iVOD / 164139

Field Value
IVOD_ID 164139
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/164139
日期 2025-10-15
會議資料.會議代碼 委員會-11-4-19-3
會議資料.會議代碼:str 第11屆第4會期經濟委員會第3次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 3
會議資料.種類 委員會
會議資料.委員會代碼[0] 19
會議資料.委員會代碼:str[0] 經濟委員會
會議資料.標題 第11屆第4會期經濟委員會第3次全體委員會議
影片種類 Clip
開始時間 2025-10-15T10:59:58+08:00
結束時間 2025-10-15T11:10:14+08:00
影片長度 00:10:16
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/d759c3dbefb57db6c2f829b5a431ff1f1d8817d393176c4392e8362d61d61ef2d6b39e882d62cf0b5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 邱志偉
委員發言時間 10:59:58 - 11:10:14
會議時間 2025-10-15T09:00:00+08:00
會議名稱 立法院第11屆第4會期經濟委員會第3次全體委員會議(事由:邀請農業部部長列席報告業務概況,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 4.67159375
transcript.pyannote[0].end 8.26596875
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 8.67096875
transcript.pyannote[1].end 8.92409375
transcript.pyannote[2].speaker SPEAKER_02
transcript.pyannote[2].start 20.28096875
transcript.pyannote[2].end 22.69409375
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 22.69409375
transcript.pyannote[3].end 23.97659375
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 29.44409375
transcript.pyannote[4].end 33.20721875
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 29.71409375
transcript.pyannote[5].end 30.20346875
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 33.42659375
transcript.pyannote[6].end 36.44721875
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 36.02534375
transcript.pyannote[7].end 36.32909375
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 37.08846875
transcript.pyannote[8].end 39.38346875
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 40.12596875
transcript.pyannote[9].end 43.31534375
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 43.53471875
transcript.pyannote[10].end 51.34784375
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 44.81721875
transcript.pyannote[11].end 45.74534375
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 51.93846875
transcript.pyannote[12].end 60.25784375
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 53.23784375
transcript.pyannote[13].end 53.96346875
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 59.48159375
transcript.pyannote[14].end 61.05096875
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 61.45596875
transcript.pyannote[15].end 66.28221875
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 66.50159375
transcript.pyannote[16].end 70.16346875
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 69.40409375
transcript.pyannote[17].end 72.74534375
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 70.99034375
transcript.pyannote[18].end 72.77909375
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 72.77909375
transcript.pyannote[19].end 72.86346875
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 72.86346875
transcript.pyannote[20].end 79.95096875
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 72.91409375
transcript.pyannote[21].end 73.20096875
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 80.37284375
transcript.pyannote[22].end 84.70971875
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 83.51159375
transcript.pyannote[23].end 85.55346875
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 85.55346875
transcript.pyannote[24].end 92.64096875
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 91.96596875
transcript.pyannote[25].end 99.03659375
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 97.85534375
transcript.pyannote[26].end 98.58096875
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 99.03659375
transcript.pyannote[27].end 103.49159375
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 100.63971875
transcript.pyannote[28].end 101.04471875
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 103.72784375
transcript.pyannote[29].end 114.57846875
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 114.00471875
transcript.pyannote[30].end 120.36659375
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 121.17659375
transcript.pyannote[31].end 135.40221875
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 133.34346875
transcript.pyannote[32].end 137.03909375
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 137.03909375
transcript.pyannote[33].end 140.43096875
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 141.51096875
transcript.pyannote[34].end 148.02471875
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 148.02471875
transcript.pyannote[35].end 149.52659375
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 149.69534375
transcript.pyannote[36].end 162.55409375
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 161.49096875
transcript.pyannote[37].end 162.57096875
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 162.57096875
transcript.pyannote[38].end 163.24596875
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 163.24596875
transcript.pyannote[39].end 163.48221875
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 163.48221875
transcript.pyannote[40].end 163.51596875
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 163.51596875
transcript.pyannote[41].end 171.21096875
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 164.34284375
transcript.pyannote[42].end 164.69721875
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 167.12721875
transcript.pyannote[43].end 170.41784375
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 170.46846875
transcript.pyannote[44].end 171.17721875
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 171.21096875
transcript.pyannote[45].end 172.17284375
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 172.17284375
transcript.pyannote[46].end 172.20659375
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 172.20659375
transcript.pyannote[47].end 172.27409375
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 172.27409375
transcript.pyannote[48].end 172.51034375
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 172.51034375
transcript.pyannote[49].end 172.52721875
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 172.52721875
transcript.pyannote[50].end 173.70846875
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 173.70846875
transcript.pyannote[51].end 194.83596875
transcript.pyannote[52].speaker SPEAKER_02
transcript.pyannote[52].start 173.86034375
transcript.pyannote[52].end 175.56471875
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 195.25784375
transcript.pyannote[53].end 207.66096875
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 208.28534375
transcript.pyannote[54].end 217.53284375
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 217.53284375
transcript.pyannote[55].end 223.32096875
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 217.98846875
transcript.pyannote[56].end 219.13596875
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 224.53596875
transcript.pyannote[57].end 227.37096875
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 227.37096875
transcript.pyannote[58].end 227.38784375
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 227.52284375
transcript.pyannote[59].end 235.40346875
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 232.36596875
transcript.pyannote[60].end 237.44534375
transcript.pyannote[61].speaker SPEAKER_02
transcript.pyannote[61].start 237.54659375
transcript.pyannote[61].end 242.22096875
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 241.10721875
transcript.pyannote[62].end 242.42346875
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 242.82846875
transcript.pyannote[63].end 244.85346875
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 244.95471875
transcript.pyannote[64].end 254.80971875
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 255.06284375
transcript.pyannote[65].end 262.13346875
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 259.48409375
transcript.pyannote[66].end 260.00721875
transcript.pyannote[67].speaker SPEAKER_02
transcript.pyannote[67].start 262.13346875
transcript.pyannote[67].end 262.60596875
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 263.02784375
transcript.pyannote[68].end 264.78284375
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 264.15846875
transcript.pyannote[69].end 270.19971875
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 270.19971875
transcript.pyannote[70].end 285.57284375
transcript.pyannote[71].speaker SPEAKER_02
transcript.pyannote[71].start 278.14784375
transcript.pyannote[71].end 278.97471875
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 278.97471875
transcript.pyannote[72].end 279.00846875
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 285.91034375
transcript.pyannote[73].end 289.25159375
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 288.71159375
transcript.pyannote[74].end 289.35284375
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 289.35284375
transcript.pyannote[75].end 301.28346875
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 300.69284375
transcript.pyannote[76].end 301.92471875
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 302.88659375
transcript.pyannote[77].end 302.92034375
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 302.92034375
transcript.pyannote[78].end 303.03846875
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 303.03846875
transcript.pyannote[79].end 307.84784375
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 304.30409375
transcript.pyannote[80].end 305.19846875
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 308.23596875
transcript.pyannote[81].end 309.65346875
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 308.67471875
transcript.pyannote[82].end 309.31596875
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 310.29471875
transcript.pyannote[83].end 313.65284375
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 312.26909375
transcript.pyannote[84].end 312.94409375
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 313.65284375
transcript.pyannote[85].end 314.24346875
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 314.24346875
transcript.pyannote[86].end 314.27721875
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 314.64846875
transcript.pyannote[87].end 316.50471875
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 316.50471875
transcript.pyannote[88].end 318.24284375
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 317.31471875
transcript.pyannote[89].end 320.97659375
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 320.97659375
transcript.pyannote[90].end 328.35096875
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 322.32659375
transcript.pyannote[91].end 322.66409375
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 323.49096875
transcript.pyannote[92].end 323.98034375
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 328.35096875
transcript.pyannote[93].end 334.22346875
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 334.59471875
transcript.pyannote[94].end 336.80534375
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 336.92346875
transcript.pyannote[95].end 348.60096875
transcript.pyannote[96].speaker SPEAKER_02
transcript.pyannote[96].start 338.12159375
transcript.pyannote[96].end 338.61096875
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 348.87096875
transcript.pyannote[97].end 359.62034375
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 350.13659375
transcript.pyannote[98].end 352.04346875
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 352.11096875
transcript.pyannote[99].end 353.47784375
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 359.62034375
transcript.pyannote[100].end 361.32471875
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 361.81409375
transcript.pyannote[101].end 363.83909375
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 364.31159375
transcript.pyannote[102].end 366.65721875
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 367.01159375
transcript.pyannote[103].end 371.53409375
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 372.25971875
transcript.pyannote[104].end 373.15409375
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 374.26784375
transcript.pyannote[105].end 375.24659375
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 375.83721875
transcript.pyannote[106].end 377.72721875
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 377.72721875
transcript.pyannote[107].end 377.79471875
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 378.09846875
transcript.pyannote[108].end 388.89846875
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 382.11471875
transcript.pyannote[109].end 382.53659375
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 385.08471875
transcript.pyannote[110].end 385.45596875
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 389.16846875
transcript.pyannote[111].end 391.41284375
transcript.pyannote[112].speaker SPEAKER_02
transcript.pyannote[112].start 392.56034375
transcript.pyannote[112].end 394.02846875
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 394.02846875
transcript.pyannote[113].end 395.39534375
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 394.48409375
transcript.pyannote[114].end 394.82159375
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 395.39534375
transcript.pyannote[115].end 396.35721875
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 397.28534375
transcript.pyannote[116].end 400.69409375
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 400.40721875
transcript.pyannote[117].end 401.45346875
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 402.51659375
transcript.pyannote[118].end 406.36409375
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 403.78221875
transcript.pyannote[119].end 409.31721875
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 408.94596875
transcript.pyannote[120].end 418.46346875
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 411.22409375
transcript.pyannote[121].end 411.49409375
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 418.58159375
transcript.pyannote[122].end 420.82596875
transcript.pyannote[123].speaker SPEAKER_01
transcript.pyannote[123].start 420.89346875
transcript.pyannote[123].end 425.92221875
transcript.pyannote[124].speaker SPEAKER_02
transcript.pyannote[124].start 424.90971875
transcript.pyannote[124].end 425.70284375
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 426.79971875
transcript.pyannote[125].end 427.52534375
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 428.13284375
transcript.pyannote[126].end 431.22096875
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 431.35596875
transcript.pyannote[127].end 432.40221875
transcript.pyannote[128].speaker SPEAKER_02
transcript.pyannote[128].start 431.40659375
transcript.pyannote[128].end 432.26721875
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 433.71846875
transcript.pyannote[129].end 436.97534375
transcript.pyannote[130].speaker SPEAKER_02
transcript.pyannote[130].start 436.97534375
transcript.pyannote[130].end 437.66721875
transcript.pyannote[131].speaker SPEAKER_01
transcript.pyannote[131].start 437.66721875
transcript.pyannote[131].end 441.04221875
transcript.pyannote[132].speaker SPEAKER_02
transcript.pyannote[132].start 438.54471875
transcript.pyannote[132].end 439.10159375
transcript.pyannote[133].speaker SPEAKER_02
transcript.pyannote[133].start 441.04221875
transcript.pyannote[133].end 441.07596875
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 441.07596875
transcript.pyannote[134].end 441.29534375
transcript.pyannote[135].speaker SPEAKER_02
transcript.pyannote[135].start 441.29534375
transcript.pyannote[135].end 441.31221875
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 441.31221875
transcript.pyannote[136].end 441.32909375
transcript.pyannote[137].speaker SPEAKER_02
transcript.pyannote[137].start 441.32909375
transcript.pyannote[137].end 445.14284375
transcript.pyannote[138].speaker SPEAKER_01
transcript.pyannote[138].start 441.39659375
transcript.pyannote[138].end 441.85221875
transcript.pyannote[139].speaker SPEAKER_02
transcript.pyannote[139].start 445.53096875
transcript.pyannote[139].end 446.61096875
transcript.pyannote[140].speaker SPEAKER_02
transcript.pyannote[140].start 446.89784375
transcript.pyannote[140].end 449.27721875
transcript.pyannote[141].speaker SPEAKER_02
transcript.pyannote[141].start 449.54721875
transcript.pyannote[141].end 451.03221875
transcript.pyannote[142].speaker SPEAKER_01
transcript.pyannote[142].start 451.03221875
transcript.pyannote[142].end 451.42034375
transcript.pyannote[143].speaker SPEAKER_02
transcript.pyannote[143].start 451.62284375
transcript.pyannote[143].end 468.61596875
transcript.pyannote[144].speaker SPEAKER_02
transcript.pyannote[144].start 468.98721875
transcript.pyannote[144].end 480.19221875
transcript.pyannote[145].speaker SPEAKER_00
transcript.pyannote[145].start 480.47909375
transcript.pyannote[145].end 487.26284375
transcript.pyannote[146].speaker SPEAKER_02
transcript.pyannote[146].start 486.30096875
transcript.pyannote[146].end 487.24596875
transcript.pyannote[147].speaker SPEAKER_02
transcript.pyannote[147].start 487.26284375
transcript.pyannote[147].end 488.35971875
transcript.pyannote[148].speaker SPEAKER_00
transcript.pyannote[148].start 487.95471875
transcript.pyannote[148].end 518.05971875
transcript.pyannote[149].speaker SPEAKER_01
transcript.pyannote[149].start 509.14971875
transcript.pyannote[149].end 509.92596875
transcript.pyannote[150].speaker SPEAKER_02
transcript.pyannote[150].start 516.59159375
transcript.pyannote[150].end 533.80409375
transcript.pyannote[151].speaker SPEAKER_00
transcript.pyannote[151].start 522.44721875
transcript.pyannote[151].end 522.97034375
transcript.pyannote[152].speaker SPEAKER_00
transcript.pyannote[152].start 530.53034375
transcript.pyannote[152].end 531.82971875
transcript.pyannote[153].speaker SPEAKER_02
transcript.pyannote[153].start 534.02346875
transcript.pyannote[153].end 536.80784375
transcript.pyannote[154].speaker SPEAKER_02
transcript.pyannote[154].start 537.09471875
transcript.pyannote[154].end 537.39846875
transcript.pyannote[155].speaker SPEAKER_02
transcript.pyannote[155].start 538.10721875
transcript.pyannote[155].end 539.06909375
transcript.pyannote[156].speaker SPEAKER_02
transcript.pyannote[156].start 539.72721875
transcript.pyannote[156].end 541.19534375
transcript.pyannote[157].speaker SPEAKER_02
transcript.pyannote[157].start 541.41471875
transcript.pyannote[157].end 541.78596875
transcript.pyannote[158].speaker SPEAKER_02
transcript.pyannote[158].start 542.27534375
transcript.pyannote[158].end 542.68034375
transcript.pyannote[159].speaker SPEAKER_02
transcript.pyannote[159].start 543.23721875
transcript.pyannote[159].end 544.62096875
transcript.pyannote[160].speaker SPEAKER_02
transcript.pyannote[160].start 544.94159375
transcript.pyannote[160].end 546.67971875
transcript.pyannote[161].speaker SPEAKER_02
transcript.pyannote[161].start 547.11846875
transcript.pyannote[161].end 553.46346875
transcript.pyannote[162].speaker SPEAKER_01
transcript.pyannote[162].start 553.64909375
transcript.pyannote[162].end 562.84596875
transcript.pyannote[163].speaker SPEAKER_01
transcript.pyannote[163].start 563.01471875
transcript.pyannote[163].end 565.47846875
transcript.pyannote[164].speaker SPEAKER_01
transcript.pyannote[164].start 565.52909375
transcript.pyannote[164].end 577.91534375
transcript.pyannote[165].speaker SPEAKER_02
transcript.pyannote[165].start 577.84784375
transcript.pyannote[165].end 588.49596875
transcript.pyannote[166].speaker SPEAKER_01
transcript.pyannote[166].start 584.61471875
transcript.pyannote[166].end 584.96909375
transcript.pyannote[167].speaker SPEAKER_02
transcript.pyannote[167].start 588.74909375
transcript.pyannote[167].end 589.64346875
transcript.pyannote[168].speaker SPEAKER_01
transcript.pyannote[168].start 589.10346875
transcript.pyannote[168].end 590.08221875
transcript.pyannote[169].speaker SPEAKER_02
transcript.pyannote[169].start 590.08221875
transcript.pyannote[169].end 611.24346875
transcript.pyannote[170].speaker SPEAKER_00
transcript.pyannote[170].start 600.42659375
transcript.pyannote[170].end 601.11846875
transcript.pyannote[171].speaker SPEAKER_01
transcript.pyannote[171].start 610.85534375
transcript.pyannote[171].end 610.97346875
transcript.pyannote[172].speaker SPEAKER_02
transcript.pyannote[172].start 611.69909375
transcript.pyannote[172].end 615.36096875
transcript.pyannote[173].speaker SPEAKER_01
transcript.pyannote[173].start 612.86346875
transcript.pyannote[173].end 614.73659375
transcript.pyannote[174].speaker SPEAKER_00
transcript.pyannote[174].start 615.64784375
transcript.pyannote[174].end 617.97659375
transcript.whisperx[0].start 4.707
transcript.whisperx[0].end 21.805
transcript.whisperx[0].text 沒有 剛剛已經先休息了因為剛剛那個了 對好 謝謝是不是請農業部陳部長我們請農業部陳部長
transcript.whisperx[1].start 31.349
transcript.whisperx[1].end 51.135
transcript.whisperx[1].text 幾個問題想請教您對美國的關稅談判現在還在進行當中有沒有最新的談判的狀況關於農業產品的部分我想整個的談判還在過關稅也好或者是對他們的採購的品項跟金額有沒有最新的進度
transcript.whisperx[2].start 51.994
transcript.whisperx[2].end 79.515
transcript.whisperx[2].text 不過我想現在因為談判到最後的一個階段然後技術性的談判大概大致上完成那我剛才說的就是技術性的談判是指哪些就是有一些就是個別就是在在所謂的技術階層的談判有沒有那但是最後其實是很細節的部分包括說關稅的稅率是多少因為所謂的關稅裡面他的項目太多哪一些關稅哪一些沒有哪一些品項那因為
transcript.whisperx[3].start 80.456
transcript.whisperx[3].end 100.606
transcript.whisperx[3].text 美國跟台灣各有希望堅持或期待的資料那你是說技術面談得差不多的就是大致上啦 大致上但是還會 還是持續在做一些溝通啦那我剛才說的所以說技術面關於個別品項的就是關稅大概這個台美雙方都已經有一些的這個公式有一些初步的想法彼此之間都有些初步的想法
transcript.whisperx[4].start 102.347
transcript.whisperx[4].end 117.284
transcript.whisperx[4].text 這個關於農業產品的部分呢農業產品本身我一開始就強調我一定是在確保糧食安全的部分所以針對糧食安全有關的這些品項我們一定會有希望說能夠爭取到不會對這個懺悔的過程中或者懺悔的最後結論不會對農業產業造成任何的衝擊跟影響
transcript.whisperx[5].start 121.277
transcript.whisperx[5].end 139.405
transcript.whisperx[5].text 我應該這麼講其實貿易的自由化過程中零關稅不一定是很可怕如果零關稅是對台灣國內產業是有幫助的我剛才說的像這些我們需要的可能未來關稅調整變零關稅的品項大概有多少這個現在還沒有辦法去做統計跟確認
transcript.whisperx[6].start 141.561
transcript.whisperx[6].end 164.736
transcript.whisperx[6].text 好 所以這部分你認為說最後跟美國談判的結論不會損及台灣的農業產業我想因為台灣的農業產業有不同的面向但是我們會針對糧食安全而且我們會確保農民的權益那有可能會有一些部分的衝擊的時候我們也會有因應的過程那你說可能就是說在你談判過程中有一些的關稅會對現有的這個農業產業
transcript.whisperx[7].start 168.838
transcript.whisperx[7].end 189.833
transcript.whisperx[7].text 有一些影響的時候我們就會有一些支持方案對 你的支持方案你現在就要開始對 現在我們其實已經在擬定了而且我們有相關的這些分類大概分為三類一類就是對我們的產業是完全沒有影響的而且對臺灣產業是好的這是一類另外一類就是如果他開放更多的進口的時候
transcript.whisperx[8].start 190.313
transcript.whisperx[8].end 206.974
transcript.whisperx[8].text 那它進口也不會影響國內是什麼進口國彼此之間的替代那這個替代總量在那邊了也不會有什麼影響但是可能還是有一些少部分是可能會有替代的影響的時候但是這個時候我們就有一些支持性的措施去支持我們的產業發展
transcript.whisperx[9].start 208.365
transcript.whisperx[9].end 233.899
transcript.whisperx[9].text 所以這最後的 你說是三大類你什麼時候可以做最後的明確或者對讓所有的這個國人都能夠了解對 這個如果說一旦確認了以後我們就會立即的提出我們相對應的措施那這個採購的這個方面呢那採購的部分其實農產品的採購跟關稅不是直接有關聯性 但有關聯性怎麼去平衡這個對美國
transcript.whisperx[10].start 237.719
transcript.whisperx[10].end 262.318
transcript.whisperx[10].text 就是說縮小對美國的這個貿易順差嘛就是他們所關心的第一個就是舊農業的部分我們的對美國的採購絕對不是正午出資我要先說明這一點是業者年度的需要我們希望說他透過聯合的採購能夠降低更多的這個價格那這樣的話進來以後對國內產業沒有影響這些清單以大是美方提出的嘛對不對
transcript.whisperx[11].start 263.118
transcript.whisperx[11].end 287.354
transcript.whisperx[11].text 清單都是美方提出的你們希望說有民間去聯合採購不是用政府的預算去對美採購而且這個採購是國內需要的而且是國內對國內失能成本降低是有幫助的現在出估規模有多少我們說的就是現在我們對美採購的部分就是聯合採購的部分就是業者自己的就是4年100億美金那這個就是黃豆玉米小麥
transcript.whisperx[12].start 288.935
transcript.whisperx[12].end 301.779
transcript.whisperx[12].text 黃小玉對黃豆的話大概只有佔0.我們自己率只有0.2非常低都是靠國外進來做飼料用的玉米也是一樣所以相對的這些東西不會影響到國內的產業除了這三項之外呢
transcript.whisperx[13].start 302.912
transcript.whisperx[13].end 325.125
transcript.whisperx[13].text 美方有沒有其他要求我們採購現在目前就是黃豆玉米小麥跟牛肉這四種沒有其他的對 那牛肉我們的自給率只有4.6餘產品呢餘產品沒有在採購範圍之內就是黃小玉加上牛肉我們這四年的採購就是這四種所以四種加起來四年你說幾年四年大概100億美金100億美金大概是3000億左右
transcript.whisperx[14].start 328.427
transcript.whisperx[14].end 333.041
transcript.whisperx[14].text 然後我如果說看過去五年每一年都有浮動也大概這個額度
transcript.whisperx[15].start 334.622
transcript.whisperx[15].end 363.438
transcript.whisperx[15].text 那民间有那么大的需求吗绝对有我们的估计大概就是因为这些估计也是业者自己估计的不是我们政府强压他要买多少我要特别说明这一点这完全是业者自己提出来的我们做一个平台然后希望说透过这种台美关系的关系的友好关系的一个建立可以理解另外我们这个日本的五线市
transcript.whisperx[16].start 364.378
transcript.whisperx[16].end 373.007
transcript.whisperx[16].text 的這個農運產品現在輸到台灣來進口這個出口到台灣需不需要還要再檢驗應該是不用吧
transcript.whisperx[17].start 374.329
transcript.whisperx[17].end 401.121
transcript.whisperx[17].text 輔導五縣市輔導五縣市這應該衛福部衛福部主管的但是這個當然農業產品主要是農業產品農業產品你跟衛福部協調這當然是日方很關心的那到底我們還有沒有針對這五縣市有特別的管制事項這個誰比較了解農業部都已經回到例行性的這個查驗無差別待遇嗎
transcript.whisperx[18].start 402.594
transcript.whisperx[18].end 425.343
transcript.whisperx[18].text 是跟其他的日本的縣市可能我會有在提供給會有在提供給委員因為我沒辦法確定因為這個日方也一直跟我表達是有點歧視性的對這五縣市的食品如果有加強檢驗或者是額外檢驗的話這他們一些國會議員他們也很關心對我想對農業的部分我們是沒有啦但是衛福部的部分我想農業都沒有嗎
transcript.whisperx[19].start 426.843
transcript.whisperx[19].end 448.84
transcript.whisperx[19].text 我們是沒有我們以農業必須負責的我們是沒有沒有差別大一點沒有也沒有農業沒有但是其他的品項可能有其他品項就衛福部我們再去了解一下食品是衛福部剛好署長也上來這個興達港這個情人碼頭大部分土地
transcript.whisperx[20].start 449.66
transcript.whisperx[20].end 476.248
transcript.whisperx[20].text 是屬於月屬對不對那當然你在那邊沒有一個未來的規劃很可惜啊我每天經過那邊就有點心酸了過去在高雄縣時代是一個情人碼頭規劃得不錯而且國慶煙火還有一年在情人碼頭施放聚集十萬人去觀看所以這個未來怎麼樣去活化再造這個所謂情人碼頭因為主要地主還是月屬
transcript.whisperx[21].start 477.468
transcript.whisperx[21].end 492.255
transcript.whisperx[21].text 小部分是國產署這部分漁業署有沒有什麼想法跟委員報告其實它的土地全署的部分還有一部分是高雄市政府我了解啊但是大部分是屬於漁業署那個地方我想委員非常清楚我們其實活化過了三四輪
transcript.whisperx[22].start 493.174
transcript.whisperx[22].end 511.941
transcript.whisperx[22].text 那他基本上還是缺少一些群聚的效果所以整個活化的效果一直都很不好那當然這一個部分我們是希望因為現在興達興達港的部分現在是已經歸為二類漁港是高雄市政府的全屬他如何結合他的觀光跟
transcript.whisperx[23].start 512.761
transcript.whisperx[23].end 536.022
transcript.whisperx[23].text 都計單位就那周邊去做整體發展我想未來是比較有空間我要拜託署長是不是召集高雄市政府這個海洋局來或者國產署大家召開會議怎麼樣去活化讓這個新的碼頭風華再現是不是你可以召集一下會議委員這一個我們會來處理另外再30秒就是洋價
transcript.whisperx[24].start 538.154
transcript.whisperx[24].end 567.59
transcript.whisperx[24].text 羊的價格一直跌破新低所以這個乳羊產業這10年來很慘我們對農業部對養羊的這個產業有沒有一個所謂短中長期的相關的扶植計畫我跟委員報告就是我們當初在處理牛的時候我們也注意到羊價在這一年來它的價格的降低所以我也要求了我們畜牧師要提出一個短中長的那短期的部分有一些必須要去處理的時候
transcript.whisperx[25].start 568.01
transcript.whisperx[25].end 587.265
transcript.whisperx[25].text 因為他量多的時候我們會協助他去做加工或者是做冷凍處理但是這只是短期而已應該有更長期的這些飼養的這些政策要出來這個部分是不是請畜牧師拜託是不是跟我們高雄的或者台南的養羊業者做一些座談讓他們了解政府的扶植措施短中長期
transcript.whisperx[26].start 589.186
transcript.whisperx[26].end 617.468
transcript.whisperx[26].text 这个我们立即来做你们私人报告有提到任性渔港我想署长也很清楚任性渔港你们罗列几个建设成果我这边有待完成事项我会后再交给部长再请部长跟署长能够大力支持全部在我选区而且都期待中央的经费的挹注如果没挹注这渔港就会没有任性了解待会我再提供给你们我们尽量来努力谢谢谢谢邱志伟委员之许