.95534375
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 403.93409375
transcript.pyannote[116].end 409.46909375
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 410.27909375
transcript.pyannote[117].end 414.91971875
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 415.71284375
transcript.pyannote[118].end 416.96159375
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 417.29909375
transcript.pyannote[119].end 419.25659375
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 420.80909375
transcript.pyannote[120].end 421.70346875
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 422.66534375
transcript.pyannote[121].end 430.24221875
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 431.57534375
transcript.pyannote[122].end 440.38409375
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 441.07596875
transcript.pyannote[123].end 442.83096875
transcript.pyannote[124].speaker SPEAKER_02
transcript.pyannote[124].start 443.69159375
transcript.pyannote[124].end 445.14284375
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 445.49721875
transcript.pyannote[125].end 445.88534375
transcript.pyannote[126].speaker SPEAKER_02
transcript.pyannote[126].start 446.44221875
transcript.pyannote[126].end 446.77971875
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 447.06659375
transcript.pyannote[127].end 447.79221875
transcript.pyannote[128].speaker SPEAKER_02
transcript.pyannote[128].start 448.31534375
transcript.pyannote[128].end 448.68659375
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 449.02409375
transcript.pyannote[129].end 450.07034375
transcript.pyannote[130].speaker SPEAKER_02
transcript.pyannote[130].start 450.28971875
transcript.pyannote[130].end 459.45284375
transcript.pyannote[131].speaker SPEAKER_02
transcript.pyannote[131].start 460.12784375
transcript.pyannote[131].end 480.09096875
transcript.pyannote[132].speaker SPEAKER_02
transcript.pyannote[132].start 480.51284375
transcript.pyannote[132].end 484.66409375
transcript.pyannote[133].speaker SPEAKER_02
transcript.pyannote[133].start 485.64284375
transcript.pyannote[133].end 486.25034375
transcript.pyannote[134].speaker SPEAKER_02
transcript.pyannote[134].start 487.34721875
transcript.pyannote[134].end 501.03284375
transcript.pyannote[135].speaker SPEAKER_02
transcript.pyannote[135].start 501.28596875
transcript.pyannote[135].end 506.55096875
transcript.pyannote[136].speaker SPEAKER_02
transcript.pyannote[136].start 506.98971875
transcript.pyannote[136].end 508.96409375
transcript.pyannote[137].speaker SPEAKER_02
transcript.pyannote[137].start 510.71909375
transcript.pyannote[137].end 512.84534375
transcript.pyannote[138].speaker SPEAKER_02
transcript.pyannote[138].start 513.40221875
transcript.pyannote[138].end 514.78596875
transcript.pyannote[139].speaker SPEAKER_02
transcript.pyannote[139].start 515.98409375
transcript.pyannote[139].end 518.07659375
transcript.pyannote[140].speaker SPEAKER_02
transcript.pyannote[140].start 518.70096875
transcript.pyannote[140].end 523.76346875
transcript.pyannote[141].speaker SPEAKER_02
transcript.pyannote[141].start 524.74221875
transcript.pyannote[141].end 525.51846875
transcript.pyannote[142].speaker SPEAKER_02
transcript.pyannote[142].start 526.14284375
transcript.pyannote[142].end 529.56846875
transcript.pyannote[143].speaker SPEAKER_02
transcript.pyannote[143].start 529.66971875
transcript.pyannote[143].end 531.20534375
transcript.pyannote[144].speaker SPEAKER_02
transcript.pyannote[144].start 531.76221875
transcript.pyannote[144].end 532.69034375
transcript.pyannote[145].speaker SPEAKER_02
transcript.pyannote[145].start 533.23034375
transcript.pyannote[145].end 534.39471875
transcript.pyannote[146].speaker SPEAKER_02
transcript.pyannote[146].start 534.79971875
transcript.pyannote[146].end 535.94721875
transcript.pyannote[147].speaker SPEAKER_02
transcript.pyannote[147].start 536.82471875
transcript.pyannote[147].end 538.57971875
transcript.pyannote[148].speaker SPEAKER_02
transcript.pyannote[148].start 540.33471875
transcript.pyannote[148].end 545.29596875
transcript.pyannote[149].speaker SPEAKER_02
transcript.pyannote[149].start 546.29159375
transcript.pyannote[149].end 549.71721875
transcript.pyannote[150].speaker SPEAKER_03
transcript.pyannote[150].start 550.83096875
transcript.pyannote[150].end 553.96971875
transcript.pyannote[151].speaker SPEAKER_02
transcript.pyannote[151].start 553.96971875
transcript.pyannote[151].end 569.74784375
transcript.pyannote[152].speaker SPEAKER_03
transcript.pyannote[152].start 557.90159375
transcript.pyannote[152].end 558.54284375
transcript.pyannote[153].speaker SPEAKER_03
transcript.pyannote[153].start 564.24659375
transcript.pyannote[153].end 564.56721875
transcript.pyannote[154].speaker SPEAKER_00
transcript.pyannote[154].start 571.04721875
transcript.pyannote[154].end 572.11034375
transcript.pyannote[155].speaker SPEAKER_02
transcript.pyannote[155].start 571.06409375
transcript.pyannote[155].end 574.06784375
transcript.pyannote[156].speaker SPEAKER_00
transcript.pyannote[156].start 574.37159375
transcript.pyannote[156].end 575.02971875
transcript.pyannote[157].speaker SPEAKER_02
transcript.pyannote[157].start 581.61096875
transcript.pyannote[157].end 598.89096875
transcript.pyannote[158].speaker SPEAKER_01
transcript.pyannote[158].start 581.77971875
transcript.pyannote[158].end 582.15096875
transcript.pyannote[159].speaker SPEAKER_02
transcript.pyannote[159].start 599.61659375
transcript.pyannote[159].end 601.35471875
transcript.pyannote[160].speaker SPEAKER_02
transcript.pyannote[160].start 601.74284375
transcript.pyannote[160].end 602.01284375
transcript.pyannote[161].speaker SPEAKER_02
transcript.pyannote[161].start 602.85659375
transcript.pyannote[161].end 603.83534375
transcript.pyannote[162].speaker SPEAKER_02
transcript.pyannote[162].start 604.24034375
transcript.pyannote[162].end 606.02909375
transcript.pyannote[163].speaker SPEAKER_02
transcript.pyannote[163].start 606.50159375
transcript.pyannote[163].end 613.31909375
transcript.pyannote[164].speaker SPEAKER_02
transcript.pyannote[164].start 614.04471875
transcript.pyannote[164].end 614.24721875
transcript.pyannote[165].speaker SPEAKER_02
transcript.pyannote[165].start 614.44971875
transcript.pyannote[165].end 640.36971875
transcript.pyannote[166].speaker SPEAKER_02
transcript.pyannote[166].start 640.79159375
transcript.pyannote[166].end 644.31846875
transcript.pyannote[167].speaker SPEAKER_02
transcript.pyannote[167].start 644.80784375
transcript.pyannote[167].end 653.27909375
transcript.pyannote[168].speaker SPEAKER_02
transcript.pyannote[168].start 653.58284375
transcript.pyannote[168].end 654.93284375
transcript.pyannote[169].speaker SPEAKER_02
transcript.pyannote[169].start 655.30409375
transcript.pyannote[169].end 658.03784375
transcript.pyannote[170].speaker SPEAKER_02
transcript.pyannote[170].start 658.66221875
transcript.pyannote[170].end 676.54971875
transcript.pyannote[171].speaker SPEAKER_02
transcript.pyannote[171].start 676.90409375
transcript.pyannote[171].end 720.15471875
transcript.pyannote[172].speaker SPEAKER_01
transcript.pyannote[172].start 720.50909375
transcript.pyannote[172].end 729.94221875
transcript.pyannote[173].speaker SPEAKER_01
transcript.pyannote[173].start 730.22909375
transcript.pyannote[173].end 738.61596875
transcript.pyannote[174].speaker SPEAKER_01
transcript.pyannote[174].start 739.05471875
transcript.pyannote[174].end 741.70409375
transcript.pyannote[175].speaker SPEAKER_01
transcript.pyannote[175].start 742.02471875
transcript.pyannote[175].end 744.75846875
transcript.pyannote[176].speaker SPEAKER_01
transcript.pyannote[176].start 745.02846875
transcript.pyannote[176].end 748.01534375
transcript.pyannote[177].speaker SPEAKER_01
transcript.pyannote[177].start 748.43721875
transcript.pyannote[177].end 761.39721875
transcript.pyannote[178].speaker SPEAKER_01
transcript.pyannote[178].start 761.48159375
transcript.pyannote[178].end 763.23659375
transcript.pyannote[179].speaker SPEAKER_01
transcript.pyannote[179].start 763.48971875
transcript.pyannote[179].end 765.88596875
transcript.pyannote[180].speaker SPEAKER_01
transcript.pyannote[180].start 765.91971875
transcript.pyannote[180].end 773.34471875
transcript.pyannote[181].speaker SPEAKER_02
transcript.pyannote[181].start 774.15471875
transcript.pyannote[181].end 780.33096875
transcript.pyannote[182].speaker SPEAKER_01
transcript.pyannote[182].start 777.85034375
transcript.pyannote[182].end 778.93034375
transcript.pyannote[183].speaker SPEAKER_01
transcript.pyannote[183].start 779.45346875
transcript.pyannote[183].end 779.89221875
transcript.pyannote[184].speaker SPEAKER_00
transcript.pyannote[184].start 780.38159375
transcript.pyannote[184].end 784.17846875
transcript.whisperx[0].start 1.85
transcript.whisperx[0].end 26.75
transcript.whisperx[0].text 謝謝主席我請財政部莊部長我們請莊部長委員好莊部長早安這個我先前好幾次質詢在跟您提到就是說你有一項很重要的工作就是這九大公營行庫的管理
transcript.whisperx[1].start 27.847
transcript.whisperx[1].end 56.252
transcript.whisperx[1].text 那麼九大公營航庫的董事長總經理都是由你下去派的那麼九大公營航庫的董事長總經理的派任你不但要對他們的人品能力非常了解而且應該適時的對他們的成績要做出一些管考這才是正確的那如果成績一吃
transcript.whisperx[2].start 57.383
transcript.whisperx[2].end 80.932
transcript.whisperx[2].text 沒起色 起不來那麼是不是要考慮換人那很清楚我們預算中心有將銀行這幾點最重要的就是關於資產報酬率還有權益報酬率ROA ROE那麼做了一個比較結果比較
transcript.whisperx[3].start 82.796
transcript.whisperx[3].end 102.436
transcript.whisperx[3].text 我們所有銀行37家銀行的ROA ROE之下竟然我們公營行庫在資產報酬率跟權益報酬率這部分竟然低於全國的平均數那麼
transcript.whisperx[4].start 106.368
transcript.whisperx[4].end 121.688
transcript.whisperx[4].text 全國在113年銀行平均的ROA是0.76ROE是10.55結果在ROA只有一家只有一家兆豐是
transcript.whisperx[5].start 124.485
transcript.whisperx[5].end 140.059
transcript.whisperx[5].text 在平均值之上ROE當然有多了幾家義營 華營 中小企營也在平均值之上但是其他的公營行庫卻低於平均的這個ROA ROE
transcript.whisperx[6].start 142.676
transcript.whisperx[6].end 164.043
transcript.whisperx[6].text 而讓我不解的是公營行庫在資本額在總存款額在資產額都是遠高於民營行庫結果這麼龐大這麼優勢尤其公營行庫設立都在早年
transcript.whisperx[7].start 165.307
transcript.whisperx[7].end 188.698
transcript.whisperx[7].text 有的你像台銀、義銀、華銀、張銀那從日本時代開始他們早年在全國各地就有設銀行了所以他們的各分行在各縣市取得都是最好的地點最好的營業地點結果你表現出來的權益報酬率
transcript.whisperx[8].start 191.601
transcript.whisperx[8].end 199.375
transcript.whisperx[8].text 這個竟然還輸給民營銀行這我想不懂啦所以 你看法呢
transcript.whisperx[9].start 200.543
transcript.whisperx[9].end 207.669
transcript.whisperx[9].text 你覺得這個有什麼方式去刺激他們你認為 認不認為這是這些董事長總經理的事任的問題是 跟委員報告我們宮古武漢庫的董事長總經理其實我們都有定期的一些考核定期上都會做考核那績效也是其中的一個項目那也會請他們要針對於所謂的獲利的部分能夠更有
transcript.whisperx[10].start 226.525
transcript.whisperx[10].end 251.217
transcript.whisperx[10].text 更有一些作為譬如說最近所推動的高資產財富的管理還有那個金控的雙引擎跟銀行的雙翅膀這個策略都有一些成效但我們也不可諱言的在公股航空庫裡面他也擔負了有關相關的政策任務的一些配合部長 好 你說他們也擔任了有關的政府就是他們配合政府的政策就對了好 那我就舉例
transcript.whisperx[11].start 254.739
transcript.whisperx[11].end 267.986
transcript.whisperx[11].text 他們有一些莫名其妙的炸貸案、貿貸案金額都那麼大有的上百億貿貸案還有炸貸案還有那種有史以來最高的炸貸金額這個472億之多這個叫做配合政府政策嗎我講的這個潤銀啦潤銀這個就是炸貸案啊用假發票炸貸
transcript.whisperx[12].start 286.142
transcript.whisperx[12].end 296.485
transcript.whisperx[12].text 結果損失的工銀行戶華銀、土銀、義銀、和庫、兆豐、台灣企銀這六甲都是工銀行戶不打緊華銀、義銀還是模範銀行耶 天啊結果搞成這個樣子
transcript.whisperx[13].start 316.496
transcript.whisperx[13].end 343.242
transcript.whisperx[13].text 核庫的問題 那個先前核庫有一位董事長廖燦昌他還涉入我們國家重要的獵雷艦這個炸彈案獵雷艦本來是我們國家最需要的國防很重要用途的一艘艦
transcript.whisperx[14].start 344.673
transcript.whisperx[14].end 368.821
transcript.whisperx[14].text 那你知道嗎 碰到慶富造船那這個是炸彈結果帶頭的主辦銀行就是核庫好啦在廖燦昌搞了這個鬼以後下台被檢察官被法院司法調查調查沒多久欸財政部又把他派任了一個更大的銀行派第一金空給他當董事長所以啊
transcript.whisperx[15].start 373.575
transcript.whisperx[15].end 381.519
transcript.whisperx[15].text 他又去搞了一個清復搞完搞亂贏所以用人如此不當然後這個我又查了一下吼廖三昌在他和庫任內除了這個那個炸彈那個裂雷箭之外吼他當時啊還計畫
transcript.whisperx[16].start 404.233
transcript.whisperx[16].end 429.923
transcript.whisperx[16].text 貸款給泰設智善園這個案子這個案子啊 現在也爆發了總貸款金額87億多現在呆帳56億 呆帳56億好啦 專搞這些飛機他走了 他何苦走被調查那何苦底下的人就不敢放了不敢放了 同樣這一批人
transcript.whisperx[17].start 431.996
transcript.whisperx[17].end 458.644
transcript.whisperx[17].text 連同他們的副總謝娟娟就到了土地銀行去就原原本本把泰設治善園這個案子搬到土地銀行去結果土地銀行變主辦銀行然後又去放了那些錢所以部長這些當然還要繼續法辦中我希望不只我追蹤司法單位去查我希望你也追蹤那以這一些來講
transcript.whisperx[18].start 460.202
transcript.whisperx[18].end 484.613
transcript.whisperx[18].text 你看這些你如果把他們的董事長總經理這些背景交互交互去了解的話一下子都是在銀行街上班都在重慶南路都從這個總行總經理調到那個總行當董事長從那個總行董事長調到某個銀行又去當董事長他們成天上班就在那個地方那不是不好但是
transcript.whisperx[19].start 487.823
transcript.whisperx[19].end 508.808
transcript.whisperx[19].text 宮古行庫掌握了我們國內這麼重大的我們可以說我們人民絕大多數辛苦賺來的辛苦錢大概都是在中古行庫裡面那麼龐大啊台銀就六點多兆其他各銀行各行庫都三四兆以上啦這麼龐大的金額在他們手上結果他們這麼輕忽
transcript.whisperx[20].start 516.118
transcript.whisperx[20].end 544.952
transcript.whisperx[20].text 甚至私下有勾結所以對於公營行庫董事長總經理他們的品德操守還有能力品德操守要在能力之上為什麼你好的制度的話銀行裡面監督的機制很好的時候那麼品德一定要第一能力大家共同一起努力的能力效果會呈現嘛
transcript.whisperx[21].start 546.328
transcript.whisperx[21].end 569.294
transcript.whisperx[21].text 所以我希望你略行性的能夠去查一查好不好對委員的指教很適對那這一次這九大公文安護他們應該都有來了是都有在現場你最近你就把他們再考核一遍那把最後成果怎麼樣成績怎麼樣跟我講一下好不好其實您等一下我請那個時間暫停我請那個時間先暫停那個郭參署曾署長曾署長
transcript.whisperx[22].start 581.813
transcript.whisperx[22].end 601.169
transcript.whisperx[22].text 你好曾署長你上來之後你是個老實人你做的你對於我們國產署所轄管國家的這些土地不動產你確實有做的清點也確實做的不錯不過有新的問題產生就是我們這些國有土地因為可能管理
transcript.whisperx[23].start 602.895
transcript.whisperx[23].end 613.132
transcript.whisperx[23].text 太鬆散了分布在全國各地那我們沒有辦法就是每一塊都去管理的那麼良善結果就被一些惡劣的
transcript.whisperx[24].start 614.601
transcript.whisperx[24].end 640.018
transcript.whisperx[24].text 恶劣的这些建商这些废弃物请到商那他们就去从我们国产土地去下手我去查了一下我们在树林的社宅跟在细子的社宅竟然要开工以后发现说这两个下面都是很多医疗废弃物化学废弃物建筑废弃物结果导致这两个工程竟然现在是放弃
transcript.whisperx[25].start 640.899
transcript.whisperx[25].end 657.834
transcript.whisperx[25].text 那我另外又查了一下我們全國現在待清理的土地就是被亂倒廢棄物的土地有248筆面積有60.25公頃我認為這個部分第一個我們中央一定要訂出
transcript.whisperx[26].start 658.975
transcript.whisperx[26].end 678.972
transcript.whisperx[26].text 國產署一定要訂出怎麼樣管理不要再讓這些土地被外來這些不當的去清盜他們把好的土先挖掉去賣那還其次喔結果再來盜他可以盜得更多這個是很惡劣的事情那第二個是不是結合地方政府
transcript.whisperx[27].start 679.312
transcript.whisperx[27].end 703.741
transcript.whisperx[27].text 因為這四扇在全國22縣市那中央既然只能圍籬只能架設簡單的監控系統那是不是也結合地方政府他們在各重要的產業道路各重要的道路節點他們本來就有一套監視在那至少可以追出這些源頭要去傾倒這麼多
transcript.whisperx[28].start 705.422
transcript.whisperx[28].end 719.904
transcript.whisperx[28].text 要去挖掘這麼多的土地那這一定要大型機具所以也一定是大型車輛這樣的情況下地方政府他們的監視系統其實有辦法幫我們做很多監控的工作好不好
transcript.whisperx[29].start 721.241
transcript.whisperx[29].end 738.355
transcript.whisperx[29].text 簡單跟委員回覆一下第一個這些利用現有的科技包括中央入口熱點甚至衛星影像無人機的部分現在都是陸陸續續引進過來剛剛提到過有那麼多列管的位置有一些早期都是
transcript.whisperx[30].start 739.316
transcript.whisperx[30].end 758.661
transcript.whisperx[30].text 所謂的地方政府的掩埋場剛剛所提到兩個社宅基地的部分都是其他機關移交因為有一些在做土地要移管之前像包括重劃就把那些土石方或甚至營建費器物就地掩埋
transcript.whisperx[31].start 759.201
transcript.whisperx[31].end 781.353
transcript.whisperx[31].text 所以我們現在在點交土地的時候我們都要先去做試挖如果土地乾淨了我們才會收減少它的被廢棄物污染或是堆置的這些數量好 訂出阻止這個事情惡化的方法持續再辦理好不好是 謝謝委員謝謝王委員接下來我們請楊瓊英委員
gazette.lineno 726
gazette.blocks[0][0] 王委員世堅:(11時7分)謝謝主席,我請財政部莊部長。
gazette.blocks[1][0] 主席:我們請莊部長。
gazette.blocks[2][0] 莊部長翠雲:委員好。
gazette.blocks[3][0] 王委員世堅:莊部長,早安。我先前好幾次質詢跟您提到,你有一項很重要的工作,就是這九大公營行庫的管理。九大公營行庫的董事長、總經理都是由你下去派的,九大公營行庫的董事長、總經理的派任,你不但要對他們的人品、能力非常了解,而且應該適時的對他們的成績要做出一些管考,這才是正確的。如果成績一直沒起色、起不來,那麼是不是要考慮換人?
gazette.blocks[3][1] 很清楚的,我們預算中心有將銀行這幾點最重要的部分,關於資產報酬率還有權益報酬率(ROA、ROE)做了一個比較,結果比較我們所有37家銀行的ROA、ROE,竟然我們公營行庫在資產報酬率跟權益報酬率低於全國的平均數。113年全國銀行平均的ROA是0.76,ROE是10.55,結果ROA只有一家兆豐是在平均值之上;ROE有多了幾家,一銀、華銀、中小企銀也在平均之上,但其他公營行庫卻低於ROA、ROE的平均值。讓我不解的是,公營行庫在資本額、在總存款額、在資產額都遠高於民營行庫,這麼龐大、這麼具有優勢,尤其公營行庫都在早年就設立的,像臺銀、一銀、華銀、彰銀更是從日本時代就開始了。他們早年在全國各地就有設銀行,且各分行都是在各縣市取得最好的營業地點。既然是最好的營業地點,結果所表現出來的權益報酬率竟然還輸給民營銀行,這我想不懂,你的看法呢?你覺得可以有什麼方式去刺激他們?你認不認為這是這些董事長、總經理適任與否的問題?
gazette.blocks[4][0] 莊部長翠雲:跟委員報告,對公股行庫的董事長、總經理,其實我們都有做定期的考核,定期上都會做考核,而績效也是其中一個項目。也會請他們針對獲利部分能更有一些作為,譬如最近所推動的高資產財富管理,還有金控雙引擎及銀行雙翅膀策略都有一些成效。但不可諱言,公股行庫也擔負了相關政策任務的配合……
gazette.blocks[5][0] 王委員世堅:部長,你說他們也擔任了政府有關的……就是他們要配合政府的政策就對了?好,那我就舉例。
gazette.blocks[5][1] 他們一些莫名其妙的詐貸案、冒貸案,金額都那麼大,有的甚至高達上百億!冒貸案、詐貸案,還有有史以來最高的詐貸金額472億之多,這叫做配合政府政策嗎?譬如我講的潤寅,潤寅就是詐貸案!用假發票詐貸,結果損失的是公營行庫的華銀、土銀、一銀、合庫、兆豐及臺灣企銀!這六家都是公營行庫,這不打緊,華銀、一銀還是模範銀行,天啊!結果搞成這個樣子。
gazette.blocks[5][2] 像合庫,先前有一位董事長廖燦昌還涉入我們國家重要的獵雷艦詐貸案!獵雷艦本來是我們國家最需要的、具有重要國防用途的一艘艦艇,你也知道碰到慶富造船,這個就是詐貸,而帶頭的主辦銀行就是合庫!好,在廖燦昌搞了這個鬼以後下臺,被檢察官、被法院作司法調查;調查沒多久,財政部又派任他去一個更大的銀行,派他去第一金控當董事長!所以,他慶富搞完又搞潤寅,用人如此不當!
gazette.blocks[5][3] 然後我又查了一下,廖燦昌在合庫任內,除了獵雷艦詐貸案之外,他當時還計畫貸款給泰舍至善園。這個案子現在也爆發了,總貸款金額87億多,現在呆帳56億,專搞這些飛機!他走了,結果合庫被調查,所以合庫底下的人就不敢放了。想不到同樣的這批人,連同他們的副總謝娟娟就到土地銀行去,就把泰舍至善園這個案子原原本本搬到土地銀行去!結果土地銀行變成主辦銀行,然後又去放了那些錢。
gazette.blocks[5][4] 部長,這些案子當然要繼續法辦,我希望不只我追蹤,不只司法單位調查,我希望你也追蹤。以這些人來講,如果把他們的董事長、總經理的背景交互了解的話,一下子就會知道:都在銀行街上班、都在重慶南路!都從總經理調到總行當董事長,再從那個總行董事長調到某個銀行又去當董事長!他們成天就在那個地方上班,那不是不好,但公股行庫掌握了國內這麼重大的……可以說我們人民絕大多數辛苦賺來的辛苦錢,大概都在公股行庫裡面,金額那麼龐大。臺銀就六點多兆,其他各銀行、各行庫都三、四兆以上,這麼龐大的金額在他們手上,結果他們這麼輕忽,甚至私下勾結!所以要重視公銀行庫董事長、總經理的品德、操守,還有能力。尤其品德操守要在能力之上,為什麼?如果有好的制度,銀行裡面的監督機制也很好的時候,品德一定要第一,如此大家一起共同努力的能力效果會呈現。所以我希望你能例行性地去查一查,好不好?
gazette.blocks[6][0] 莊部長翠雲:委員指教得很是,對。
gazette.blocks[7][0] 王委員世堅:這次九大公股行庫應該都有來了?
gazette.blocks[8][0] 莊部長翠雲:是,都有在現場。
gazette.blocks[9][0] 王委員世堅:最近你就把他們再考核一遍,最後成果怎麼樣、成績怎麼樣跟我講一下,好不好?
gazette.blocks[10][0] 莊部長翠雲:好。
gazette.blocks[11][0] 王委員世堅:部長請等一下,時間暫停。
gazette.blocks[12][0] 主席:時間先暫停。
gazette.blocks[13][0] 王委員世堅:我請國產署曾署長。
gazette.blocks[14][0] 主席:請曾署長。
gazette.blocks[15][0] 曾署長國基:委員好。
gazette.blocks[16][0] 王委員世堅:曾署長,你是個老實人,對於國產署所轄管的國家土地及不動產有確實做了清點,也確實做得不錯,不過還是有新的問題產生!也就是這些國有土地在管理上可能太鬆散了,畢竟分布在全國各地,以致沒有辦法每一塊都管理的很良善,結果就被一些惡劣的建商、廢棄物傾倒商在我們的國產土地下手。我去查了一下,像樹林跟汐止的社宅在開工後竟然發現,基地底下有很多醫療廢棄物、化學廢棄物、建築廢棄物,導致這兩個工程現在被放棄!
gazette.blocks[16][1] 我另外又查了一下,全國現在待清理的土地,也就是被亂倒廢棄物的土地有248筆,面積有60.25公頃,我認為這個部分中央與國產署一定要訂出管理規則,不要再讓這些土地被外來的不當業者亂傾倒!他們把好的土先挖掉拿去賣,這還在其次,因為再來他會倒更多廢棄物進來,這是很惡劣的事情!所以第二個,是不是要結合地方政府?因為這些土地四散於全國22縣市,既然中央只能架圍籬、架設簡單的監控系統,那麼是不是就與地方政府結合?他們在各重要的產業道路、各重要的道路節點本來就有一套監視系統,這樣至少可以追出源頭。想傾倒這麼多,要挖掘這麼多的土,一定需要大型機具,所以也一定有大型車輛。在這樣的情況下,地方政府的監視系統其實有辦法幫我們做很多監控的工作,好不好?
gazette.blocks[17][0] 曾署長國基:簡單跟委員回復。第一個,這些利用現有科技,包括重要路口、熱點,甚至衛星影像、無人機部分,現在都陸陸續續引進。剛剛提過那麼多列管的位置,有一些早期都是所謂地方政府的掩埋場。而剛剛所提到兩個社宅基地的部分都是其他機關移交,因為有一些,土地要移管之前,包括重劃,就把那些土石方甚至是營建廢棄物就地掩埋,所以我們現在點交土地的時候都要先試挖,如果土地乾淨了我們才會收,減少被廢棄物污染或堆置的數量。
gazette.blocks[18][0] 王委員世堅:訂出阻止這個事情惡化的方法。
gazette.blocks[19][0] 曾署長國基:持續在辦理。
gazette.blocks[20][0] 王委員世堅:好不好?
gazette.blocks[21][0] 曾署長國基:是,謝謝委員。
gazette.blocks[22][0] 王委員世堅:好,謝謝。
gazette.blocks[23][0] 主席:謝謝王委員。
gazette.blocks[23][1] 接下來請楊瓊瓔委員。
gazette.agenda.page_end 238
gazette.agenda.meet_id 委員會-11-4-20-2
gazette.agenda.speakers[0] 李坤城
gazette.agenda.speakers[1] 林德福
gazette.agenda.speakers[2] 吳秉叡
gazette.agenda.speakers[3] 賴士葆
gazette.agenda.speakers[4] 郭國文
gazette.agenda.speakers[5] 賴惠員
gazette.agenda.speakers[6] 李彥秀
gazette.agenda.speakers[7] 鍾佳濱
gazette.agenda.speakers[8] 顏寬恒
gazette.agenda.speakers[9] 林思銘
gazette.agenda.speakers[10] 王世堅
gazette.agenda.speakers[11] 楊瓊瓔
gazette.agenda.speakers[12] 鄭天財Sra Kacaw
gazette.agenda.speakers[13] 葉元之
gazette.agenda.speakers[14] 邱志偉
gazette.agenda.speakers[15] 黃珊珊
gazette.agenda.speakers[16] 蔡易餘
gazette.agenda.speakers[17] 林楚茵
gazette.agenda.speakers[18] 羅明才
gazette.agenda.speakers[19] 陳玉珍
gazette.agenda.page_start 183
gazette.agenda.meetingDate[0] 2025-10-16
gazette.agenda.gazette_id 1148401
gazette.agenda.agenda_lcidc_ids[0] 1148401_00005
gazette.agenda.meet_name 立法院第11屆第4會期財政委員會第2次全體委員會議紀錄
gazette.agenda.content 邀請財政部莊部長翠雲率所屬機關首長暨國營事業董事長、總經理(含各轉投資事業機構公股代 表之董、監事)列席業務報告,並備質詢
gazette.agenda.agenda_id 1148401_00004