iVOD / 164119

Field Value
IVOD_ID 164119
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/164119
日期 2025-10-15
會議資料.會議代碼 委員會-11-4-20-2
會議資料.會議代碼:str 第11屆第4會期財政委員會第2次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 2
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第4會期財政委員會第2次全體委員會議
影片種類 Clip
開始時間 2025-10-15T10:16:51+08:00
結束時間 2025-10-15T10:28:36+08:00
影片長度 00:11:45
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/d759c3dbefb57db6166d845825252e8797bc26f8a2da1058fda6f2d8e3477dae8561d87bf4e94c8c5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 鍾佳濱
委員發言時間 10:16:51 - 10:28:36
會議時間 2025-10-15T09:00:00+08:00
會議名稱 立法院第11屆第4會期財政委員會第2次全體委員會議(事由:邀請行政院主計總處陳主計長淑姿、審計部陳審計長瑞敏率所屬單位主管列席業務報告,並備質詢。 【10月13日、15日及16日三天一次會】)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 12.77159375
transcript.pyannote[0].end 16.43346875
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 16.99034375
transcript.pyannote[1].end 18.28971875
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 18.57659375
transcript.pyannote[2].end 21.54659375
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 22.18784375
transcript.pyannote[3].end 26.17034375
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 26.79471875
transcript.pyannote[4].end 33.71346875
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 33.89909375
transcript.pyannote[5].end 34.50659375
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 35.04659375
transcript.pyannote[6].end 35.68784375
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 36.32909375
transcript.pyannote[7].end 37.07159375
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 40.26096875
transcript.pyannote[8].end 42.28596875
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 43.85534375
transcript.pyannote[9].end 47.41596875
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 48.17534375
transcript.pyannote[10].end 49.89659375
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 50.35221875
transcript.pyannote[11].end 51.66846875
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 54.50346875
transcript.pyannote[12].end 56.27534375
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 57.72659375
transcript.pyannote[13].end 59.78534375
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 60.19034375
transcript.pyannote[14].end 64.99971875
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 65.03346875
transcript.pyannote[15].end 65.35409375
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 65.38784375
transcript.pyannote[16].end 68.00346875
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 68.32409375
transcript.pyannote[17].end 69.99471875
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 71.10846875
transcript.pyannote[18].end 71.15909375
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 71.15909375
transcript.pyannote[19].end 71.29409375
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 71.29409375
transcript.pyannote[20].end 72.55971875
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 71.31096875
transcript.pyannote[21].end 71.32784375
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 73.72409375
transcript.pyannote[22].end 74.06159375
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 74.41596875
transcript.pyannote[23].end 76.18784375
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 76.66034375
transcript.pyannote[24].end 77.77409375
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 78.49971875
transcript.pyannote[25].end 82.16159375
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 82.54971875
transcript.pyannote[26].end 86.31284375
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 87.02159375
transcript.pyannote[27].end 91.05471875
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 91.54409375
transcript.pyannote[28].end 92.55659375
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 92.94471875
transcript.pyannote[29].end 97.34909375
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 97.73721875
transcript.pyannote[30].end 102.12471875
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 102.49596875
transcript.pyannote[31].end 106.51221875
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 106.90034375
transcript.pyannote[32].end 108.84096875
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 110.10659375
transcript.pyannote[33].end 110.49471875
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 110.62971875
transcript.pyannote[34].end 114.47721875
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 114.57846875
transcript.pyannote[35].end 117.22784375
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 118.42596875
transcript.pyannote[36].end 120.67034375
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 120.85596875
transcript.pyannote[37].end 122.03721875
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 122.29034375
transcript.pyannote[38].end 125.78346875
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 126.22221875
transcript.pyannote[39].end 128.39909375
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 129.76596875
transcript.pyannote[40].end 135.33471875
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 135.77346875
transcript.pyannote[41].end 137.59596875
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 138.01784375
transcript.pyannote[42].end 140.75159375
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 141.17346875
transcript.pyannote[43].end 142.81034375
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 142.91159375
transcript.pyannote[44].end 143.33346875
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 143.51909375
transcript.pyannote[45].end 144.85221875
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 145.12221875
transcript.pyannote[46].end 147.80534375
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 148.96971875
transcript.pyannote[47].end 152.31096875
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 152.51346875
transcript.pyannote[48].end 153.22221875
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 153.79596875
transcript.pyannote[49].end 158.63909375
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 158.14971875
transcript.pyannote[50].end 158.16659375
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 158.77409375
transcript.pyannote[51].end 163.93784375
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 163.95471875
transcript.pyannote[52].end 167.26221875
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 167.63346875
transcript.pyannote[53].end 171.02534375
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 171.07596875
transcript.pyannote[54].end 173.64096875
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 171.10971875
transcript.pyannote[55].end 171.73409375
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 173.89409375
transcript.pyannote[56].end 183.17534375
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 183.59721875
transcript.pyannote[57].end 185.33534375
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 185.41971875
transcript.pyannote[58].end 190.09409375
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 185.85846875
transcript.pyannote[59].end 185.90909375
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 187.12409375
transcript.pyannote[60].end 187.27596875
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 190.65096875
transcript.pyannote[61].end 192.74346875
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 193.89096875
transcript.pyannote[62].end 197.95784375
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 198.19409375
transcript.pyannote[63].end 204.55596875
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 204.79221875
transcript.pyannote[64].end 206.17596875
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 206.51346875
transcript.pyannote[65].end 213.92159375
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 214.41096875
transcript.pyannote[66].end 216.65534375
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 217.53284375
transcript.pyannote[67].end 218.00534375
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 218.89971875
transcript.pyannote[68].end 219.11909375
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 219.11909375
transcript.pyannote[69].end 220.72221875
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 220.94159375
transcript.pyannote[70].end 222.88221875
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 222.88221875
transcript.pyannote[71].end 223.50659375
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 223.69221875
transcript.pyannote[72].end 229.78409375
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 230.02034375
transcript.pyannote[73].end 231.04971875
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 231.62346875
transcript.pyannote[74].end 232.16346875
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 232.60221875
transcript.pyannote[75].end 233.64846875
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 233.85096875
transcript.pyannote[76].end 234.34034375
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 234.93096875
transcript.pyannote[77].end 239.50409375
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 240.21284375
transcript.pyannote[78].end 244.68471875
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 245.51159375
transcript.pyannote[79].end 245.57909375
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 246.25409375
transcript.pyannote[80].end 248.43096875
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 248.71784375
transcript.pyannote[81].end 250.30409375
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 250.54034375
transcript.pyannote[82].end 257.69534375
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 258.21846875
transcript.pyannote[83].end 259.14659375
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 259.41659375
transcript.pyannote[84].end 260.41221875
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 262.08284375
transcript.pyannote[85].end 264.07409375
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 264.76596875
transcript.pyannote[86].end 266.41971875
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 267.46596875
transcript.pyannote[87].end 269.49096875
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 270.45284375
transcript.pyannote[88].end 272.47784375
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 273.59159375
transcript.pyannote[89].end 274.28346875
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 274.92471875
transcript.pyannote[90].end 279.56534375
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 279.88596875
transcript.pyannote[91].end 281.79284375
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 282.63659375
transcript.pyannote[92].end 285.13409375
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 285.79221875
transcript.pyannote[93].end 286.83846875
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 286.45034375
transcript.pyannote[94].end 287.54721875
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 287.88471875
transcript.pyannote[95].end 290.41596875
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 291.09096875
transcript.pyannote[96].end 291.44534375
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 291.88409375
transcript.pyannote[97].end 292.28909375
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 292.60971875
transcript.pyannote[98].end 294.70221875
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 295.14096875
transcript.pyannote[99].end 300.77721875
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 301.01346875
transcript.pyannote[100].end 313.48409375
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 313.83846875
transcript.pyannote[101].end 314.85096875
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 315.10409375
transcript.pyannote[102].end 319.03596875
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 319.69409375
transcript.pyannote[103].end 321.11159375
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 321.29721875
transcript.pyannote[104].end 322.39409375
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 323.11971875
transcript.pyannote[105].end 324.57096875
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 324.84096875
transcript.pyannote[106].end 325.60034375
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 326.12346875
transcript.pyannote[107].end 328.06409375
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 328.55346875
transcript.pyannote[108].end 330.44346875
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 331.13534375
transcript.pyannote[109].end 331.84409375
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 332.51909375
transcript.pyannote[110].end 334.40909375
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 334.61159375
transcript.pyannote[111].end 343.33596875
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 343.99409375
transcript.pyannote[112].end 345.51284375
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 345.95159375
transcript.pyannote[113].end 349.86659375
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 350.11971875
transcript.pyannote[114].end 351.89159375
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 352.34721875
transcript.pyannote[115].end 352.78596875
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 353.56221875
transcript.pyannote[116].end 354.89534375
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 355.24971875
transcript.pyannote[117].end 357.03846875
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 357.47721875
transcript.pyannote[118].end 358.72596875
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 359.01284375
transcript.pyannote[119].end 359.70471875
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 359.82284375
transcript.pyannote[120].end 360.12659375
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 360.61596875
transcript.pyannote[121].end 362.38784375
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 362.72534375
transcript.pyannote[122].end 365.39159375
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 365.81346875
transcript.pyannote[123].end 367.06221875
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 367.34909375
transcript.pyannote[124].end 372.41159375
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 372.47909375
transcript.pyannote[125].end 373.79534375
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 374.33534375
transcript.pyannote[126].end 380.89971875
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 374.47034375
transcript.pyannote[127].end 374.75721875
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 381.45659375
transcript.pyannote[128].end 385.06784375
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 386.35034375
transcript.pyannote[129].end 392.44221875
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 387.49784375
transcript.pyannote[130].end 387.85221875
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 389.25284375
transcript.pyannote[131].end 390.13034375
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 392.64471875
transcript.pyannote[132].end 393.11721875
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 393.50534375
transcript.pyannote[133].end 395.07471875
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 395.46284375
transcript.pyannote[134].end 401.09909375
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 401.33534375
transcript.pyannote[135].end 402.17909375
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 402.26346875
transcript.pyannote[136].end 405.08159375
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 405.41909375
transcript.pyannote[137].end 406.31346875
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 406.54971875
transcript.pyannote[138].end 408.08534375
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 408.82784375
transcript.pyannote[139].end 410.97096875
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 411.96659375
transcript.pyannote[140].end 413.04659375
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 413.04659375
transcript.pyannote[141].end 414.63284375
transcript.pyannote[142].speaker SPEAKER_00
transcript.pyannote[142].start 414.64971875
transcript.pyannote[142].end 418.04159375
transcript.pyannote[143].speaker SPEAKER_00
transcript.pyannote[143].start 418.59846875
transcript.pyannote[143].end 420.06659375
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 420.57284375
transcript.pyannote[144].end 423.98159375
transcript.pyannote[145].speaker SPEAKER_00
transcript.pyannote[145].start 424.47096875
transcript.pyannote[145].end 425.50034375
transcript.pyannote[146].speaker SPEAKER_00
transcript.pyannote[146].start 426.07409375
transcript.pyannote[146].end 426.56346875
transcript.pyannote[147].speaker SPEAKER_00
transcript.pyannote[147].start 427.87971875
transcript.pyannote[147].end 430.29284375
transcript.pyannote[148].speaker SPEAKER_00
transcript.pyannote[148].start 431.08596875
transcript.pyannote[148].end 431.69346875
transcript.pyannote[149].speaker SPEAKER_01
transcript.pyannote[149].start 431.74409375
transcript.pyannote[149].end 432.21659375
transcript.pyannote[150].speaker SPEAKER_00
transcript.pyannote[150].start 432.35159375
transcript.pyannote[150].end 433.70159375
transcript.pyannote[151].speaker SPEAKER_00
transcript.pyannote[151].start 433.93784375
transcript.pyannote[151].end 434.66346875
transcript.pyannote[152].speaker SPEAKER_00
transcript.pyannote[152].start 435.37221875
transcript.pyannote[152].end 436.95846875
transcript.pyannote[153].speaker SPEAKER_00
transcript.pyannote[153].start 437.19471875
transcript.pyannote[153].end 439.13534375
transcript.pyannote[154].speaker SPEAKER_00
transcript.pyannote[154].start 440.02971875
transcript.pyannote[154].end 444.58596875
transcript.pyannote[155].speaker SPEAKER_00
transcript.pyannote[155].start 444.94034375
transcript.pyannote[155].end 446.30721875
transcript.pyannote[156].speaker SPEAKER_00
transcript.pyannote[156].start 446.91471875
transcript.pyannote[156].end 452.80409375
transcript.pyannote[157].speaker SPEAKER_00
transcript.pyannote[157].start 454.01909375
transcript.pyannote[157].end 455.11596875
transcript.pyannote[158].speaker SPEAKER_00
transcript.pyannote[158].start 455.74034375
transcript.pyannote[158].end 458.22096875
transcript.pyannote[159].speaker SPEAKER_01
transcript.pyannote[159].start 456.06096875
transcript.pyannote[159].end 456.09471875
transcript.pyannote[160].speaker SPEAKER_00
transcript.pyannote[160].start 458.76096875
transcript.pyannote[160].end 459.30096875
transcript.pyannote[161].speaker SPEAKER_00
transcript.pyannote[161].start 459.85784375
transcript.pyannote[161].end 465.19034375
transcript.pyannote[162].speaker SPEAKER_00
transcript.pyannote[162].start 466.62471875
transcript.pyannote[162].end 471.36659375
transcript.pyannote[163].speaker SPEAKER_00
transcript.pyannote[163].start 471.87284375
transcript.pyannote[163].end 472.93596875
transcript.pyannote[164].speaker SPEAKER_00
transcript.pyannote[164].start 473.84721875
transcript.pyannote[164].end 474.57284375
transcript.pyannote[165].speaker SPEAKER_01
transcript.pyannote[165].start 475.85534375
transcript.pyannote[165].end 478.01534375
transcript.pyannote[166].speaker SPEAKER_00
transcript.pyannote[166].start 477.01971875
transcript.pyannote[166].end 480.93471875
transcript.pyannote[167].speaker SPEAKER_01
transcript.pyannote[167].start 481.64346875
transcript.pyannote[167].end 482.40284375
transcript.pyannote[168].speaker SPEAKER_00
transcript.pyannote[168].start 482.90909375
transcript.pyannote[168].end 485.57534375
transcript.pyannote[169].speaker SPEAKER_00
transcript.pyannote[169].start 486.70596875
transcript.pyannote[169].end 488.44409375
transcript.pyannote[170].speaker SPEAKER_00
transcript.pyannote[170].start 489.49034375
transcript.pyannote[170].end 495.80159375
transcript.pyannote[171].speaker SPEAKER_00
transcript.pyannote[171].start 496.29096875
transcript.pyannote[171].end 503.36159375
transcript.pyannote[172].speaker SPEAKER_00
transcript.pyannote[172].start 504.25596875
transcript.pyannote[172].end 515.76471875
transcript.pyannote[173].speaker SPEAKER_00
transcript.pyannote[173].start 515.78159375
transcript.pyannote[173].end 518.56596875
transcript.pyannote[174].speaker SPEAKER_00
transcript.pyannote[174].start 519.20721875
transcript.pyannote[174].end 520.82721875
transcript.pyannote[175].speaker SPEAKER_00
transcript.pyannote[175].start 521.36721875
transcript.pyannote[175].end 527.05409375
transcript.pyannote[176].speaker SPEAKER_01
transcript.pyannote[176].start 528.48846875
transcript.pyannote[176].end 528.94409375
transcript.pyannote[177].speaker SPEAKER_00
transcript.pyannote[177].start 528.57284375
transcript.pyannote[177].end 528.97784375
transcript.pyannote[178].speaker SPEAKER_01
transcript.pyannote[178].start 528.97784375
transcript.pyannote[178].end 529.01159375
transcript.pyannote[179].speaker SPEAKER_00
transcript.pyannote[179].start 529.01159375
transcript.pyannote[179].end 529.02846875
transcript.pyannote[180].speaker SPEAKER_01
transcript.pyannote[180].start 529.02846875
transcript.pyannote[180].end 529.04534375
transcript.pyannote[181].speaker SPEAKER_00
transcript.pyannote[181].start 529.04534375
transcript.pyannote[181].end 529.06221875
transcript.pyannote[182].speaker SPEAKER_01
transcript.pyannote[182].start 529.14659375
transcript.pyannote[182].end 530.49659375
transcript.pyannote[183].speaker SPEAKER_00
transcript.pyannote[183].start 529.85534375
transcript.pyannote[183].end 531.05346875
transcript.pyannote[184].speaker SPEAKER_01
transcript.pyannote[184].start 531.49221875
transcript.pyannote[184].end 533.93909375
transcript.pyannote[185].speaker SPEAKER_01
transcript.pyannote[185].start 535.01909375
transcript.pyannote[185].end 536.45346875
transcript.pyannote[186].speaker SPEAKER_00
transcript.pyannote[186].start 537.14534375
transcript.pyannote[186].end 538.37721875
transcript.pyannote[187].speaker SPEAKER_01
transcript.pyannote[187].start 537.33096875
transcript.pyannote[187].end 538.15784375
transcript.pyannote[188].speaker SPEAKER_00
transcript.pyannote[188].start 540.28409375
transcript.pyannote[188].end 543.23721875
transcript.pyannote[189].speaker SPEAKER_00
transcript.pyannote[189].start 543.67596875
transcript.pyannote[189].end 548.31659375
transcript.pyannote[190].speaker SPEAKER_00
transcript.pyannote[190].start 551.25284375
transcript.pyannote[190].end 552.09659375
transcript.pyannote[191].speaker SPEAKER_00
transcript.pyannote[191].start 552.24846875
transcript.pyannote[191].end 554.54346875
transcript.pyannote[192].speaker SPEAKER_00
transcript.pyannote[192].start 554.62784375
transcript.pyannote[192].end 559.42034375
transcript.pyannote[193].speaker SPEAKER_00
transcript.pyannote[193].start 559.99409375
transcript.pyannote[193].end 562.15409375
transcript.pyannote[194].speaker SPEAKER_00
transcript.pyannote[194].start 563.06534375
transcript.pyannote[194].end 563.57159375
transcript.pyannote[195].speaker SPEAKER_01
transcript.pyannote[195].start 564.04409375
transcript.pyannote[195].end 564.71909375
transcript.pyannote[196].speaker SPEAKER_00
transcript.pyannote[196].start 564.07784375
transcript.pyannote[196].end 565.02284375
transcript.pyannote[197].speaker SPEAKER_01
transcript.pyannote[197].start 565.42784375
transcript.pyannote[197].end 570.47346875
transcript.pyannote[198].speaker SPEAKER_01
transcript.pyannote[198].start 570.89534375
transcript.pyannote[198].end 575.08034375
transcript.pyannote[199].speaker SPEAKER_00
transcript.pyannote[199].start 576.19409375
transcript.pyannote[199].end 577.05471875
transcript.pyannote[200].speaker SPEAKER_00
transcript.pyannote[200].start 578.80971875
transcript.pyannote[200].end 579.73784375
transcript.pyannote[201].speaker SPEAKER_00
transcript.pyannote[201].start 580.12596875
transcript.pyannote[201].end 583.87221875
transcript.pyannote[202].speaker SPEAKER_00
transcript.pyannote[202].start 584.58096875
transcript.pyannote[202].end 587.78721875
transcript.pyannote[203].speaker SPEAKER_00
transcript.pyannote[203].start 589.45784375
transcript.pyannote[203].end 590.03159375
transcript.pyannote[204].speaker SPEAKER_00
transcript.pyannote[204].start 590.62221875
transcript.pyannote[204].end 591.97221875
transcript.pyannote[205].speaker SPEAKER_00
transcript.pyannote[205].start 592.39409375
transcript.pyannote[205].end 597.20346875
transcript.pyannote[206].speaker SPEAKER_00
transcript.pyannote[206].start 598.38471875
transcript.pyannote[206].end 599.95409375
transcript.pyannote[207].speaker SPEAKER_00
transcript.pyannote[207].start 600.69659375
transcript.pyannote[207].end 602.53596875
transcript.pyannote[208].speaker SPEAKER_00
transcript.pyannote[208].start 603.46409375
transcript.pyannote[208].end 604.25721875
transcript.pyannote[209].speaker SPEAKER_00
transcript.pyannote[209].start 605.01659375
transcript.pyannote[209].end 607.14284375
transcript.pyannote[210].speaker SPEAKER_00
transcript.pyannote[210].start 607.61534375
transcript.pyannote[210].end 608.76284375
transcript.pyannote[211].speaker SPEAKER_00
transcript.pyannote[211].start 609.40409375
transcript.pyannote[211].end 610.58534375
transcript.pyannote[212].speaker SPEAKER_00
transcript.pyannote[212].start 610.93971875
transcript.pyannote[212].end 614.66909375
transcript.pyannote[213].speaker SPEAKER_00
transcript.pyannote[213].start 615.42846875
transcript.pyannote[213].end 617.03159375
transcript.pyannote[214].speaker SPEAKER_00
transcript.pyannote[214].start 617.57159375
transcript.pyannote[214].end 620.10284375
transcript.pyannote[215].speaker SPEAKER_00
transcript.pyannote[215].start 620.76096875
transcript.pyannote[215].end 623.51159375
transcript.pyannote[216].speaker SPEAKER_00
transcript.pyannote[216].start 624.23721875
transcript.pyannote[216].end 626.12721875
transcript.pyannote[217].speaker SPEAKER_00
transcript.pyannote[217].start 626.76846875
transcript.pyannote[217].end 628.28721875
transcript.pyannote[218].speaker SPEAKER_00
transcript.pyannote[218].start 628.50659375
transcript.pyannote[218].end 629.70471875
transcript.pyannote[219].speaker SPEAKER_00
transcript.pyannote[219].start 631.27409375
transcript.pyannote[219].end 632.82659375
transcript.pyannote[220].speaker SPEAKER_00
transcript.pyannote[220].start 633.11346875
transcript.pyannote[220].end 635.02034375
transcript.pyannote[221].speaker SPEAKER_00
transcript.pyannote[221].start 635.66159375
transcript.pyannote[221].end 636.75846875
transcript.pyannote[222].speaker SPEAKER_00
transcript.pyannote[222].start 636.94409375
transcript.pyannote[222].end 638.24346875
transcript.pyannote[223].speaker SPEAKER_00
transcript.pyannote[223].start 638.80034375
transcript.pyannote[223].end 640.90971875
transcript.pyannote[224].speaker SPEAKER_00
transcript.pyannote[224].start 642.27659375
transcript.pyannote[224].end 643.64346875
transcript.pyannote[225].speaker SPEAKER_01
transcript.pyannote[225].start 643.86284375
transcript.pyannote[225].end 644.45346875
transcript.pyannote[226].speaker SPEAKER_01
transcript.pyannote[226].start 644.80784375
transcript.pyannote[226].end 645.75284375
transcript.pyannote[227].speaker SPEAKER_00
transcript.pyannote[227].start 645.06096875
transcript.pyannote[227].end 647.01846875
transcript.pyannote[228].speaker SPEAKER_01
transcript.pyannote[228].start 647.01846875
transcript.pyannote[228].end 654.19034375
transcript.pyannote[229].speaker SPEAKER_00
transcript.pyannote[229].start 653.81909375
transcript.pyannote[229].end 656.08034375
transcript.pyannote[230].speaker SPEAKER_00
transcript.pyannote[230].start 656.94096875
transcript.pyannote[230].end 658.45971875
transcript.pyannote[231].speaker SPEAKER_01
transcript.pyannote[231].start 657.12659375
transcript.pyannote[231].end 661.56471875
transcript.pyannote[232].speaker SPEAKER_00
transcript.pyannote[232].start 660.75471875
transcript.pyannote[232].end 661.58159375
transcript.pyannote[233].speaker SPEAKER_01
transcript.pyannote[233].start 661.58159375
transcript.pyannote[233].end 662.03721875
transcript.pyannote[234].speaker SPEAKER_00
transcript.pyannote[234].start 662.03721875
transcript.pyannote[234].end 664.07909375
transcript.pyannote[235].speaker SPEAKER_00
transcript.pyannote[235].start 664.60221875
transcript.pyannote[235].end 665.59784375
transcript.pyannote[236].speaker SPEAKER_00
transcript.pyannote[236].start 666.18846875
transcript.pyannote[236].end 674.99721875
transcript.pyannote[237].speaker SPEAKER_01
transcript.pyannote[237].start 675.77346875
transcript.pyannote[237].end 678.81096875
transcript.pyannote[238].speaker SPEAKER_00
transcript.pyannote[238].start 678.82784375
transcript.pyannote[238].end 682.25346875
transcript.pyannote[239].speaker SPEAKER_01
transcript.pyannote[239].start 680.21159375
transcript.pyannote[239].end 680.76846875
transcript.pyannote[240].speaker SPEAKER_01
transcript.pyannote[240].start 681.76409375
transcript.pyannote[240].end 683.83971875
transcript.pyannote[241].speaker SPEAKER_00
transcript.pyannote[241].start 683.67096875
transcript.pyannote[241].end 685.10534375
transcript.pyannote[242].speaker SPEAKER_01
transcript.pyannote[242].start 685.29096875
transcript.pyannote[242].end 685.61159375
transcript.pyannote[243].speaker SPEAKER_00
transcript.pyannote[243].start 685.56096875
transcript.pyannote[243].end 686.59034375
transcript.pyannote[244].speaker SPEAKER_00
transcript.pyannote[244].start 686.97846875
transcript.pyannote[244].end 689.62784375
transcript.pyannote[245].speaker SPEAKER_00
transcript.pyannote[245].start 690.20159375
transcript.pyannote[245].end 691.75409375
transcript.pyannote[246].speaker SPEAKER_00
transcript.pyannote[246].start 692.10846875
transcript.pyannote[246].end 693.23909375
transcript.pyannote[247].speaker SPEAKER_00
transcript.pyannote[247].start 693.54284375
transcript.pyannote[247].end 694.94346875
transcript.pyannote[248].speaker SPEAKER_00
transcript.pyannote[248].start 695.09534375
transcript.pyannote[248].end 695.88846875
transcript.pyannote[249].speaker SPEAKER_00
transcript.pyannote[249].start 695.97284375
transcript.pyannote[249].end 696.00659375
transcript.pyannote[250].speaker SPEAKER_00
transcript.pyannote[250].start 696.09096875
transcript.pyannote[250].end 702.92534375
transcript.pyannote[251].speaker SPEAKER_00
transcript.pyannote[251].start 703.07721875
transcript.pyannote[251].end 703.90409375
transcript.pyannote[252].speaker SPEAKER_00
transcript.pyannote[252].start 704.49471875
transcript.pyannote[252].end 705.57471875
transcript.whisperx[0].start 12.793
transcript.whisperx[0].end 37.049
transcript.whisperx[0].text 好 主席 在場的委員先進列席的政府青山市長官員會長工作夥伴媒體記者女士先生我們請行政院主計總處陳主計長還有負責統計的看事三位處長綜合統計國事普查主計資訊三位處長來協助一下我們主計長委員好等一下三位好 主計長好 三位處長好
transcript.whisperx[1].start 43.905
transcript.whisperx[1].end 51.488
transcript.whisperx[1].text 主席長 人家說家有一老 爐有一寶請問故宮有國寶 人民家裡有什麼寶人民家裡的老人是什麼是領國民年金的保險我們一般說國寶 國寶不是說那個故宮的國寶你如果說你家裡有一個老大人 他是念國寶的我要請教你 你覺得他是不是寶你對國民年金了解嗎
transcript.whisperx[2].start 74.578
transcript.whisperx[2].end 85.888
transcript.whisperx[2].text 來我跟你講一下一般人他如果沒有受雇沒有勞軍公教勞農保都沒有尤其是家庭主婦他在六十歲之前每個月要繳一千兩百四十五的保費
transcript.whisperx[3].start 87.342
transcript.whisperx[3].end 108.737
transcript.whisperx[3].text 這是國民年金的保費然後健保要繳826一個月要負擔的健保加國保要負2000 超過2000但是超過65歲以上之後他只要繼續繳800多塊的保費然後平均每個月可以領幾副領差不多4000請問這樣的老人是不是國保是
transcript.whisperx[4].start 112.164
transcript.whisperx[4].end 125.475
transcript.whisperx[4].text 我們現在回到今天正題我們主要是說我們要努力的提升但是很奇怪現在我們明年度的總預算現在在野黨還給你鴿子他們說什麼問題 為什麼鴿子
transcript.whisperx[5].start 129.807
transcript.whisperx[5].end 147.584
transcript.whisperx[5].text 他們說去年通過兩個法要提高軍人待遇要提高警校退休給付沒有編載明年的預算然後就開始說怎樣要修財化法財化法是財政部管的對不對結果是你遭殃總預算他放在哪裡問題在我們往下看
transcript.whisperx[6].start 149.025
transcript.whisperx[6].end 166.862
transcript.whisperx[6].text 我們整個財化法的精神我們年度總預算的編列是不是中央協助地方分攤人民的負擔是不是這樣子是人民的負擔嘛人民要繳健保保費嘛人民要繳國保保費嘛然後呢這個時候呢地方政府來幫人民分攤嘛
transcript.whisperx[7].start 167.677
transcript.whisperx[7].end 191.651
transcript.whisperx[7].text 然後呢地方政府力有未待的我們中央政府來協助嘛這個是不是就是說你一般性補助款的精神你地方政府要幫人民負擔的就是你的支出在一般性補助款當中我中央考慮到你的能力有差異所以呢我就能力強的我給你協助少一點能力低的我給你協助多一點是不是這樣這是才華的精神嘛那你們也是根據這個方式來籌編預算嘛好往下看好現在我們看一下剛剛的國保
transcript.whisperx[8].start 194.159
transcript.whisperx[8].end 216.345
transcript.whisperx[8].text 65歲以上的話你來看現在的勞動人口政府跟僱主幫他分攤七成的保費他自己分攤三成的保費如果說是沒有僱主的地方政府補助健保四成的保費中央政府補助四成的保費他自己要負擔六成的保費政府的這個是誰出 中央政府出嗎
transcript.whisperx[9].start 217.594
transcript.whisperx[9].end 244.443
transcript.whisperx[9].text 是不是這樣 健保保衛是不是政府自稱是中央政府嘛中央政府對不對 但是地方政府現在有的很好捏他說你後來的這六成呢你吃六萬 我給你倒分攤啦 有沒有有沒有哪個縣市政府說你的六成啊我地方政府也幫你出 有沒有有嘛 對不對那能夠幫人民分攤這六成的地方政府財政好不好
transcript.whisperx[10].start 246.302
transcript.whisperx[10].end 271.577
transcript.whisperx[10].text 怎麼不好 他不好他怎麼幫他分攤四成是中央分攤 六成是人民分攤但是六十五歲之後有的地方政府說六十五歲 阿娜 你的六成不用分攤我幫你出能夠這樣講的地方財政好不好可以這樣講的地方的財政好不好一定夠好嘛 你就不跟我說他好他才敢幫他分攤嘛那像屏東不好的敢這樣講嗎
transcript.whisperx[11].start 275.017
transcript.whisperx[11].end 290.235
transcript.whisperx[11].text 所以我要問你的是說如果地方政府財政好到可以幫老人家分攤他的健保自負額你覺得這個地方政府還需要中央協助嗎應該不需要鬥了這半天你才聽得懂 往下看
transcript.whisperx[12].start 291.961
transcript.whisperx[12].end 318.85
transcript.whisperx[12].text 來 我們政府要協助什麼最弱勢的嘛所以地方政府他如果財力允許他人民的致富的七成當 六成當中他會從什麼 深藏啦 中低啦 對不對這些人都很可憐嘛所以地方政府如果財政窘迫他沒辦法出嘛我們中央要一般性補助協助他嘛如果他的財源充裕我們中央政府怎樣直接幫 我們他就直接幫助弱勢了嘛是不是這樣 往下看
transcript.whisperx[13].start 319.79
transcript.whisperx[13].end 342.859
transcript.whisperx[13].text 所以我們來舉例大家可不可以聽說長庚集團人家說台塑有四寶這哪四寶嗎台塑台亞我就不用念了誰最大長庚的總管理數最大因為當年王永慶把台塑四寶的股票10%以上都放在哪裡長庚的總管理數長庚的總管理數是台塑四寶的大老闆
transcript.whisperx[14].start 344.056
transcript.whisperx[14].end 359.557
transcript.whisperx[14].text 那長庚的各分院你還想如果是長庚的各分院如果他財政分院比較差的總管理署給他支持對不對那如果說現在呢把這個股票直接交給分院分院就不叫總院了嘛是不是這樣子
transcript.whisperx[15].start 360.666
transcript.whisperx[15].end 377.253
transcript.whisperx[15].text 所以我發現啊 才化法啊中央統籌呢 本來在我們中央嘛現在呢 地方政府說你國票都給我啦 你不用給我鼓勵啦你國票給我 我就不用給我補助啊是不是這樣 有嗎 有這樣講嗎現在4165億給了地方政府了統籌分給他了 他說 你不用給我補助啊你國票都給我 我不用你給我補助我直接拿國票 國金就夠了 這樣可以嗎
transcript.whisperx[16].start 386.414
transcript.whisperx[16].end 410.652
transcript.whisperx[16].text 原則上是這樣啦 但是事實上不是現在要求要一般性補助要維持嘛對嘛 對不對 我這樣講沒有錯吧本來長庚醫院總管理處有台塑世保的股票每年有很多的股息 對不對你各個地方的長庚分院財政差的我就支持你嘛現在你的股票都給我了股息我就自己領了 還需要你中央嗎
transcript.whisperx[17].start 412.251
transcript.whisperx[17].end 436.36
transcript.whisperx[17].text 應該是不需要啦原則上應該不用好 結果我們來看現在呢我們送進來的最新版的才化法這個陳雪珍說345億公司設算錯誤分配不出去對不對怎麼辦大部分這345億是不是應該給離島的居多嘛是好 那我們來看一下往下看現在有個精明人主張這345億應該給誰
transcript.whisperx[18].start 440.323
transcript.whisperx[18].end 464.444
transcript.whisperx[18].text 給每人每月領不到4000塊的國保年金的這些被保險人老人基本保證年金是4049這法律裡面算出來的這人要照顧嗎所以近明年他說 往下看他說全台灣有國保年金212.5萬的人每個月領不到這麼多錢
transcript.whisperx[19].start 466.667
transcript.whisperx[19].end 485.491
transcript.whisperx[19].text 好 那如果我們他把他這樣排戶跟什麼限制呢他就可以補到8000你覺得可行嗎要不要照顧是要照顧的你現在能夠再挪出345億來照顧這些人嗎沒有辦法挪不出來 啊怎麼辦這些人要不要照顧 往下看現在這345億我考你啦
transcript.whisperx[20].start 489.554
transcript.whisperx[20].end 502.479
transcript.whisperx[20].text 有一個方法是說把公司設算改正了就給離島的39萬人你支持嗎這一個第二個說現在有反年金改革退休的公教人員包括警校提高待遇這大概50萬人
transcript.whisperx[21].start 504.312
transcript.whisperx[21].end 533.319
transcript.whisperx[21].text 另外還有呢國保年金幾戶領不到八千塊的有兩百萬人你猜猜看你問你家的老人問你家的國保你覺得如果你有三百四十億多出來他會因要求政府先優先照顧誰照顧三十九萬的離島人口照顧五十二萬的軍工教退休人員還是照顧每個月領不到八千的國保年金的國保來原則上是讓你自由發揮一下應該是要優先照顧那個
transcript.whisperx[22].start 535.066
transcript.whisperx[22].end 562.018
transcript.whisperx[22].text 沒有領滿八千的啦領不到八千的嘛那如果說我們財化法說這三百四十五億修法說用來照顧這個國民年金的兩百萬人你支不支持可不可以支持我們財化法現在三百四十五億分不出去了啊金平田說乾脆修法啦分給這些人讓他們每個月可以領到八千先不講法 講你的個人的情感
transcript.whisperx[23].start 563.083
transcript.whisperx[23].end 587.612
transcript.whisperx[23].text 妳覺得 妳會認同嗎如果能夠給老年的幾戶增加我覺得這也是非常不可啦只是說以目前來修法的一個方向大概是不可行啦法是誰訂的立法院訂的立法院訂的如果增加支出行政院要申請釋憲如果立法院訂的法說要照顧老人家 妳會反對嗎不會嘛
transcript.whisperx[24].start 590.683
transcript.whisperx[24].end 614.414
transcript.whisperx[24].text 所以怎麼去定這個法怎麼讓國家有限的財源去照顧最需要照顧的人是不是你們組織總是要支持的那你怎麼知道誰最需要照顧你後面站一排人來看下一張你去算一下這些領定期退伍給予的這些人有多少人年齡分布怎麼樣他每個月收多少錢收五萬六萬七萬你把它算出來
transcript.whisperx[25].start 615.792
transcript.whisperx[25].end 644.108
transcript.whisperx[25].text 離島的人口有多少人他們的財富分佈所得分佈你算出來現在在領國民年金給付的有多少人他們的財富分佈你給他算出來用這個數字告訴人民誰最需要照顧最辛苦的人最需要照顧還是那些月齡五六萬週休七日日遊七國 週遊列國的人需要照顧主席長知道我的意思了沒有是
transcript.whisperx[26].start 645.347
transcript.whisperx[26].end 655.608
transcript.whisperx[26].text 這個知道什麼時候可以給我這個部分必須要由地方來提供因為我們統計調查都是屬於抽樣那抽樣的東西你算不出來嗎 你不能跟考試院要嗎
transcript.whisperx[27].start 656.98
transcript.whisperx[27].end 682.132
transcript.whisperx[27].text 你算不出來嗎沒有關係你要負責讓全國人民知道離島的人口軍公教退休人口領國保的200萬人口他們的財富情況如何所得狀況如何誰最需要領多一點可不可以你要怎麼做你的事情本席要求你一個月內提供可不可以
transcript.whisperx[28].start 683.7
transcript.whisperx[28].end 702.836
transcript.whisperx[28].text 不是盡量 絕對要提供要讓人民知道政府有欠的稅金要花在誰身上要花在國寶身上家有一老 爐有一寶這個寶是周遊竊國 周遊欺國還是月領不到四千想清楚 然後跟人民說明白 好不好好 謝謝