iVOD / 164210

Field Value
IVOD_ID 164210
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/164210
日期 2025-10-15
會議資料.會議代碼 委員會-11-4-19-3
會議資料.會議代碼:str 第11屆第4會期經濟委員會第3次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 3
會議資料.種類 委員會
會議資料.委員會代碼[0] 19
會議資料.委員會代碼:str[0] 經濟委員會
會議資料.標題 第11屆第4會期經濟委員會第3次全體委員會議
影片種類 Clip
開始時間 2025-10-15T12:51:12+08:00
結束時間 2025-10-15T12:57:39+08:00
影片長度 00:06:27
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/d759c3dbefb57db69dd68f812a26ed0b1d8817d393176c43b6741136213cfef638f9d5c79002bdd25ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 鍾佳濱
委員發言時間 12:51:12 - 12:57:39
會議時間 2025-10-15T09:00:00+08:00
會議名稱 立法院第11屆第4會期經濟委員會第3次全體委員會議(事由:邀請農業部部長列席報告業務概況,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 11.77596875
transcript.pyannote[0].end 16.33221875
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 16.77096875
transcript.pyannote[1].end 18.93096875
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 19.20096875
transcript.pyannote[2].end 20.24721875
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 20.55096875
transcript.pyannote[3].end 21.04034375
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 26.38971875
transcript.pyannote[4].end 30.67596875
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 31.41846875
transcript.pyannote[5].end 40.86846875
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 41.32409375
transcript.pyannote[6].end 42.91034375
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 41.40846875
transcript.pyannote[7].end 45.25596875
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 44.69909375
transcript.pyannote[8].end 46.74096875
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 46.85909375
transcript.pyannote[9].end 49.27221875
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 49.69409375
transcript.pyannote[10].end 53.38971875
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 54.03096875
transcript.pyannote[11].end 58.01346875
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 58.40159375
transcript.pyannote[12].end 58.90784375
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 59.49846875
transcript.pyannote[13].end 63.46409375
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 64.37534375
transcript.pyannote[14].end 67.86846875
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 68.62784375
transcript.pyannote[15].end 69.04971875
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 69.18471875
transcript.pyannote[16].end 72.84659375
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 73.53846875
transcript.pyannote[17].end 73.92659375
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 73.92659375
transcript.pyannote[18].end 78.31409375
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 73.94346875
transcript.pyannote[19].end 74.12909375
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 78.58409375
transcript.pyannote[20].end 79.81596875
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 80.00159375
transcript.pyannote[21].end 80.92971875
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 81.25034375
transcript.pyannote[22].end 85.43534375
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 85.67159375
transcript.pyannote[23].end 91.76346875
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 92.10096875
transcript.pyannote[24].end 99.62721875
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 100.16721875
transcript.pyannote[25].end 102.25971875
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 102.46221875
transcript.pyannote[26].end 106.88346875
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 104.77409375
transcript.pyannote[27].end 105.88784375
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 107.37284375
transcript.pyannote[28].end 108.84096875
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 109.09409375
transcript.pyannote[29].end 109.48221875
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 110.20784375
transcript.pyannote[30].end 111.79409375
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 112.60409375
transcript.pyannote[31].end 118.54409375
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 119.47221875
transcript.pyannote[32].end 123.30284375
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 123.79221875
transcript.pyannote[33].end 128.68596875
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 129.15846875
transcript.pyannote[34].end 129.46221875
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 129.88409375
transcript.pyannote[35].end 132.46596875
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 132.61784375
transcript.pyannote[36].end 134.03534375
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 134.74409375
transcript.pyannote[37].end 138.50721875
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 138.91221875
transcript.pyannote[38].end 141.71346875
transcript.pyannote[39].speaker SPEAKER_01
transcript.pyannote[39].start 142.10159375
transcript.pyannote[39].end 144.51471875
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 144.88596875
transcript.pyannote[40].end 147.72096875
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 147.82221875
transcript.pyannote[41].end 148.21034375
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 148.21034375
transcript.pyannote[42].end 152.34471875
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 152.46284375
transcript.pyannote[43].end 152.80034375
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 152.80034375
transcript.pyannote[44].end 157.72784375
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 157.32284375
transcript.pyannote[45].end 158.11596875
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 158.16659375
transcript.pyannote[46].end 162.82409375
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 163.12784375
transcript.pyannote[47].end 165.49034375
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 166.26659375
transcript.pyannote[48].end 166.53659375
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 166.63784375
transcript.pyannote[49].end 168.49409375
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 168.74721875
transcript.pyannote[50].end 171.59909375
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 172.03784375
transcript.pyannote[51].end 174.29909375
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 174.82221875
transcript.pyannote[52].end 178.43346875
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 178.87221875
transcript.pyannote[53].end 180.35721875
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 180.81284375
transcript.pyannote[54].end 184.40721875
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 184.62659375
transcript.pyannote[55].end 188.98034375
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 189.36846875
transcript.pyannote[56].end 190.71846875
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 191.61284375
transcript.pyannote[57].end 193.55346875
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 192.11909375
transcript.pyannote[58].end 193.78971875
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 193.89096875
transcript.pyannote[59].end 199.47659375
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 199.66221875
transcript.pyannote[60].end 200.79284375
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 201.28221875
transcript.pyannote[61].end 205.58534375
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 206.34471875
transcript.pyannote[62].end 209.77034375
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 210.09096875
transcript.pyannote[63].end 214.81596875
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 216.36846875
transcript.pyannote[64].end 218.41034375
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 216.97596875
transcript.pyannote[65].end 220.01346875
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 220.06409375
transcript.pyannote[66].end 225.31221875
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 225.34596875
transcript.pyannote[67].end 225.76784375
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 225.66659375
transcript.pyannote[68].end 226.61159375
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 228.11346875
transcript.pyannote[69].end 229.78409375
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 229.81784375
transcript.pyannote[70].end 230.22284375
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 230.23971875
transcript.pyannote[71].end 236.19659375
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 236.23034375
transcript.pyannote[72].end 236.63534375
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 236.80409375
transcript.pyannote[73].end 241.05659375
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 241.24221875
transcript.pyannote[74].end 241.57971875
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 241.93409375
transcript.pyannote[75].end 244.38096875
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 245.44409375
transcript.pyannote[76].end 249.08909375
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 249.57846875
transcript.pyannote[77].end 256.81784375
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 255.82221875
transcript.pyannote[78].end 260.34471875
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 259.43346875
transcript.pyannote[79].end 263.12909375
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 263.29784375
transcript.pyannote[80].end 264.10784375
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 264.34409375
transcript.pyannote[81].end 264.61409375
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 264.93471875
transcript.pyannote[82].end 265.96409375
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 265.96409375
transcript.pyannote[83].end 266.03159375
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 266.03159375
transcript.pyannote[84].end 267.02721875
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 267.02721875
transcript.pyannote[85].end 269.30534375
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 267.07784375
transcript.pyannote[86].end 267.41534375
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 269.47409375
transcript.pyannote[87].end 270.41909375
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 270.77346875
transcript.pyannote[88].end 275.46471875
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 276.00471875
transcript.pyannote[89].end 276.98346875
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 276.03846875
transcript.pyannote[90].end 276.88221875
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 276.98346875
transcript.pyannote[91].end 279.07596875
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 277.37159375
transcript.pyannote[92].end 283.07534375
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 283.42971875
transcript.pyannote[93].end 286.31534375
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 286.63596875
transcript.pyannote[94].end 287.53034375
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 287.95221875
transcript.pyannote[95].end 289.55534375
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 289.87596875
transcript.pyannote[96].end 290.17971875
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 290.34846875
transcript.pyannote[97].end 291.17534375
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 291.44534375
transcript.pyannote[98].end 293.95971875
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 294.06096875
transcript.pyannote[99].end 296.08596875
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 295.07346875
transcript.pyannote[100].end 297.36846875
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 297.36846875
transcript.pyannote[101].end 302.14409375
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 302.53221875
transcript.pyannote[102].end 309.53534375
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 310.46346875
transcript.pyannote[103].end 311.61096875
transcript.pyannote[104].speaker SPEAKER_01
transcript.pyannote[104].start 312.03284375
transcript.pyannote[104].end 313.83846875
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 313.01159375
transcript.pyannote[105].end 318.12471875
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 317.66909375
transcript.pyannote[106].end 320.75721875
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 322.17471875
transcript.pyannote[107].end 326.44409375
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 326.69721875
transcript.pyannote[108].end 327.99659375
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 328.97534375
transcript.pyannote[109].end 342.03659375
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 329.81909375
transcript.pyannote[110].end 330.86534375
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 342.30659375
transcript.pyannote[111].end 345.09096875
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 345.39471875
transcript.pyannote[112].end 345.85034375
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 346.13721875
transcript.pyannote[113].end 353.03909375
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 353.24159375
transcript.pyannote[114].end 355.28346875
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 355.43534375
transcript.pyannote[115].end 356.90346875
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 357.15659375
transcript.pyannote[116].end 360.49784375
transcript.pyannote[117].speaker SPEAKER_01
transcript.pyannote[117].start 360.75096875
transcript.pyannote[117].end 361.29096875
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 361.42596875
transcript.pyannote[118].end 369.22221875
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 368.51346875
transcript.pyannote[119].end 374.13284375
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 375.09471875
transcript.pyannote[120].end 375.12846875
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 375.12846875
transcript.pyannote[121].end 375.68534375
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 375.16221875
transcript.pyannote[122].end 375.73596875
transcript.pyannote[123].speaker SPEAKER_01
transcript.pyannote[123].start 375.73596875
transcript.pyannote[123].end 383.29596875
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 377.03534375
transcript.pyannote[124].end 378.38534375
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 382.13159375
transcript.pyannote[125].end 382.90784375
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 383.65034375
transcript.pyannote[126].end 388.27409375
transcript.whisperx[0].start 11.909
transcript.whisperx[0].end 20.652
transcript.whisperx[0].text 主席在場的原先進列席的中央市長官員 會長 工作夥伴 媒體記者 女士先生有請我們那個農業部陳部長請陳部長 謝謝部長好 老農津貼加上農退儲金保障獎對不對
transcript.whisperx[1].start 31.445
transcript.whisperx[1].end 44.316
transcript.whisperx[1].text 好來我們看一下現在老農津貼跟農退儲金農民退休有雙層保障113年我們就農業人口差不多快50萬對不對48.9萬現在我最新的統計是48.7萬沒關係我覺得大概是那個數字這65歲以上的人可以領老農津貼部分有參加農民退休儲金還可以多領一點農民退休儲金對不對
transcript.whisperx[2].start 54.534
transcript.whisperx[2].end 71.332
transcript.whisperx[2].text 現在老農今天大概有快45萬人在勤領沒有錯吧好那我們等一下看來老農今天跟農民退休儲金有什麼差別第一老農今天一年我們大概預算要編450億對不對差不多我們農民退休儲金要相對提撥要編31億對不對
transcript.whisperx[3].start 74.001
transcript.whisperx[3].end 99.308
transcript.whisperx[3].text 那目前的退休處境的規模大概245億在我們說的退休當中 準備當中是同性戀的啦因為剛開辦嘛 是不是跟勞退比起來 我們很小嘛 公退很小嘛那覆蓋率的話呢 目前有22萬3千人符合提領資格覆蓋率差不多有一半但是到另外一半的人他們有參加農退處境那以勤領人數呢 目前農退老農今天有將近四十萬人在領
transcript.whisperx[4].start 100.208
transcript.whisperx[4].end 118.289
transcript.whisperx[4].text 那目前已經65歲以上在領農民退休儲金的差不多一萬四 其他人還在交啦可是領多少呢 農民老農今天是八千一嘛那農民退休儲金的看你存多少 你存的少的就領八百五嘛存的多就領一萬一千七嘛 對不對
transcript.whisperx[5].start 119.52
transcript.whisperx[5].end 135.787
transcript.whisperx[5].text 所以每年我們大概領到農農津貼的人有領到437億那又領到退休儲金的人有1億多啦好 這個規模幫你整理一下好 往下看來 什麼樣的人會去參加農退儲金?老人還是年輕人?年輕人比較有優勢啊
transcript.whisperx[6].start 136.372
transcript.whisperx[6].end 164.619
transcript.whisperx[6].text 對 但是大多數是老人家去參加啦因為我們開辦的晚嘛開辦的晚對 所以要退休的人他有急迫感他趕快存 對不對啊 比較年輕的人還在那邊慢慢地看 是不是這樣對好 那我們要鼓勵年輕人及早開始就去參加自體對不對對要鼓勵對不對對你越年輕越多你吃老的時期你年紀越多 是不是這樣是所以說當年在這個農退處已經開辦的時候那時候蔡總統是不是只是行政院要支持我們農業部開辦
transcript.whisperx[7].start 166.745
transcript.whisperx[7].end 189.628
transcript.whisperx[7].text 對對不對 農業部跟我們這條集沒有 也是行政議員 我們走多邊的嘛 是不是這樣是好 那我們來看 來 請問當時行政院是不是支持我們31億 現在繼續支持是 是嗎 阿純 提撥的人越來越多 需要的錢越來越多你認為行政院會不會繼續支持應該會 應該會嘛如果農民自提越多 政府支持越多 農業部會不會沒辦法
transcript.whisperx[8].start 191.653
transcript.whisperx[8].end 214.794
transcript.whisperx[8].text 保證 這個是百分之一五指數嘛所以我們來看一下齁 這個農退處境有這個好處 來你對勞退有了解嗎 勞工退休金勞退呢 它包括雇主強制提撥跟勞工自提的 對不對雇主至少要提6% 現在都會提6% 沒有問題你知不知道 勞工自願提的是0到6 有多少提 你知不知道
transcript.whisperx[9].start 216.414
transcript.whisperx[9].end 240.018
transcript.whisperx[9].text 你那個勞動部的事 十幾%而已大概十六十七而已啦比起我們的農退有將近一半 數很多耶你覺得是什麼原因沒有政府相對補助嘛 農退有政府相對補助嘛勞退自體沒有政府相對補助嘛 是不是這樣所以如果說勞動部說好啦 勞工政府也支持別說相對啦 有給政府鼓勵
transcript.whisperx[10].start 245.672
transcript.whisperx[10].end 263.565
transcript.whisperx[10].text 雖然不是你的農業部 你在行政會給他斬針 給他支持嗎我不敢說沒有啦 不敢說 人家等你 支持你你現在把人要好 你才不敢說斬針我問你敢斬針喔沒有 這個牽扯到後面需要多少經費那些東西啊等一下 沒錯 當年行政院支持我們農退有說其他話嗎
transcript.whisperx[11].start 265.326
transcript.whisperx[11].end 288.992
transcript.whisperx[11].text 農業部我們了解 所以我們敢爭取 勞工的部分沒有啦 你自己好 人家現在兩勞動部也要請出你會說你怕不怕如果勞動部提出的方案我們會你會不會給他佔下最後呢 所以說到目前只有16%的人字體往下看如果說支持勞退字體的提撥比例你會支持嗎勞動部我們提你會給他佔下嗎
transcript.whisperx[12].start 290.432
transcript.whisperx[12].end 308.265
transcript.whisperx[12].text 拜託委員沒有啦 我是問你的邱靖的同意嘛你做一個朋友邱靖我會支持勞動部的提案好 這樣才好 來 勞動部現在要提了勞動部現在安生要提什麼只要說勞工自體願意自體增加超過1%政府就送1%你聽到這個會怕不怕
transcript.whisperx[13].start 310.947
transcript.whisperx[13].end 327.115
transcript.whisperx[13].text 會不會把他打破了我還沒有問那個勞動部的想法不是啦 如果他勞動部這樣提你會不會拍 給他鼓掌部長如果這樣講 洪部長這樣講你會不會把他打破了說有夠勇敢的 我在聽聽他在聽你會不會
transcript.whisperx[14].start 329.605
transcript.whisperx[14].end 344.151
transcript.whisperx[14].text 我支持他們的提案你會支持他的提案好最後呢所以部長你會支持如果勞動部提說政府也加送一趴勞退自體送一趴你在旁邊聽了會說部長讚 黃部長我給你支持
transcript.whisperx[15].start 345.532
transcript.whisperx[15].end 373.41
transcript.whisperx[15].text 最後 來因為我們以農民退休處境為借鏡我們為了鼓勵勞工退休自體如果說政府提出來 勞務提出來自體的話 政府送一趴提高自體的意願你給他暫省 醫療你要再增加他也會支持你啦 是不是這樣拜託 我們現在經濟要往回了我們討論的是農業的部分因為勞工的部分我不夠熟 但是我會支持我是在替你騙人錢啦你現在給他暫省 醫療你要增加人家才會替你說話啦 沒有沒有
transcript.whisperx[16].start 375.331
transcript.whisperx[16].end 379.093
transcript.whisperx[16].text 我會支持勞動 勞動部提的這些 好 謝謝好 謝謝 感謝 謝謝我們宗家兵委員質詢 謝謝部長