iVOD / 164267

Field Value
IVOD_ID 164267
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/164267
日期 2025-10-16
會議資料.會議代碼 委員會-11-4-20-2
會議資料.會議代碼:str 第11屆第4會期財政委員會第2次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 2
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第4會期財政委員會第2次全體委員會議
影片種類 Clip
開始時間 2025-10-16T10:55:50+08:00
結束時間 2025-10-16T11:07:34+08:00
影片長度 00:11:44
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/6022c9f6d63255a39d3cbe9c653b46dd9ba2ba11b833fe0ad77ab6ef5aede8986365cf59414950575ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 李坤城
委員發言時間 10:55:50 - 11:07:34
會議時間 2025-10-16T09:00:00+08:00
會議名稱 立法院第11屆第4會期財政委員會第2次全體委員會議(事由:邀請財政部莊部長翠雲率所屬機關首長暨國營事業董事長、總經理(含各轉投資事業機構公股代表之董、監事)列席業務報告,並備質詢。 【10月13日、15日及16日三天一次會】)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 0.03096875
transcript.pyannote[0].end 0.94221875
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 4.36784375
transcript.pyannote[1].end 4.43534375
transcript.pyannote[2].speaker SPEAKER_02
transcript.pyannote[2].start 4.43534375
transcript.pyannote[2].end 4.95846875
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 5.27909375
transcript.pyannote[3].end 51.06096875
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 52.44471875
transcript.pyannote[4].end 54.36846875
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 54.36846875
transcript.pyannote[5].end 62.78909375
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 57.76034375
transcript.pyannote[6].end 58.14846875
transcript.pyannote[7].speaker SPEAKER_02
transcript.pyannote[7].start 62.70471875
transcript.pyannote[7].end 63.83534375
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 63.88596875
transcript.pyannote[8].end 64.18971875
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 64.24034375
transcript.pyannote[9].end 66.28221875
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 65.82659375
transcript.pyannote[10].end 71.49659375
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 71.49659375
transcript.pyannote[11].end 74.14596875
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 72.23909375
transcript.pyannote[12].end 72.52596875
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 74.14596875
transcript.pyannote[13].end 74.50034375
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 74.50034375
transcript.pyannote[14].end 83.54534375
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 74.55096875
transcript.pyannote[15].end 76.06971875
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 76.33971875
transcript.pyannote[16].end 76.76159375
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 77.20034375
transcript.pyannote[17].end 77.60534375
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 83.69721875
transcript.pyannote[18].end 96.20159375
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 88.70909375
transcript.pyannote[19].end 88.72596875
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 88.79346875
transcript.pyannote[20].end 88.81034375
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 94.80096875
transcript.pyannote[21].end 95.23971875
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 96.31971875
transcript.pyannote[22].end 103.15409375
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 103.35659375
transcript.pyannote[23].end 124.92284375
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 111.11909375
transcript.pyannote[24].end 111.54096875
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 119.82659375
transcript.pyannote[25].end 120.23159375
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 124.33221875
transcript.pyannote[26].end 131.43659375
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 132.80346875
transcript.pyannote[27].end 140.53221875
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 139.85721875
transcript.pyannote[28].end 141.25784375
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 141.17346875
transcript.pyannote[29].end 144.54846875
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 144.75096875
transcript.pyannote[30].end 150.72471875
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 151.11284375
transcript.pyannote[31].end 154.04909375
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 152.69909375
transcript.pyannote[32].end 156.61409375
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 156.68159375
transcript.pyannote[33].end 160.78221875
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 161.06909375
transcript.pyannote[34].end 172.79721875
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 173.37096875
transcript.pyannote[35].end 198.43034375
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 193.67159375
transcript.pyannote[36].end 194.11034375
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 197.09721875
transcript.pyannote[37].end 203.03721875
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 198.48096875
transcript.pyannote[38].end 198.53159375
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 199.64534375
transcript.pyannote[39].end 200.42159375
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 202.48034375
transcript.pyannote[40].end 208.04909375
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 205.97346875
transcript.pyannote[41].end 206.27721875
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 208.13346875
transcript.pyannote[42].end 210.42846875
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 211.33971875
transcript.pyannote[43].end 219.22034375
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 220.92471875
transcript.pyannote[44].end 224.36721875
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 226.47659375
transcript.pyannote[45].end 229.54784375
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 228.61971875
transcript.pyannote[46].end 237.07409375
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 231.21846875
transcript.pyannote[47].end 231.60659375
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 231.84284375
transcript.pyannote[48].end 232.61909375
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 235.30221875
transcript.pyannote[49].end 236.31471875
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 236.31471875
transcript.pyannote[50].end 236.38221875
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 237.39471875
transcript.pyannote[51].end 242.37284375
transcript.pyannote[52].speaker SPEAKER_02
transcript.pyannote[52].start 237.56346875
transcript.pyannote[52].end 237.64784375
transcript.pyannote[53].speaker SPEAKER_02
transcript.pyannote[53].start 239.14971875
transcript.pyannote[53].end 239.74034375
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 242.67659375
transcript.pyannote[54].end 245.41034375
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 244.90409375
transcript.pyannote[55].end 248.29596875
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 245.81534375
transcript.pyannote[56].end 246.20346875
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 247.43534375
transcript.pyannote[57].end 256.88534375
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 257.10471875
transcript.pyannote[58].end 258.28596875
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 257.29034375
transcript.pyannote[59].end 260.83409375
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 260.81721875
transcript.pyannote[60].end 263.68596875
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 263.43284375
transcript.pyannote[61].end 274.30034375
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 274.89096875
transcript.pyannote[62].end 275.71784375
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 275.56596875
transcript.pyannote[63].end 280.78034375
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 281.97846875
transcript.pyannote[64].end 286.29846875
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 285.16784375
transcript.pyannote[65].end 290.24721875
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 290.38221875
transcript.pyannote[66].end 300.87846875
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 300.40596875
transcript.pyannote[67].end 300.67596875
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 301.21596875
transcript.pyannote[68].end 307.62846875
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 303.78096875
transcript.pyannote[69].end 304.03409375
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 306.73409375
transcript.pyannote[70].end 309.07971875
transcript.pyannote[71].speaker SPEAKER_02
transcript.pyannote[71].start 309.07971875
transcript.pyannote[71].end 309.45096875
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 309.53534375
transcript.pyannote[72].end 330.20721875
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 322.73159375
transcript.pyannote[73].end 323.10284375
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 328.70534375
transcript.pyannote[74].end 330.96659375
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 330.96659375
transcript.pyannote[75].end 335.08409375
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 334.34159375
transcript.pyannote[76].end 336.07971875
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 335.89409375
transcript.pyannote[77].end 339.33659375
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 339.64034375
transcript.pyannote[78].end 341.47971875
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 342.00284375
transcript.pyannote[79].end 355.62096875
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 352.80284375
transcript.pyannote[80].end 353.19096875
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 355.67159375
transcript.pyannote[81].end 363.73784375
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 363.50159375
transcript.pyannote[82].end 373.42409375
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 364.51409375
transcript.pyannote[83].end 365.20596875
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 374.01471875
transcript.pyannote[84].end 384.02159375
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 385.47284375
transcript.pyannote[85].end 386.83971875
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 386.67096875
transcript.pyannote[86].end 399.44534375
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 386.90721875
transcript.pyannote[87].end 387.32909375
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 399.71534375
transcript.pyannote[88].end 402.82034375
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 403.32659375
transcript.pyannote[89].end 418.15971875
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 418.36221875
transcript.pyannote[90].end 426.41159375
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 426.66471875
transcript.pyannote[91].end 428.28471875
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 428.48721875
transcript.pyannote[92].end 430.12409375
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 430.81596875
transcript.pyannote[93].end 434.47784375
transcript.pyannote[94].speaker SPEAKER_02
transcript.pyannote[94].start 435.60846875
transcript.pyannote[94].end 461.83221875
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 448.33221875
transcript.pyannote[95].end 448.36596875
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 453.36096875
transcript.pyannote[96].end 453.68159375
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 457.03971875
transcript.pyannote[97].end 457.27596875
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 461.78159375
transcript.pyannote[98].end 472.48034375
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 473.12159375
transcript.pyannote[99].end 481.62659375
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 481.18784375
transcript.pyannote[100].end 483.61784375
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 483.93846875
transcript.pyannote[101].end 487.02659375
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 487.02659375
transcript.pyannote[102].end 487.34721875
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 487.31346875
transcript.pyannote[103].end 487.83659375
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 487.58346875
transcript.pyannote[104].end 490.40159375
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 491.00909375
transcript.pyannote[105].end 494.46846875
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 494.46846875
transcript.pyannote[106].end 497.47221875
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 497.43846875
transcript.pyannote[107].end 500.67846875
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 498.82221875
transcript.pyannote[108].end 502.01159375
transcript.pyannote[109].speaker SPEAKER_02
transcript.pyannote[109].start 502.01159375
transcript.pyannote[109].end 502.41659375
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 502.33221875
transcript.pyannote[110].end 503.78346875
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 503.68221875
transcript.pyannote[111].end 514.73534375
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 507.17534375
transcript.pyannote[112].end 507.42846875
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 514.63409375
transcript.pyannote[113].end 524.23596875
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 524.30346875
transcript.pyannote[114].end 528.11721875
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 527.37471875
transcript.pyannote[115].end 527.61096875
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 528.11721875
transcript.pyannote[116].end 541.58346875
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 542.10659375
transcript.pyannote[117].end 545.71784375
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 546.02159375
transcript.pyannote[118].end 551.42159375
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 552.46784375
transcript.pyannote[119].end 561.20909375
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 560.77034375
transcript.pyannote[120].end 560.82096875
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 560.82096875
transcript.pyannote[121].end 560.92221875
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 560.92221875
transcript.pyannote[122].end 560.95596875
transcript.pyannote[123].speaker SPEAKER_01
transcript.pyannote[123].start 560.95596875
transcript.pyannote[123].end 561.00659375
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 561.00659375
transcript.pyannote[124].end 561.32721875
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 562.62659375
transcript.pyannote[125].end 567.82409375
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 565.78221875
transcript.pyannote[126].end 566.55846875
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 567.82409375
transcript.pyannote[127].end 567.85784375
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 568.00971875
transcript.pyannote[128].end 577.15596875
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 570.28784375
transcript.pyannote[129].end 570.59159375
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 574.03409375
transcript.pyannote[130].end 574.35471875
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 577.20659375
transcript.pyannote[131].end 577.22346875
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 577.22346875
transcript.pyannote[132].end 577.24034375
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 577.24034375
transcript.pyannote[133].end 577.66221875
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 577.66221875
transcript.pyannote[134].end 578.03346875
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 578.03346875
transcript.pyannote[135].end 578.16846875
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 578.16846875
transcript.pyannote[136].end 578.30346875
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 578.30346875
transcript.pyannote[137].end 582.80909375
transcript.pyannote[138].speaker SPEAKER_01
transcript.pyannote[138].start 582.97784375
transcript.pyannote[138].end 584.05784375
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 583.92284375
transcript.pyannote[139].end 586.97721875
transcript.pyannote[140].speaker SPEAKER_01
transcript.pyannote[140].start 584.44596875
transcript.pyannote[140].end 585.13784375
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 586.97721875
transcript.pyannote[141].end 587.39909375
transcript.pyannote[142].speaker SPEAKER_00
transcript.pyannote[142].start 587.39909375
transcript.pyannote[142].end 587.71971875
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 587.71971875
transcript.pyannote[143].end 591.04409375
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 591.04409375
transcript.pyannote[144].end 591.09471875
transcript.pyannote[145].speaker SPEAKER_01
transcript.pyannote[145].start 591.09471875
transcript.pyannote[145].end 591.11159375
transcript.pyannote[146].speaker SPEAKER_00
transcript.pyannote[146].start 591.11159375
transcript.pyannote[146].end 593.96346875
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 594.48659375
transcript.pyannote[147].end 594.85784375
transcript.pyannote[148].speaker SPEAKER_01
transcript.pyannote[148].start 595.44846875
transcript.pyannote[148].end 602.48534375
transcript.pyannote[149].speaker SPEAKER_00
transcript.pyannote[149].start 602.48534375
transcript.pyannote[149].end 605.26971875
transcript.pyannote[150].speaker SPEAKER_01
transcript.pyannote[150].start 606.19784375
transcript.pyannote[150].end 607.29471875
transcript.pyannote[151].speaker SPEAKER_00
transcript.pyannote[151].start 607.71659375
transcript.pyannote[151].end 607.73346875
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 607.73346875
transcript.pyannote[152].end 614.48346875
transcript.pyannote[153].speaker SPEAKER_00
transcript.pyannote[153].start 607.76721875
transcript.pyannote[153].end 608.07096875
transcript.pyannote[154].speaker SPEAKER_01
transcript.pyannote[154].start 615.52971875
transcript.pyannote[154].end 618.02721875
transcript.pyannote[155].speaker SPEAKER_00
transcript.pyannote[155].start 618.02721875
transcript.pyannote[155].end 633.99096875
transcript.pyannote[156].speaker SPEAKER_01
transcript.pyannote[156].start 634.48034375
transcript.pyannote[156].end 644.95971875
transcript.pyannote[157].speaker SPEAKER_00
transcript.pyannote[157].start 640.74096875
transcript.pyannote[157].end 641.12909375
transcript.pyannote[158].speaker SPEAKER_00
transcript.pyannote[158].start 645.04409375
transcript.pyannote[158].end 645.83721875
transcript.pyannote[159].speaker SPEAKER_01
transcript.pyannote[159].start 645.92159375
transcript.pyannote[159].end 648.36846875
transcript.pyannote[160].speaker SPEAKER_01
transcript.pyannote[160].start 648.82409375
transcript.pyannote[160].end 656.40096875
transcript.pyannote[161].speaker SPEAKER_00
transcript.pyannote[161].start 656.40096875
transcript.pyannote[161].end 663.23534375
transcript.pyannote[162].speaker SPEAKER_00
transcript.pyannote[162].start 663.45471875
transcript.pyannote[162].end 665.44596875
transcript.pyannote[163].speaker SPEAKER_01
transcript.pyannote[163].start 665.44596875
transcript.pyannote[163].end 665.54721875
transcript.pyannote[164].speaker SPEAKER_01
transcript.pyannote[164].start 666.44159375
transcript.pyannote[164].end 676.56659375
transcript.pyannote[165].speaker SPEAKER_00
transcript.pyannote[165].start 675.94221875
transcript.pyannote[165].end 686.69159375
transcript.pyannote[166].speaker SPEAKER_01
transcript.pyannote[166].start 685.05471875
transcript.pyannote[166].end 685.35846875
transcript.pyannote[167].speaker SPEAKER_00
transcript.pyannote[167].start 698.18346875
transcript.pyannote[167].end 700.98471875
transcript.pyannote[168].speaker SPEAKER_01
transcript.pyannote[168].start 699.21284375
transcript.pyannote[168].end 699.65159375
transcript.whisperx[0].start 0.129
transcript.whisperx[0].end 21.346
transcript.whisperx[0].text 请庄部长委员好部长好 因为大家都很关心今年的税收到底能不能达到我们当初的预算数在10月中旬的时候你们有公布全国的税收累计1到9月 前9月的税收是2兆8710亿
transcript.whisperx[1].start 23.067
transcript.whisperx[1].end 32.031
transcript.whisperx[1].text 然後叫去年同期減少了743億銀索稅減少最多426億證交稅減少223億土增稅減少161億實際上除了我剛念的銀索稅貨物稅 證交稅 土增稅之外我們除了證索稅有增加375億之外其實我們所有的稅收都減少 是不是
transcript.whisperx[2].start 52.7
transcript.whisperx[2].end 72.626
transcript.whisperx[2].text 中手稅是增加的對 除了中手稅增加之外我們有一張表上面有顯示出來除了中手稅之外我們所有其他的稅收都減少嘛 是不是對 為什麼會有這種情況呢但是地方的房屋稅是增加的還有印花稅也是增加的沒有 那我現在是討論這個減少的部分
transcript.whisperx[3].start 74.666
transcript.whisperx[3].end 101.313
transcript.whisperx[3].text 像货物税啊 证交税啊 土增税啊银索税减少更多那银索税你刚刚有提到说我们有一些延分期付款的一些效应在对 跟委员报告银索税的部分因为9月份的暂缴税款有部分还没有入账可能会10月才会入账要到10月才统计的出来还有刚刚您委员所说的就是延分期缴纳的部分会递延入账那另外证交税的部分跟委员很清楚就1到9月份的日均量是4451亿
transcript.whisperx[4].start 103.474
transcript.whisperx[4].end 131.204
transcript.whisperx[4].text 和去年同期的是4943亿就差了500亿所以1到9月份的部分证交税是减收可是9月份单一这个月份因为它的日均量是达到6006亿所以比去年9月份有增加107亿所以我们会观察后面10月到12月股市的一个成交量我请教一下部长今年度我们的预算我们的税落是变多少
transcript.whisperx[5].start 132.91
transcript.whisperx[5].end 139.617
transcript.whisperx[5].text 今年度我們中央的部分是編2兆7,845億在中央那全國呢全國的預算數是3兆8,019億那按照目前的稅收的達成率來講大概是只有75%左右
transcript.whisperx[6].start 151.206
transcript.whisperx[6].end 171.534
transcript.whisperx[6].text 不論是全國或是說這個中央的部分對 以全年來說達成率是大概只有75%嘛那剩下最後只剩下三個月那大家也都很關心那我們今年的稅收有辦法達成我們的這個預算數嗎那會不會有短超的現象發生 結果發生
transcript.whisperx[7].start 173.424
transcript.whisperx[7].end 200.947
transcript.whisperx[7].text 那跟委员报告就是说我们114年的预算数以中央来说就比去年的时增数增加了947亿比时增数但是到9月为止的时增数刚刚委员很清楚比去年同期是来的减少的所以今年要达成预算目标是具有挑战性的那我们再看10月份站脚税款入账以后我刚才听部长讲就是有挑战性所以有可能会发生
transcript.whisperx[8].start 201.627
transcript.whisperx[8].end 224.102
transcript.whisperx[8].text 短收的现象就对了可能没有办法就是对有可能对对对没有办法达到百分之一百这样子那有哪一些税收如果增加的话那有可能至少可以达到预算数因为听起来这样子是不是很乐观那除了期待这个这个政交税之外
transcript.whisperx[9].start 226.516
transcript.whisperx[9].end 241.718
transcript.whisperx[9].text 在證交稅之外當然我們希望而且現在關稅也還沒有確定所以如果關稅確定之後我們也不知道股市的發展情況是怎麼樣當然有可能正向但是也有可能會波動所以證交稅我覺得剩下三個月其實
transcript.whisperx[10].start 243.239
transcript.whisperx[10].end 260.651
transcript.whisperx[10].text 也不知道它的发展情况怎么样因为证交税整体来说财政部还有什么可以努力的地方吗可以达到我们税收达到当时编出来的运算数不至于短收因为我们上次短收是在COVID-19的时候嘛
transcript.whisperx[11].start 261.691
transcript.whisperx[11].end 290.056
transcript.whisperx[11].text 對 109年的時候是上市短收對 然後這幾年來其實大家都很努力那所以我們稅收都有增加那所以才有這個稅季剩餘增加我們也才有發這一個這個一萬塊嘛 對不對是的對啊 那如果現在按照目前發展情況來講似乎不是很樂觀今年如果要達到那個預算書有挑戰形式對 所以我問部長說那有哪一些地方財政部還可以再努力的
transcript.whisperx[12].start 291.101
transcript.whisperx[12].end 307.767
transcript.whisperx[12].text 財政部當然向來對於稅收的課徵都非常努力我們的稅務同仁都很努力那當然第一個股市要看這個後續的一些變化那中所稅是增加的最主要是新之所的增加跟營運分配增加但是我們講貨物稅嘛
transcript.whisperx[13].start 309.628
transcript.whisperx[13].end 338.902
transcript.whisperx[13].text 然後還有這個關稅也減少營業稅也減少其實剛才那張表來看除了政府稅有增加之外其他的稅都減少那怎麼辦我們當然我知道說我們的財政部的官員都很努力但這不是努力就可以達成這個目標對不對就算每天工作12個小時也不一定可以達到稅收增加所以我在問部長說那有什麼可以努力的地方嗎
transcript.whisperx[14].start 340.15
transcript.whisperx[14].end 362.95
transcript.whisperx[14].text 我想这个部分货物税的部分因为前面几个月是因为小客车是短收的那现在目前来说货物税对小客车的一个税务的调整已经算是经过大院通过那大家就比较确定所以九月份来说比去年同期只减少了一亿那我们看看后面看看能不能再有增加税收的可能性
transcript.whisperx[15].start 363.61
transcript.whisperx[15].end 376.193
transcript.whisperx[15].text 你講貨物稅嘛那其實這一個汽車公會的全聯會他其實他有提到因為他們本身就是業者嘛他說我們通過的貨物稅啦對他們來講貨物稅減增目前為止沒有帶動太大的成效因為關稅都還沒有確定嘛對不對
transcript.whisperx[16].start 385.766
transcript.whisperx[16].end 402.504
transcript.whisperx[16].text 是的那我请教一下部长有关于汽车关税的部分这个汽车工会全联会他们是说他们有去跟曾立军副院长有谈过他说这个未来零关税
transcript.whisperx[17].start 403.886
transcript.whisperx[17].end 427.605
transcript.whisperx[17].text 僅對美規車有利其他國家進口車輛會維持到17.5%不過也尚未定案然後未來因為現在我們是把汽車整車零組件跟半導體晶片一併納入談判但是未來也不排除美規車有機會享有零關稅我想請教一下部長有關於關稅的部分
transcript.whisperx[18].start 430.909
transcript.whisperx[18].end 433.842
transcript.whisperx[18].text 是不是美規車進來未來有可能是零關稅
transcript.whisperx[19].start 435.663
transcript.whisperx[19].end 440.385
transcript.whisperx[19].text 部分因為台美關稅談判持續在進行當中那未來是稅率會多少就美國車進來是多少那還在談判過程當中那現行的是17.5那只能說我們只能說這個談判只針對美國進口的汽車那其他國家進口車子應該是維持17.5%那除非我們雙邊再來談所謂的貿易協定大概是這樣子
transcript.whisperx[20].start 461.995
transcript.whisperx[20].end 488.702
transcript.whisperx[20].text 所以現在按照部長的說法就是說除了從美國進口的車美規車進來關稅會調降但是調降幅度多少還不知道是不是調降以及調降的幅度我想都是在談判過程當中我們的談判團隊會提出的這個部分我並沒有但是美方有要求一定要調降對不對這個部分我想談判團隊會更清楚甚至是有談到說關稅會降到零
transcript.whisperx[21].start 491.352
transcript.whisperx[21].end 514.39
transcript.whisperx[21].text 这个部分我也不是那么清楚对不确定这个跟你有关系你怎么会不清楚这个是在谈判团队在谈判过程当中的事项但是你们一定有提供相关的资料给我们谈判团队对不对当然我们会把历年来的一个进口量或者是价值都要做基础的资料提供是作为他们在研判上的一个基本的背景资料对
transcript.whisperx[22].start 514.91
transcript.whisperx[22].end 541.189
transcript.whisperx[22].text 那所以刚才部长有讲说那其他的进口车其他国家进口车一样会维持目前的关税17.5%就对了不会受到影响因为这是我们台美之间的双边的谈判对好那再请教一下因为现在这个在台北港这个车子大概有大概三万多辆左右那现在也因为说关税
transcript.whisperx[23].start 542.611
transcript.whisperx[23].end 560.531
transcript.whisperx[23].text 甚至連貨物稅都還沒辦法確定那是不是在這種情況之下這個車子一樣會繼續放在那邊就對了貨物稅的部分已經經過大院修正的貨物稅條例已經確定那至於台北關那邊到底有多少數量是不是請我們關務署署長來做一個說明署長
transcript.whisperx[24].start 562.731
transcript.whisperx[24].end 582.441
transcript.whisperx[24].text 包委員在台北港那邊有1萬6千多輛現在是1萬6千多輛對有減少是不是有 有減少現在目前大概台北港跟台中港兩個加起來大概是1萬9千輛左右那所以總共加起來的在那個港口車輛有多少台北港跟台中港加起來
transcript.whisperx[25].start 583.041
transcript.whisperx[25].end 600.8
transcript.whisperx[25].text 一萬九千多輛那所以有一萬多輛已經有出去了對這一兩個月有減少了一個幅度那減少的最主要的原因是什麼就是如果說課稅區有這個需求的話廠商自然會從保稅區裡面把這個車輛送到課稅區裡面可是現在關稅都還沒有確定啊
transcript.whisperx[26].start 606.949
transcript.whisperx[26].end 633.734
transcript.whisperx[26].text 是 廠商如果說國內有購買汽車他還是會從保稅區裡面把車輛保稅區還稅之後送到課稅區那您預期是不是關稅確定之後不管是多少目前趨勢應該是往下降因為你跟美國談不可能說不跟你還是維持在17.5%一定會往下降那如果關稅確定之後這個現象是不是就會得到緩解
transcript.whisperx[27].start 634.822
transcript.whisperx[27].end 656.096
transcript.whisperx[27].text 跟委員報告海美協議當然要送到立法院來委員這邊通過另外還要修海關進口稅則這都需要一段時間那所以也不是說關稅確定之後的確不是說跟美方談了之後公佈了馬上就調降我們還是要走立法的程序
transcript.whisperx[28].start 656.776
transcript.whisperx[28].end 664.148
transcript.whisperx[28].text 那大概我們如果說確定比如說下個月下個月關稅就確定了零關稅的話那大概多久我們能夠確定
transcript.whisperx[29].start 666.482
transcript.whisperx[29].end 685.865
transcript.whisperx[29].text 跟委員報告談成的協議還要送立法院通過立法院通過了台美雙方的協議還要修海關進口稅則這都可能會有至少因為對於車商來講關稅不確定性的影響幅度會比說到底確定是多少影響是更大啦是好 謝謝
transcript.whisperx[30].start 698.563
transcript.whisperx[30].end 700.64
transcript.whisperx[30].text 接下來我們請王世堅委員