iVOD / 164189

Field Value
IVOD_ID 164189
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/164189
日期 2025-10-15
會議資料.會議代碼 委員會-11-4-20-2
會議資料.會議代碼:str 第11屆第4會期財政委員會第2次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 2
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第4會期財政委員會第2次全體委員會議
影片種類 Clip
開始時間 2025-10-15T12:05:16+08:00
結束時間 2025-10-15T12:16:22+08:00
影片長度 00:11:06
支援功能[0] ai-transcript
支援功能[1] gazette
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/d759c3dbefb57db6f5d6c727e33a370697bc26f8a2da1058b6741136213cfef6e845366a77bfd4645ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 林思銘
委員發言時間 12:05:16 - 12:16:22
會議時間 2025-10-15T09:00:00+08:00
會議名稱 立法院第11屆第4會期財政委員會第2次全體委員會議(事由:邀請行政院主計總處陳主計長淑姿、審計部陳審計長瑞敏率所屬單位主管列席業務報告,並備質詢。 【10月13日、15日及16日三天一次會】)
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 6.32534375
transcript.pyannote[0].end 11.62409375
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 15.08346875
transcript.pyannote[1].end 23.75721875
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 15.64034375
transcript.pyannote[2].end 15.97784375
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 23.57159375
transcript.pyannote[3].end 24.02721875
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 24.11159375
transcript.pyannote[4].end 28.71846875
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 26.62596875
transcript.pyannote[5].end 27.11534375
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 28.85346875
transcript.pyannote[6].end 55.81971875
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 28.93784375
transcript.pyannote[7].end 29.49471875
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 32.46471875
transcript.pyannote[8].end 32.54909375
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 35.53596875
transcript.pyannote[9].end 35.55284375
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 35.56971875
transcript.pyannote[10].end 35.58659375
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 35.94096875
transcript.pyannote[11].end 35.99159375
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 45.03659375
transcript.pyannote[12].end 45.39096875
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 56.14034375
transcript.pyannote[13].end 72.23909375
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 58.28346875
transcript.pyannote[14].end 58.82346875
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 72.66096875
transcript.pyannote[15].end 92.05034375
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 92.48909375
transcript.pyannote[16].end 100.89284375
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 102.24284375
transcript.pyannote[17].end 105.31409375
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 102.63096875
transcript.pyannote[18].end 103.62659375
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 105.31409375
transcript.pyannote[19].end 106.02284375
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 106.29284375
transcript.pyannote[20].end 129.39471875
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 112.06409375
transcript.pyannote[21].end 113.04284375
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 113.07659375
transcript.pyannote[22].end 113.17784375
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 115.10159375
transcript.pyannote[23].end 116.16471875
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 116.16471875
transcript.pyannote[24].end 116.18159375
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 117.43034375
transcript.pyannote[25].end 117.97034375
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 117.97034375
transcript.pyannote[26].end 119.16846875
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 129.90096875
transcript.pyannote[27].end 142.13534375
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 141.89909375
transcript.pyannote[28].end 144.83534375
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 143.94096875
transcript.pyannote[29].end 144.46409375
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 145.30784375
transcript.pyannote[30].end 154.58909375
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 149.86409375
transcript.pyannote[31].end 150.42096875
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 151.75409375
transcript.pyannote[32].end 152.02409375
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 154.97721875
transcript.pyannote[33].end 158.90909375
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 158.90909375
transcript.pyannote[34].end 159.26346875
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 159.12846875
transcript.pyannote[35].end 163.11096875
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 162.79034375
transcript.pyannote[36].end 163.19534375
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 163.19534375
transcript.pyannote[37].end 163.34721875
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 163.46534375
transcript.pyannote[38].end 181.63971875
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 179.20971875
transcript.pyannote[39].end 196.54034375
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 183.29346875
transcript.pyannote[40].end 184.25534375
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 187.56284375
transcript.pyannote[41].end 188.32221875
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 194.97096875
transcript.pyannote[42].end 202.51409375
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 202.75034375
transcript.pyannote[43].end 212.31846875
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 209.66909375
transcript.pyannote[44].end 209.75346875
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 209.92221875
transcript.pyannote[45].end 210.07409375
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 212.01471875
transcript.pyannote[46].end 212.04846875
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 212.57159375
transcript.pyannote[47].end 216.55409375
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 216.79034375
transcript.pyannote[48].end 225.76784375
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 225.98721875
transcript.pyannote[49].end 228.02909375
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 228.45096875
transcript.pyannote[50].end 230.03721875
transcript.pyannote[51].speaker SPEAKER_02
transcript.pyannote[51].start 230.35784375
transcript.pyannote[51].end 233.54721875
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 233.54721875
transcript.pyannote[52].end 233.93534375
transcript.pyannote[53].speaker SPEAKER_02
transcript.pyannote[53].start 234.47534375
transcript.pyannote[53].end 237.31034375
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 237.73221875
transcript.pyannote[54].end 240.17909375
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 240.21284375
transcript.pyannote[55].end 241.10721875
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 241.49534375
transcript.pyannote[56].end 249.46034375
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 249.94971875
transcript.pyannote[57].end 255.24846875
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 255.94034375
transcript.pyannote[58].end 258.25221875
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 255.95721875
transcript.pyannote[59].end 256.59846875
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 258.77534375
transcript.pyannote[60].end 299.37659375
transcript.pyannote[61].speaker SPEAKER_02
transcript.pyannote[61].start 261.74534375
transcript.pyannote[61].end 262.20096875
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 264.39471875
transcript.pyannote[62].end 264.93471875
transcript.pyannote[63].speaker SPEAKER_02
transcript.pyannote[63].start 268.17471875
transcript.pyannote[63].end 271.97159375
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 286.90596875
transcript.pyannote[64].end 287.42909375
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 298.87034375
transcript.pyannote[65].end 302.22846875
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 301.94159375
transcript.pyannote[66].end 302.39721875
transcript.pyannote[67].speaker SPEAKER_02
transcript.pyannote[67].start 302.59971875
transcript.pyannote[67].end 306.70034375
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 307.08846875
transcript.pyannote[68].end 312.72471875
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 312.87659375
transcript.pyannote[69].end 326.19096875
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 326.62971875
transcript.pyannote[70].end 336.13034375
transcript.pyannote[71].speaker SPEAKER_02
transcript.pyannote[71].start 336.63659375
transcript.pyannote[71].end 355.30034375
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 355.55346875
transcript.pyannote[72].end 357.27471875
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 357.79784375
transcript.pyannote[73].end 362.60721875
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 362.91096875
transcript.pyannote[74].end 367.53471875
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 367.95659375
transcript.pyannote[75].end 371.88846875
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 371.97284375
transcript.pyannote[76].end 372.00659375
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 372.19221875
transcript.pyannote[77].end 384.13971875
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 385.16909375
transcript.pyannote[78].end 410.66721875
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 390.72096875
transcript.pyannote[79].end 390.78846875
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 390.78846875
transcript.pyannote[80].end 391.17659375
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 391.17659375
transcript.pyannote[81].end 391.39596875
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 397.13346875
transcript.pyannote[82].end 397.47096875
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 410.39721875
transcript.pyannote[83].end 415.18971875
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 411.76409375
transcript.pyannote[84].end 412.10159375
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 414.54846875
transcript.pyannote[85].end 416.38784375
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 416.13471875
transcript.pyannote[86].end 427.86284375
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 417.46784375
transcript.pyannote[87].end 419.02034375
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 423.91409375
transcript.pyannote[88].end 424.84221875
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 427.17096875
transcript.pyannote[89].end 427.54221875
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 428.09909375
transcript.pyannote[90].end 430.12409375
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 430.12409375
transcript.pyannote[91].end 439.00034375
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 438.37596875
transcript.pyannote[92].end 439.32096875
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 439.45596875
transcript.pyannote[93].end 440.95784375
transcript.pyannote[94].speaker SPEAKER_02
transcript.pyannote[94].start 441.04221875
transcript.pyannote[94].end 446.32409375
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 446.61096875
transcript.pyannote[95].end 450.28971875
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 450.79596875
transcript.pyannote[96].end 457.52909375
transcript.pyannote[97].speaker SPEAKER_02
transcript.pyannote[97].start 455.43659375
transcript.pyannote[97].end 456.01034375
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 457.00596875
transcript.pyannote[98].end 458.10284375
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 458.25471875
transcript.pyannote[99].end 468.64971875
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 465.20721875
transcript.pyannote[100].end 466.16909375
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 469.15596875
transcript.pyannote[101].end 469.54409375
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 469.98284375
transcript.pyannote[102].end 471.41721875
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 471.14721875
transcript.pyannote[103].end 475.80471875
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 472.22721875
transcript.pyannote[104].end 472.78409375
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 476.09159375
transcript.pyannote[105].end 478.96034375
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 479.68596875
transcript.pyannote[106].end 484.74846875
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 483.38159375
transcript.pyannote[107].end 487.00971875
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 485.89596875
transcript.pyannote[108].end 491.48159375
transcript.pyannote[109].speaker SPEAKER_02
transcript.pyannote[109].start 491.07659375
transcript.pyannote[109].end 495.58221875
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 494.41784375
transcript.pyannote[110].end 502.34909375
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 500.98221875
transcript.pyannote[111].end 501.40409375
transcript.pyannote[112].speaker SPEAKER_02
transcript.pyannote[112].start 501.92721875
transcript.pyannote[112].end 507.20909375
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 502.66971875
transcript.pyannote[113].end 506.02784375
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 508.25534375
transcript.pyannote[114].end 508.89659375
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 509.82471875
transcript.pyannote[115].end 510.63471875
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 513.23346875
transcript.pyannote[116].end 519.46034375
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 519.93284375
transcript.pyannote[117].end 526.53096875
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 526.91909375
transcript.pyannote[118].end 536.94284375
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 537.75284375
transcript.pyannote[119].end 538.84971875
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 538.84971875
transcript.pyannote[120].end 538.91721875
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 539.05221875
transcript.pyannote[121].end 539.82846875
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 539.84534375
transcript.pyannote[122].end 539.89596875
transcript.pyannote[123].speaker SPEAKER_01
transcript.pyannote[123].start 539.94659375
transcript.pyannote[123].end 562.96409375
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 552.13034375
transcript.pyannote[124].end 552.53534375
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 561.66471875
transcript.pyannote[125].end 565.24221875
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 564.16221875
transcript.pyannote[126].end 570.89534375
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 570.57471875
transcript.pyannote[127].end 573.00471875
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 573.00471875
transcript.pyannote[128].end 579.26534375
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 573.12284375
transcript.pyannote[129].end 573.64596875
transcript.pyannote[130].speaker SPEAKER_02
transcript.pyannote[130].start 579.04596875
transcript.pyannote[130].end 580.81784375
transcript.pyannote[131].speaker SPEAKER_01
transcript.pyannote[131].start 580.05846875
transcript.pyannote[131].end 586.30221875
transcript.pyannote[132].speaker SPEAKER_02
transcript.pyannote[132].start 583.34909375
transcript.pyannote[132].end 583.72034375
transcript.pyannote[133].speaker SPEAKER_02
transcript.pyannote[133].start 585.91409375
transcript.pyannote[133].end 589.91346875
transcript.pyannote[134].speaker SPEAKER_02
transcript.pyannote[134].start 590.36909375
transcript.pyannote[134].end 595.38096875
transcript.pyannote[135].speaker SPEAKER_02
transcript.pyannote[135].start 596.19096875
transcript.pyannote[135].end 609.72471875
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 596.22471875
transcript.pyannote[136].end 598.23284375
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 598.23284375
transcript.pyannote[137].end 598.31721875
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 599.00909375
transcript.pyannote[138].end 599.11034375
transcript.pyannote[139].speaker SPEAKER_01
transcript.pyannote[139].start 599.11034375
transcript.pyannote[139].end 599.26221875
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 599.26221875
transcript.pyannote[140].end 599.29596875
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 605.52284375
transcript.pyannote[141].end 610.45034375
transcript.pyannote[142].speaker SPEAKER_02
transcript.pyannote[142].start 610.45034375
transcript.pyannote[142].end 610.58534375
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 610.58534375
transcript.pyannote[143].end 610.72034375
transcript.pyannote[144].speaker SPEAKER_02
transcript.pyannote[144].start 610.72034375
transcript.pyannote[144].end 619.32659375
transcript.pyannote[145].speaker SPEAKER_02
transcript.pyannote[145].start 619.79909375
transcript.pyannote[145].end 636.91034375
transcript.pyannote[146].speaker SPEAKER_01
transcript.pyannote[146].start 637.21409375
transcript.pyannote[146].end 649.06034375
transcript.pyannote[147].speaker SPEAKER_02
transcript.pyannote[147].start 637.46721875
transcript.pyannote[147].end 639.64409375
transcript.pyannote[148].speaker SPEAKER_02
transcript.pyannote[148].start 646.51221875
transcript.pyannote[148].end 647.54159375
transcript.pyannote[149].speaker SPEAKER_02
transcript.pyannote[149].start 648.45284375
transcript.pyannote[149].end 658.74659375
transcript.pyannote[150].speaker SPEAKER_01
transcript.pyannote[150].start 658.74659375
transcript.pyannote[150].end 664.75409375
transcript.pyannote[151].speaker SPEAKER_02
transcript.pyannote[151].start 661.95284375
transcript.pyannote[151].end 662.57721875
transcript.pyannote[152].speaker SPEAKER_02
transcript.pyannote[152].start 664.21409375
transcript.pyannote[152].end 664.80471875
transcript.pyannote[153].speaker SPEAKER_01
transcript.pyannote[153].start 664.80471875
transcript.pyannote[153].end 664.97346875
transcript.pyannote[154].speaker SPEAKER_02
transcript.pyannote[154].start 664.97346875
transcript.pyannote[154].end 665.27721875
transcript.pyannote[155].speaker SPEAKER_01
transcript.pyannote[155].start 665.27721875
transcript.pyannote[155].end 666.40784375
transcript.pyannote[156].speaker SPEAKER_02
transcript.pyannote[156].start 665.31096875
transcript.pyannote[156].end 665.81721875
transcript.pyannote[157].speaker SPEAKER_01
transcript.pyannote[157].start 666.67784375
transcript.pyannote[157].end 666.96471875
transcript.pyannote[158].speaker SPEAKER_02
transcript.pyannote[158].start 666.96471875
transcript.pyannote[158].end 667.70721875
transcript.pyannote[159].speaker SPEAKER_02
transcript.pyannote[159].start 667.87596875
transcript.pyannote[159].end 667.97721875
transcript.whisperx[0].start 6.328
transcript.whisperx[0].end 24.62
transcript.whisperx[0].text 好 謝謝趙偉我先請主席長好了請陳署長主席長早委員好主席長我想今年的一到八月收穫員工每人每月的經常性薪資平均數是47709元年增2.98%實際的成長是1.12%對我們乍看之下數據是很漂亮是
transcript.whisperx[1].start 36.007
transcript.whisperx[1].end 55.199
transcript.whisperx[1].text 但是我們再看看中位數只有38217元實際成長只有0.94%換句話說薪資成長的平均數被少數高薪族群所拉高而絕大多數的基層其實沒有感受不到
transcript.whisperx[2].start 59.401
transcript.whisperx[2].end 86.376
transcript.whisperx[2].text 再來我們看貧富的差距113年度家庭收支調查最高20%與最低20%家庭的可支配所得差距高達6.14%昨天我看到主委總署公布受僱員工的薪資統計在通膨趨緩後基本工資調漲下昨天公布的今年1到8月受僱員工的實際薪資呈現
transcript.whisperx[3].start 89.139
transcript.whisperx[3].end 99.773
transcript.whisperx[3].text 連續17個月成長超過通膨所以要請問主席長這是否代表說我們薪資成長超過物價上漲的速度連續打敗通膨
transcript.whisperx[4].start 102.304
transcript.whisperx[4].end 129.232
transcript.whisperx[4].text 目前是这样目前评估是这样子这么乐观但是因为有一些譬如说比较经常性购买的一个食品东西它就是它占的幅度是比较大比较高譬如说食物的部分是占2.64然后肉类占了比较多水果也占了比较多所以这种对于民众来讲影响比较大所以他们就会觉得说没有感受到通膨但是
transcript.whisperx[5].start 129.992
transcript.whisperx[5].end 143.343
transcript.whisperx[5].text 感受到通盤下降但是問題就是說因為譬如說油料 原物料這些在整個國際價格是下降的所以這個部分也真的是影響非常的大是 那個署長我想這個
transcript.whisperx[6].start 145.465
transcript.whisperx[6].end 162.533
transcript.whisperx[6].text 基層的感受就跟妳講的因為民生物資還是在上漲它的漲幅還滿高的所以普遍感覺好像物價沒有跟薪資的差距並沒有有一個非常大的感受
transcript.whisperx[7].start 163.593
transcript.whisperx[7].end 178.503
transcript.whisperx[7].text 所以做這麼樂觀的一個評估我覺得還是要把相關的民生物資的因為它的漲幅那麼高可能是不是要做一個比較真實的一個呈現
transcript.whisperx[8].start 179.304
transcript.whisperx[8].end 196.486
transcript.whisperx[8].text 有 我们相关的民生物资的一个相关的涨幅我们都有公布然后也包括中低收入的高龄的这些的我们都有做一个公布相关的一个那个通膨物价的一个稳定其实主席我想说的就是说
transcript.whisperx[9].start 196.966
transcript.whisperx[9].end 208.03
transcript.whisperx[9].text 因為像你剛才講的那幾種情況之下我們看到今年8月勞工他的平均薪資就1到8月勞工平均薪資是48,098元年增2.92%
transcript.whisperx[10].start 212.651
transcript.whisperx[10].end 232.243
transcript.whisperx[10].text 那加上獎金與加班費等非經常性的薪資後總薪資平均達61646元年增4.38%我一直強調乍看之下很樂觀顯示我們薪資普遍成長但是我們現在看這個經常性的中位數只有38000多塊
transcript.whisperx[11].start 234.542
transcript.whisperx[11].end 257.916
transcript.whisperx[11].text 吉尼係數0.341雙雙叫去年為真所以主委長這是否代表我們大多數的居城的勞工根本或者居城的這些職員根本沒感受到所謂的一個心臟潮普遍沒有感到說我們薪水很高
transcript.whisperx[12].start 258.871
transcript.whisperx[12].end 276.228
transcript.whisperx[12].text 所以這個部分因為中位數是3萬8所以大部分區中集中在3萬8左右那有的高薪的部分譬如說有的是金融業的或者是一些相關資通業的就前面20%的族群它就比較高那這樣整個平均數它整個其實會拉高
transcript.whisperx[13].start 276.989
transcript.whisperx[13].end 301.501
transcript.whisperx[13].text 會拉高但是事實上每一年加薪這都是也事實上也是如此也是連續加薪加了很多年包括基本工資的一個調整都有做一個調整所以整個一個薪資也是都往上漲只是說可能他沒有辦法就是說因為如果是搭退所謂民生物價的一個部分他感受沒有那麼的一個好 沒關係 指揮長我再問你物價的問題
transcript.whisperx[14].start 302.702
transcript.whisperx[14].end 311.084
transcript.whisperx[14].text 根據族裔總署10月8號所公布的數據9月的消費者物價指數CPI年增1.25%比較8月今年8月的1.60%稍微降低也以連續5個月低於2%的通膨的警戒線創下4年半以來的新低
transcript.whisperx[15].start 326.727
transcript.whisperx[15].end 344.225
transcript.whisperx[15].text 但是我們根據經濟日報的報導指出有17項的重要民生物資漲幅高達2.47%創育一年半的新高該您提到的豬肉方面收到近期毛豬供應量的減少漲幅高達8.74%
transcript.whisperx[16].start 347.669
transcript.whisperx[16].end 357.016
transcript.whisperx[16].text 創下超過一年半以來的新高那麼雞蛋也因為替代效果的關係更創近兩年來的最大漲幅還有房租也漲2.14%外食費用也預計上漲超過2%我們電價在10月份預計還要上漲4.3%
transcript.whisperx[17].start 368.064
transcript.whisperx[17].end 383.739
transcript.whisperx[17].text 所以主席長在民生物資持續上漲的狀況下雖然有些物資的價格稍微下滑回穩但是我們長期來看對於今年的CPI影響大概會有什麼樣程度的影響
transcript.whisperx[18].start 385.376
transcript.whisperx[18].end 408.048
transcript.whisperx[18].text 我們其實是它是因為譬如說你剛剛講的水果 蔬菜這些等包括肉類那是因為在造成它豬隻的一個供應減少所以它肉類整個提升豬肉類的部分但是這整個現象大部分都是短暫它很快的就會改善所以外食會的部分除了這個之外因為我們總共有368項的一個調查的一個項目所以就這樣 簡單來說你還是認為說雖然有些這個
transcript.whisperx[19].start 414.611
transcript.whisperx[19].end 439.097
transcript.whisperx[19].text 这都比较短暂时间的有下滑回稳所以你认为整个我们的物价指数就是到今年年底它的整个影响大约会到什么程度还是在维持在百分之二以下吗是我们大概预估今年整个整体的大概是在1.76左右那明年大概是预估在1.64左右明年会更低
transcript.whisperx[20].start 439.937
transcript.whisperx[20].end 449.903
transcript.whisperx[20].text 會更低 是這樣子那有沒有考量這個考量到美國高關稅的因素如果這個談判下來如果不樂觀的話會不會對我們物價的一個上漲會有影響
transcript.whisperx[21].start 451.725
transcript.whisperx[21].end 473.478
transcript.whisperx[21].text 這個部分是影響到的可能是薪資的部分因為為什麼對物價沒有影響對物價比較因為等於說按照道理是比較會有一點點緊縮是這樣子所以是本身來看的話譬如說你如果說關稅談判不樂觀的話我們要面臨高關稅對於我們的物價上漲不會有影響嗎
transcript.whisperx[22].start 480.415
transcript.whisperx[22].end 505.113
transcript.whisperx[22].text 這個部分影響目前還不是很明顯所以你沒有做預估就是說一些的推估就是說停辦人力的減少這個部分所以你對明年會降到1.6%應該講的你很有信心因為我們重點其實現在比較高的是譬如說肉類 蔬菜類 水果這些外食但是明年增進現象會減低那我現在請那個審議長好 謝謝
transcript.whisperx[23].start 514.14
transcript.whisperx[23].end 538.472
transcript.whisperx[23].text 請審計長來 審計長委員好您剛才提到這個AI智慧審計我想請教你審計部今年把打擊詐欺 AI發展還有空屋治理等議題列為專章所以請問打詐這種跨部會的工作審計部是否有發現協調失靈 資源大量重複投入而結果效果不彰有這種現象嗎
transcript.whisperx[24].start 540.775
transcript.whisperx[24].end 544.198
transcript.whisperx[24].text 看起來是我們的審計意見裡面因為目前還沒有沒有看到因為現在的打詐現在越來越嚴重所以多元的方式可能都要試所以豬園的使用當然是看起來每個部會的配置
transcript.whisperx[25].start 561.834
transcript.whisperx[25].end 589.222
transcript.whisperx[25].text 有沒有重複投入資源重複投入是有這種情景但是因為現在詐騙我幫他看他的手法非常多對 現在到8月他們統計出來我們那個詐騙的金額六七百億被害人也越一直升高一直升高 案件也一直大所以這個是一個非常嚴重的事情所以我們政府投入大量的資源去防詐
transcript.whisperx[26].start 590.441
transcript.whisperx[26].end 618.743
transcript.whisperx[26].text 那我們就講說這樣會不會資源重複投入結果效果成效不彰啊這個開始有沒有去提出一個非常這個就是比較能夠資源能夠真正花在這個刀口上然後又可以達到他們一個方向的效果另外我想審計部剛剛一直提到說你在推行AI的審計資料中心還要導入深層AI
transcript.whisperx[27].start 619.924
transcript.whisperx[27].end 636.315
transcript.whisperx[27].text 以本席的立場以我的立場我是支持創新支持更有效率的方式但是我同時也擔憂導入AI工具作為輔助後是否會造成過度依賴演算法就AI的演算法的現象
transcript.whisperx[28].start 638.496
transcript.whisperx[28].end 664.406
transcript.whisperx[28].text 會不會造成那種現象就像我們小時候寫的安全第一所以一定是在像這種AI有道德風險我一定要放在那個工作機構如果說演算法判斷有誤而導致審計結論的謬誤我們審計部有沒有建立一個控管的機制有 我們現在請專家寫者再研究這一個非常謝謝我們有做這方面的研究謝謝
transcript.whisperx[29].start 666.647
transcript.whisperx[29].end 667.568
transcript.whisperx[29].text 謝謝
gazette.lineno 1056
gazette.blocks[0][0] 林委員思銘:(12時5分)謝謝召委,先請主計長。
gazette.blocks[1][0] 主席:請陳主計長。
gazette.blocks[2][0] 林委員思銘:主計長早。
gazette.blocks[3][0] 陳主計長淑姿:委員好。
gazette.blocks[4][0] 林委員思銘:主計長,今年1到8月受僱員工每人每月經常性薪資平均數是4萬7,709元,年增2.98%,實際的成長是1.12%,乍看之下數據很漂亮,但是我們再看看中位數只有3萬8,217元,實際成長只有0.94%。換句話說,薪資成長的平均數被少數高薪族群所拉高,而絕大多數的基層其實感受不到。再來我們看貧富的差距,113年家庭收支調查最高20%與最低20%家庭的可支配所得差距高達6.14倍。昨天我看到主計總處公布受僱員工的薪資統計,在通膨趨緩後,基本工資調漲下,昨天公布的今年1到8月受僱員工的實際薪資呈現連續17個月成長超過通膨,請問主計長,這是否代表我們薪資成長超過物價上漲的速度、連續打敗通膨?有這麼樂觀嗎?
gazette.blocks[5][0] 陳主計長淑姿:目前的評估是這樣。
gazette.blocks[6][0] 林委員思銘:這麼樂觀喔!
gazette.blocks[7][0] 陳主計長淑姿:是,但是因為有一些比較經常性購買的東西漲的幅度是比較高,例如食物的部分漲2.64%,肉類漲得比較多,水果也漲得比較多,這種對於民眾來講影響比較大,所以他們就會覺得沒有感受到通膨下降,但是問題就是說,像油料、原物料這些在整個國際價格是下降的,這個部分也真的影響非常大。
gazette.blocks[8][0] 林委員思銘:是,主計長,基層的感受就如同剛剛你講的,因為民生物資還是在上漲,漲幅還滿高的,所以普遍對於物價跟薪資的差距並沒有非常大的感受,我覺得還是要把相關的民生物資,因為它的漲幅那麼高,是不是要做一個比較真實的呈現,我們看起來很樂觀耶!
gazette.blocks[9][0] 陳主計長淑姿:有,民生物資的相關漲幅我們都有公布,也包括中低收入、高齡的,我們都有公布相關的通膨、物價穩定的部分。
gazette.blocks[10][0] 林委員思銘:剛剛你講的那幾種情況之下,我們看到今年1到8月勞工的平均薪資是4萬8,098元,年增2.92%,加上獎金與加班費等非經常性的薪資後,總薪資平均達6萬1,646元,年增4.38%。我一直強調,乍看之下很樂觀,顯示我們薪資普遍成長,但是我們現在看經常性的中位數只有三萬八千多元,吉尼係數0.341,雙雙較去年微增。主計長,這是否代表我們大多數的基層勞工、基層的職員根本沒感受到所謂的薪漲潮,普遍沒有感受到我們薪水很高。
gazette.blocks[11][0] 陳主計長淑姿:因為中位數是三萬八,所以大部分集中在三萬八左右,有的高薪的部分,例如有的是金融業或相關資通業就比較高……
gazette.blocks[12][0] 林委員思銘:就前面20%的族群。
gazette.blocks[13][0] 陳主計長淑姿:這樣整個平均數其實會拉高,但事實上每一年加薪也是如此,也是連續加薪加了很多年,包括基本工資的調整,所以整個薪資也都是往上漲,只是說如果搭配民生物價,他的感受沒有那麼深。
gazette.blocks[14][0] 林委員思銘:好,沒關係,主計長,我再問你物價的問題。沒根據主計總處10月8日公布的數據,9月的消費者物價指數(CPI)年增1.25%,比今年8月的1.60%稍微降低,也已連續5個月低於2%的通膨警戒線,創下四年半以來的新低,但是我們根據經濟日報的報導,指出有17項重要民生物資漲幅高達2.47%,創逾一年半的新高。剛你提到的豬肉方面受到近期毛豬供應量的減少,漲幅高達8.74%,創下超過一年半以來的新高。雞蛋也因為替代效果的關係,更創近兩年來的最大漲幅,房租漲幅2.14%,外食費用也預計上漲超過2%,電價在10月份預計還要上漲4.3%,所以在民生物資持續上漲的狀況下,雖然有些物資的價格稍微下滑回穩,但是我們長期來看,對於今年的CPI大概會有什麼樣程度的影響?
gazette.blocks[15][0] 陳主計長淑姿:例如你剛剛講的水果、蔬菜等,包括肉類,那是因為災害造成豬隻供應減少,所以豬肉類價格整個提升,但是這些現象大部分都是短暫的,很快就會改善。外食費的部分,除了這個之外,因為我們總共有368項調查項目……
gazette.blocks[16][0] 林委員思銘:簡單來說,你還是認為有些物資會下滑回穩……
gazette.blocks[17][0] 陳主計長淑姿:這些都是比較短暫時間的,會下滑回穩。
gazette.blocks[18][0] 林委員思銘:所以你認為我們整個物價指數到今年年底影響大約會到什麼程度?還是會維持在2%以下嗎?
gazette.blocks[19][0] 陳主計長淑姿:是,我們預估今年整體大概是1.76%左右,明年預估在1.64%左右。
gazette.blocks[20][0] 林委員思銘:明年會更低?
gazette.blocks[21][0] 陳主計長淑姿:對,會更低。
gazette.blocks[22][0] 林委員思銘:有沒有考量到美國高關稅的因素,談判下來如果不樂觀的話,會不會對我們物價上漲有影響?
gazette.blocks[23][0] 陳主計長淑姿:這個影響到的可能是薪資的部分,因為他停班。
gazette.blocks[24][0] 林委員思銘:對物價沒有影響?
gazette.blocks[25][0] 陳主計長淑姿:照道理來說,比較是會有一點點緊縮,本身來看的話?譬如電價調整……
gazette.blocks[26][0] 林委員思銘:關稅談判不樂觀的話,我們要面臨高關稅,對於我們的物價上漲不會有影響嗎?
gazette.blocks[27][0] 陳主計長淑姿:這個部分影響目前還不是很明顯……
gazette.blocks[28][0] 林委員思銘:是,所以你還沒有做預估?
gazette.blocks[29][0] 陳主計長淑姿:但是問題是停班,一些推估就是停班、人力減少這個部分有比較明顯。
gazette.blocks[30][0] 林委員思銘:所以你對明年會降到1.6%很有信心。
gazette.blocks[31][0] 陳主計長淑姿:是,因為現在比較高的是肉類、蔬菜類、水果、這些外食,但是明年這些現象會減低。
gazette.blocks[32][0] 林委員思銘:好,主計長,謝謝。我現在請審計長。
gazette.blocks[33][0] 主席:請審計長。
gazette.blocks[34][0] 陳審計長瑞敏:委員好。
gazette.blocks[35][0] 林委員思銘:審計長,你剛才提到AI審計,我想要請教你,審計部今年把打擊詐欺、AI發展和空污治理等議題列為專章,請問打詐這種跨部會的工作,審計部是否有發現協調失靈、資源大量重複投入而效果不彰?有這種現象嗎?
gazette.blocks[36][0] 陳審計長瑞敏:看起來,是我們的審計意見目前還沒有看到這個,因為現在詐騙越來越嚴重,所以多元的方式可能都要試,所以資源的使用看起來每個部會都會配置。
gazette.blocks[37][0] 林委員思銘:有沒有資源重複投入?
gazette.blocks[38][0] 陳審計長瑞敏:是有這種情形,但是因為現在詐騙……
gazette.blocks[39][0] 林委員思銘:它的手法非常多。
gazette.blocks[40][0] 陳審計長瑞敏:對,到8月他們統計的詐騙金額600、700億元。
gazette.blocks[41][0] 林委員思銘:被害人也一直升高。
gazette.blocks[42][0] 陳審計長瑞敏:一直升高,案件也一直大,所以這個是一個非常嚴重的事情,我們……
gazette.blocks[43][0] 林委員思銘:所以政府投入大量的資源去防詐,我們就講這樣會不會資源重複投入,結束成效不彰,審計部有沒有提出一個資源比較能夠真正花在刀口上,然後又可以達到防詐效果的……
gazette.blocks[44][0] 陳審計長瑞敏:我們知道,在整合上,我們會注意。
gazette.blocks[45][0] 林委員思銘:好。另外,審計部剛才一直提到你在推行AI的審計資料中心,導入生成AI,以本席的立場,我是支持創新、支持更有效率的方式,但是我同時也擔憂導入AI工具作為輔助後,是否會造成過度依賴AI演算法的現象?會不會造成這種現象?
gazette.blocks[46][0] 陳審計長瑞敏:因為我們告訴我們同仁做任何事就像我們小時候學的安全第一,所以像這種AI有道德風險,我們一定要放在工作底稿。
gazette.blocks[47][0] 林委員思銘:最後一個問題,如果演算法判斷有誤,而導致審計結論的謬誤,審計部有沒有建立一個控管的機制?
gazette.blocks[48][0] 陳審計長瑞敏:有,我們現在請專家學者在研究這個,非常謝謝,我們有做這方面的研究。
gazette.blocks[49][0] 林委員思銘:OK,謝謝。
gazette.blocks[50][0] 陳審計長瑞敏:謝謝。
gazette.blocks[51][0] 主席:謝謝林思銘召委。
gazette.blocks[51][1] 接下來請林楚茵委員,林楚茵委員,林楚茵委員不在場。
gazette.blocks[51][2] 下一位蔡易餘委員,蔡易餘委員,蔡易餘委員不在場。
gazette.blocks[51][3] 下一位徐欣瑩委員,徐欣瑩委員,徐欣瑩委員不在場。
gazette.blocks[51][4] 下一位王世堅委員。
gazette.agenda.page_end 182
gazette.agenda.meet_id 委員會-11-4-20-2
gazette.agenda.speakers[0] 李坤城
gazette.agenda.speakers[1] 林德福
gazette.agenda.speakers[2] 吳秉叡
gazette.agenda.speakers[3] 賴士葆
gazette.agenda.speakers[4] 郭國文
gazette.agenda.speakers[5] 賴惠員
gazette.agenda.speakers[6] 鍾佳濱
gazette.agenda.speakers[7] 李彥秀
gazette.agenda.speakers[8] 顏寬恒
gazette.agenda.speakers[9] 黃珊珊
gazette.agenda.speakers[10] 羅明才
gazette.agenda.speakers[11] 葉元之
gazette.agenda.speakers[12] 楊瓊瓔
gazette.agenda.speakers[13] 黃國昌
gazette.agenda.speakers[14] 張啓楷
gazette.agenda.speakers[15] 謝衣鳯
gazette.agenda.speakers[16] 林思銘
gazette.agenda.speakers[17] 王世堅
gazette.agenda.speakers[18] 陳玉珍
gazette.agenda.page_start 103
gazette.agenda.meetingDate[0] 2025-10-15
gazette.agenda.gazette_id 1148401
gazette.agenda.agenda_lcidc_ids[0] 1148401_00004
gazette.agenda.meet_name 立法院第11屆第4會期財政委員會第2次全體委員會議紀錄
gazette.agenda.content 邀請行政院主計總處陳主計長淑姿、審計部陳審計長瑞敏率所屬單位主管列席業務報告,並備質 詢
gazette.agenda.agenda_id 1148401_00003