iVOD / 164106

Field Value
IVOD_ID 164106
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/164106
日期 2025-10-15
會議資料.會議代碼 委員會-11-4-20-2
會議資料.會議代碼:str 第11屆第4會期財政委員會第2次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 2
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第4會期財政委員會第2次全體委員會議
影片種類 Clip
開始時間 2025-10-15T09:53:08+08:00
結束時間 2025-10-15T10:04:30+08:00
影片長度 00:11:22
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/d759c3dbefb57db66e7d04b0732b37ce97bc26f8a2da1058fda6f2d8e3477dae65024ebfa9e6d7965ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 郭國文
委員發言時間 09:53:08 - 10:04:30
會議時間 2025-10-15T09:00:00+08:00
會議名稱 立法院第11屆第4會期財政委員會第2次全體委員會議(事由:邀請行政院主計總處陳主計長淑姿、審計部陳審計長瑞敏率所屬單位主管列席業務報告,並備質詢。 【10月13日、15日及16日三天一次會】)
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 7.97909375
transcript.pyannote[0].end 10.05471875
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 10.39221875
transcript.pyannote[1].end 12.43409375
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 18.66096875
transcript.pyannote[2].end 19.33596875
transcript.pyannote[3].speaker SPEAKER_02
transcript.pyannote[3].start 19.53846875
transcript.pyannote[3].end 43.73721875
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 44.17596875
transcript.pyannote[4].end 46.01534375
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 46.57221875
transcript.pyannote[5].end 56.79846875
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 57.69284375
transcript.pyannote[6].end 77.36909375
transcript.pyannote[7].speaker SPEAKER_02
transcript.pyannote[7].start 79.63034375
transcript.pyannote[7].end 86.19471875
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 86.81909375
transcript.pyannote[8].end 99.35721875
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 99.67784375
transcript.pyannote[9].end 112.01346875
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 112.33409375
transcript.pyannote[10].end 114.69659375
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 115.47284375
transcript.pyannote[11].end 116.75534375
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 117.71721875
transcript.pyannote[12].end 120.46784375
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 120.65346875
transcript.pyannote[13].end 123.03284375
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 123.40409375
transcript.pyannote[14].end 145.05471875
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 145.67909375
transcript.pyannote[15].end 148.73346875
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 149.17221875
transcript.pyannote[16].end 150.80909375
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 152.29409375
transcript.pyannote[17].end 152.95221875
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 153.42471875
transcript.pyannote[18].end 154.67346875
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 155.80409375
transcript.pyannote[19].end 156.29346875
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 157.60971875
transcript.pyannote[20].end 167.86971875
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 162.21659375
transcript.pyannote[21].end 162.53721875
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 162.53721875
transcript.pyannote[22].end 162.67221875
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 168.19034375
transcript.pyannote[23].end 177.74159375
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 168.22409375
transcript.pyannote[24].end 168.24096875
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 168.24096875
transcript.pyannote[25].end 168.56159375
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 171.88596875
transcript.pyannote[26].end 172.13909375
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 175.78409375
transcript.pyannote[27].end 177.94409375
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 178.04534375
transcript.pyannote[28].end 181.28534375
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 178.12971875
transcript.pyannote[29].end 178.56846875
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 181.36971875
transcript.pyannote[30].end 184.45784375
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 181.53846875
transcript.pyannote[31].end 182.19659375
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 184.98096875
transcript.pyannote[32].end 196.32096875
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 196.48971875
transcript.pyannote[33].end 196.94534375
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 197.70471875
transcript.pyannote[34].end 212.25096875
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 212.99346875
transcript.pyannote[35].end 219.23721875
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 219.69284375
transcript.pyannote[36].end 222.93284375
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 223.54034375
transcript.pyannote[37].end 226.37534375
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 226.59471875
transcript.pyannote[38].end 234.81284375
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 235.28534375
transcript.pyannote[39].end 242.82846875
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 243.46971875
transcript.pyannote[40].end 250.75971875
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 251.08034375
transcript.pyannote[41].end 251.89034375
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 252.70034375
transcript.pyannote[42].end 257.89784375
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 257.89784375
transcript.pyannote[43].end 292.37346875
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 265.91346875
transcript.pyannote[44].end 265.94721875
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 265.94721875
transcript.pyannote[45].end 266.43659375
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 270.85784375
transcript.pyannote[46].end 271.19534375
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 275.27909375
transcript.pyannote[47].end 275.97096875
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 284.15534375
transcript.pyannote[48].end 284.17221875
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 284.17221875
transcript.pyannote[49].end 285.13409375
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 291.32721875
transcript.pyannote[50].end 301.50284375
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 294.58409375
transcript.pyannote[51].end 295.02284375
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 301.19909375
transcript.pyannote[52].end 302.16096875
transcript.pyannote[53].speaker SPEAKER_02
transcript.pyannote[53].start 301.62096875
transcript.pyannote[53].end 305.63721875
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 305.70471875
transcript.pyannote[54].end 305.72159375
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 305.72159375
transcript.pyannote[55].end 306.04221875
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 306.04221875
transcript.pyannote[56].end 311.61096875
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 311.34096875
transcript.pyannote[57].end 312.47159375
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 311.76284375
transcript.pyannote[58].end 317.44971875
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 318.14159375
transcript.pyannote[59].end 319.42409375
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 318.76596875
transcript.pyannote[60].end 321.11159375
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 320.62221875
transcript.pyannote[61].end 328.60409375
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 328.45221875
transcript.pyannote[62].end 332.78909375
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 330.10596875
transcript.pyannote[63].end 330.34221875
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 332.51909375
transcript.pyannote[64].end 339.96096875
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 338.72909375
transcript.pyannote[65].end 348.55034375
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 340.51784375
transcript.pyannote[66].end 340.88909375
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 342.22221875
transcript.pyannote[67].end 342.62721875
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 348.70221875
transcript.pyannote[68].end 349.86659375
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 350.57534375
transcript.pyannote[69].end 355.04721875
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 355.55346875
transcript.pyannote[70].end 360.97034375
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 361.03784375
transcript.pyannote[71].end 361.35846875
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 361.35846875
transcript.pyannote[72].end 364.00784375
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 364.36221875
transcript.pyannote[73].end 364.76721875
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 366.70784375
transcript.pyannote[74].end 368.93534375
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 367.04534375
transcript.pyannote[75].end 370.28534375
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 370.28534375
transcript.pyannote[76].end 370.84221875
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 370.87596875
transcript.pyannote[77].end 373.28909375
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 373.25534375
transcript.pyannote[78].end 374.20034375
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 373.76159375
transcript.pyannote[79].end 376.69784375
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 377.23784375
transcript.pyannote[80].end 377.94659375
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 377.79471875
transcript.pyannote[81].end 379.34721875
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 380.59596875
transcript.pyannote[82].end 384.73034375
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 385.55721875
transcript.pyannote[83].end 396.94784375
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 396.96471875
transcript.pyannote[84].end 396.98159375
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 397.08284375
transcript.pyannote[85].end 405.63846875
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 401.40284375
transcript.pyannote[86].end 401.63909375
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 405.67221875
transcript.pyannote[87].end 406.58346875
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 408.01784375
transcript.pyannote[88].end 408.92909375
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 409.30034375
transcript.pyannote[89].end 409.84034375
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 409.48596875
transcript.pyannote[90].end 410.19471875
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 410.73471875
transcript.pyannote[91].end 411.25784375
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 410.97096875
transcript.pyannote[92].end 411.56159375
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 412.08471875
transcript.pyannote[93].end 412.67534375
transcript.pyannote[94].speaker SPEAKER_02
transcript.pyannote[94].start 413.21534375
transcript.pyannote[94].end 414.49784375
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 416.84346875
transcript.pyannote[95].end 422.09159375
transcript.pyannote[96].speaker SPEAKER_02
transcript.pyannote[96].start 422.53034375
transcript.pyannote[96].end 424.18409375
transcript.pyannote[97].speaker SPEAKER_02
transcript.pyannote[97].start 424.30221875
transcript.pyannote[97].end 426.49596875
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 427.66034375
transcript.pyannote[98].end 429.02721875
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 429.36471875
transcript.pyannote[99].end 429.80346875
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 430.36034375
transcript.pyannote[100].end 431.96346875
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 430.63034375
transcript.pyannote[101].end 431.91284375
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 431.94659375
transcript.pyannote[102].end 433.65096875
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 434.17409375
transcript.pyannote[103].end 435.40596875
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 435.99659375
transcript.pyannote[104].end 440.72159375
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 441.44721875
transcript.pyannote[105].end 442.94909375
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 443.82659375
transcript.pyannote[106].end 443.84346875
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 443.84346875
transcript.pyannote[107].end 443.91096875
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 443.91096875
transcript.pyannote[108].end 446.47596875
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 446.64471875
transcript.pyannote[109].end 446.96534375
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 448.16346875
transcript.pyannote[110].end 451.36971875
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 451.60596875
transcript.pyannote[111].end 452.98971875
transcript.pyannote[112].speaker SPEAKER_02
transcript.pyannote[112].start 452.51721875
transcript.pyannote[112].end 454.89659375
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 455.08221875
transcript.pyannote[113].end 460.17846875
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 456.01034375
transcript.pyannote[114].end 456.17909375
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 460.48221875
transcript.pyannote[115].end 467.45159375
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 468.64971875
transcript.pyannote[116].end 469.45971875
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 469.88159375
transcript.pyannote[117].end 472.56471875
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 473.08784375
transcript.pyannote[118].end 476.83409375
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 481.20471875
transcript.pyannote[119].end 482.55471875
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 482.94284375
transcript.pyannote[120].end 483.88784375
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 484.57971875
transcript.pyannote[121].end 487.81971875
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 488.12346875
transcript.pyannote[122].end 489.42284375
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 488.30909375
transcript.pyannote[123].end 488.34284375
transcript.pyannote[124].speaker SPEAKER_02
transcript.pyannote[124].start 490.30034375
transcript.pyannote[124].end 496.39221875
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 496.78034375
transcript.pyannote[125].end 499.76721875
transcript.pyannote[126].speaker SPEAKER_02
transcript.pyannote[126].start 500.15534375
transcript.pyannote[126].end 501.84284375
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 501.96096875
transcript.pyannote[127].end 502.48409375
transcript.pyannote[128].speaker SPEAKER_02
transcript.pyannote[128].start 502.41659375
transcript.pyannote[128].end 505.65659375
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 506.34846875
transcript.pyannote[129].end 508.59284375
transcript.pyannote[130].speaker SPEAKER_02
transcript.pyannote[130].start 508.86284375
transcript.pyannote[130].end 510.09471875
transcript.pyannote[131].speaker SPEAKER_02
transcript.pyannote[131].start 510.60096875
transcript.pyannote[131].end 523.40909375
transcript.pyannote[132].speaker SPEAKER_02
transcript.pyannote[132].start 523.57784375
transcript.pyannote[132].end 539.72721875
transcript.pyannote[133].speaker SPEAKER_02
transcript.pyannote[133].start 540.01409375
transcript.pyannote[133].end 540.48659375
transcript.pyannote[134].speaker SPEAKER_02
transcript.pyannote[134].start 540.94221875
transcript.pyannote[134].end 548.92409375
transcript.pyannote[135].speaker SPEAKER_02
transcript.pyannote[135].start 549.32909375
transcript.pyannote[135].end 568.66784375
transcript.pyannote[136].speaker SPEAKER_02
transcript.pyannote[136].start 569.32596875
transcript.pyannote[136].end 569.84909375
transcript.pyannote[137].speaker SPEAKER_02
transcript.pyannote[137].start 570.40596875
transcript.pyannote[137].end 573.24096875
transcript.pyannote[138].speaker SPEAKER_02
transcript.pyannote[138].start 573.52784375
transcript.pyannote[138].end 581.34096875
transcript.pyannote[139].speaker SPEAKER_01
transcript.pyannote[139].start 581.54346875
transcript.pyannote[139].end 581.89784375
transcript.pyannote[140].speaker SPEAKER_02
transcript.pyannote[140].start 581.89784375
transcript.pyannote[140].end 591.46596875
transcript.pyannote[141].speaker SPEAKER_02
transcript.pyannote[141].start 592.02284375
transcript.pyannote[141].end 596.98409375
transcript.pyannote[142].speaker SPEAKER_02
transcript.pyannote[142].start 597.37221875
transcript.pyannote[142].end 599.00909375
transcript.pyannote[143].speaker SPEAKER_02
transcript.pyannote[143].start 599.97096875
transcript.pyannote[143].end 601.77659375
transcript.pyannote[144].speaker SPEAKER_02
transcript.pyannote[144].start 602.35034375
transcript.pyannote[144].end 616.10346875
transcript.pyannote[145].speaker SPEAKER_02
transcript.pyannote[145].start 616.55909375
transcript.pyannote[145].end 620.77784375
transcript.pyannote[146].speaker SPEAKER_02
transcript.pyannote[146].start 621.13221875
transcript.pyannote[146].end 621.48659375
transcript.pyannote[147].speaker SPEAKER_02
transcript.pyannote[147].start 621.89159375
transcript.pyannote[147].end 628.70909375
transcript.pyannote[148].speaker SPEAKER_00
transcript.pyannote[148].start 629.80596875
transcript.pyannote[148].end 633.77159375
transcript.pyannote[149].speaker SPEAKER_02
transcript.pyannote[149].start 632.86034375
transcript.pyannote[149].end 634.46346875
transcript.pyannote[150].speaker SPEAKER_02
transcript.pyannote[150].start 634.76721875
transcript.pyannote[150].end 636.16784375
transcript.pyannote[151].speaker SPEAKER_00
transcript.pyannote[151].start 635.93159375
transcript.pyannote[151].end 637.72034375
transcript.pyannote[152].speaker SPEAKER_02
transcript.pyannote[152].start 636.47159375
transcript.pyannote[152].end 637.09596875
transcript.pyannote[153].speaker SPEAKER_02
transcript.pyannote[153].start 637.80471875
transcript.pyannote[153].end 640.35284375
transcript.pyannote[154].speaker SPEAKER_02
transcript.pyannote[154].start 641.31471875
transcript.pyannote[154].end 644.40284375
transcript.pyannote[155].speaker SPEAKER_02
transcript.pyannote[155].start 645.65159375
transcript.pyannote[155].end 646.10721875
transcript.pyannote[156].speaker SPEAKER_02
transcript.pyannote[156].start 646.93409375
transcript.pyannote[156].end 649.46534375
transcript.pyannote[157].speaker SPEAKER_02
transcript.pyannote[157].start 650.14034375
transcript.pyannote[157].end 666.98159375
transcript.pyannote[158].speaker SPEAKER_02
transcript.pyannote[158].start 667.97721875
transcript.pyannote[158].end 678.43971875
transcript.pyannote[159].speaker SPEAKER_02
transcript.pyannote[159].start 678.96284375
transcript.pyannote[159].end 680.11034375
transcript.pyannote[160].speaker SPEAKER_02
transcript.pyannote[160].start 680.97096875
transcript.pyannote[160].end 683.97471875
transcript.pyannote[161].speaker SPEAKER_00
transcript.pyannote[161].start 682.03409375
transcript.pyannote[161].end 682.35471875
transcript.whisperx[0].start 8.251
transcript.whisperx[0].end 9.733
transcript.whisperx[0].text 謝謝主席 有請主計長跟沈計長我們請陳沈計長 陳主計長
transcript.whisperx[1].start 18.715
transcript.whisperx[1].end 45.715
transcript.whisperx[1].text 委員好兩位好我想今天問的問題跟兩位都直接相關可以的話就自由搏擊可以不用依序而來來第一個在總統其實在國慶的談話當中特別講了一句話讓人滿有感就是好的數字要變成好的生活才會有感但是好的生活要有感其實要落實在政策當中本席看一看其實兩位是關鍵的一個角色
transcript.whisperx[2].start 46.636
transcript.whisperx[2].end 56.579
transcript.whisperx[2].text 你要如何讓人民有感第一個就是說你從數據來看那個從各種數據來看台灣目前幾乎是屬於史上最富有的一個年代
transcript.whisperx[3].start 57.779
transcript.whisperx[3].end 77.142
transcript.whisperx[3].text 但是你看相關的數字最高20%的部分成長將近4倍人均的部分成長3.67倍平均薪資的部分成長2.27倍股市總值成長26.51倍但是最低20%的家庭財富minus 1%兩位你會不會覺得很有感經濟學所說的下盛的可能性幾乎在這個數字當中看不到
transcript.whisperx[4].start 86.912
transcript.whisperx[4].end 116.592
transcript.whisperx[4].text 所以這裡頭過去這30年來相關的數字又增加這麼多政府不是沒有作為政府的作為在哪裡減稅 壽星階級 中產階級基本工資 勞工階級但是偏偏這一群人在社會安全網的網絡當中都沒有存在的他必須透過社會救助的體系而本溪在這次救災的過程當中非常的有感
transcript.whisperx[5].start 117.772
transcript.whisperx[5].end 143.942
transcript.whisperx[5].text 有感覺說這個基層是增了很多社會邊緣戶增加很多所以說真正要強化任性的部分在社會安全網之外的部分的社會救助反而是非常重要我不曉得兩位有沒有去了解過到底台灣目前有多少的窮人貧窮性的定義在哪裡我現在隨便抓一下最近媒體報導韓國需要救助的下流老人高達40%
transcript.whisperx[6].start 145.763
transcript.whisperx[6].end 150.588
transcript.whisperx[6].text OECD當中最高 連日本就20可是台灣這個部分都沒有統計兩位長官 是不是要面對一下這個問題
transcript.whisperx[7].start 157.677
transcript.whisperx[7].end 183.866
transcript.whisperx[7].text 我們對這個漢委員的想法有同感我們發現福利政策綱領這個貧窮線這個問題十幾年沒有修我們一直通知他通知衛福部要去檢討他衛福部我們還是在因為現在的熱術通知不要推給衛福部的感覺因為這個是要修福利政策綱領
transcript.whisperx[8].start 185.006
transcript.whisperx[8].end 195.539
transcript.whisperx[8].text 那要去面對這個問題嘛那個主委長 衛福部你也可以有機會跟他說啊你去看 我讓你看一下數字整個低收入戶的這個數字啊年年減少
transcript.whisperx[9].start 197.745
transcript.whisperx[9].end 222.69
transcript.whisperx[9].text 从1.46到1.13我都很怀疑主计长是不是要控管这个金流有关系控管预算有关系你去看整个台湾的这个贫穷率只有1.5%只有1.5%欧洲德国的部分有16.7%法国有14.2%瑞典有15%美国相当于11%我们才是人家的1%而已很难有可能
transcript.whisperx[10].start 223.59
transcript.whisperx[10].end 251.292
transcript.whisperx[10].text 我也不相信嘛這定義的問題嘛你如果去參照國外的經驗一般而言從社會安全網絡的角度最基礎的部分大概人口數的10%大概10%而我們低收入戶占人口數的只有1.13%而已加中低收入只有2.26%總共有50幾萬如果從整個最低最低的資產剛剛講的那20%30年來薪資沒有變而且又縮水的部分至少500萬
transcript.whisperx[11].start 252.759
transcript.whisperx[11].end 269.979
transcript.whisperx[11].text 也對他人口數大概是10%我已經講這麼多主席長妳該發揮一下了吧是 這個部分我也在跟委員報告就是有相對的貧窮率這個我們算了大概是7.57那當然因為像美國他是比較多是18.1日本是15.4
transcript.whisperx[12].start 271.36
transcript.whisperx[12].end 298.769
transcript.whisperx[12].text 南韩是14.9%这所谓的相对的贫穷率但是我们一般我们都是就20%和最低20%和最高20%之间的一个差异我们倍数我们都譬如说我们个人是维持在3.92%然后家庭是维持在6.11%将近10倍统计都是你在统计的啦你的相对贫穷率这个那个预算中心也帮你
transcript.whisperx[13].start 299.429
transcript.whisperx[13].end 317.302
transcript.whisperx[13].text 算过大概是6到7%6到7%都比你现在一点多还高很多 对不对所以你们基本上不敢松绑第一码又不肯修法嘛喊了十几年了都没有变所以说100年来左右的差不多100户左右的弱势边缘户你要去怎么处理
transcript.whisperx[14].start 318.827
transcript.whisperx[14].end 332.045
transcript.whisperx[14].text 一定要要求这个问题像我们今年长照的部分我们长照2.0十人集到长照3.0我们就增加了227亿长照有增加我没有错我现在跟你谈的社会救助
transcript.whisperx[15].start 333.186
transcript.whisperx[15].end 349.155
transcript.whisperx[15].text 救助的部分這個部分我們也是都是盡量能夠希望說能夠來擴大範圍來給予補助那個沈院長主席長我再跟你講你去看喔整個關鍵在哪裡就政府把省錢當成最高的美德不會花錢
transcript.whisperx[16].start 350.632
transcript.whisperx[16].end 378.78
transcript.whisperx[16].text 政府支出不足 我算数字给你看中央政府占GDP的比重我国政府只有占11%加地方政府才是17%这数字没有错吧OECD的国家是平均44%主席长你不要再当灭绝师太了本席也不会要求你当财神也只是一定要当个王母娘娘可不可以普度终身一下
transcript.whisperx[17].start 381.664
transcript.whisperx[17].end 406.36
transcript.whisperx[17].text 人家平均OECD是14%日本去年39.4%我們不是先進國家嗎我們不是財政很好嗎你每天都說要還債我跟你講債務的數字好了馬英九2012的時候最高的數字政府的財政最慘所有GDP的39.5是最近法定數字的45我們現在多少
transcript.whisperx[18].start 408.069
transcript.whisperx[18].end 414.294
transcript.whisperx[18].text 25對不對還是23 24對啊 20出頭耶這種情況底下我們明明有錢嘛不是沒有錢嘛我們是經濟高成長低負債的情況底下為什麼要扣這些窮人的錢呢
transcript.whisperx[19].start 428.174
transcript.whisperx[19].end 446.305
transcript.whisperx[19].text 這丟臉你知道嗎所以要如何讓總統這句話真正的落實美好的數字可以轉化成美好的日子你有責任啊兩位有責任啊一個是源頭管理一個是事後監督啊
transcript.whisperx[20].start 448.366
transcript.whisperx[20].end 476.147
transcript.whisperx[20].text 審計長你最後寫報告了你這一部分能不能寫一份報告給本席一個月審計長 審計長 還有主計長誰要負責我們來寫好 審計長你來寫寫有效的一種方式站在一個審計觀點當中要求這些相關部會讓總統的這個美意得以落實得以落實美好的數字竟然沒有辦法落實到美好的生活20%的人30年來過的日子都一樣越來越慘
transcript.whisperx[21].start 481.289
transcript.whisperx[21].end 505.417
transcript.whisperx[21].text 這真的很丟臉你知道嗎還有一個部分基礎建設的部分錢要花在刀口上要花在刀口上那個省議長你現在在107年之前你都說推動了18年我們共同管溝的部分才完成了614.9公里對不對這顯然不夠嘛台灣的過去花了那麼多特別預算
transcript.whisperx[22].start 506.417
transcript.whisperx[22].end 522.963
transcript.whisperx[22].text 在做了很多所謂的前瞻計畫那顯然是不足嘛你是不是從審計的觀點來去做一個整體的檢討來認為台灣現在需要的前瞻的這個計畫是什麼這才是真正強化社會韌性啊我們強化社會韌性有兩種工程
transcript.whisperx[23].start 523.723
transcript.whisperx[23].end 548.621
transcript.whisperx[23].text 一種是法制的工程 一個是硬體的工程我剛剛跟你講的是一個法制面的一個工程這是強化社會韌性另外是硬體面的一個工程 強化社會韌性所以說呢 我們剛剛從一個法制面的現在從一個硬體面的能不能請那個 沈院長你也待了這麼久 你未來還會待六年你接下來這一份報告當中 你有機會追六年
transcript.whisperx[24].start 550.077
transcript.whisperx[24].end 568.268
transcript.whisperx[24].text 主席長 你的任期也會相當的久我希望你能夠轉變一下角色你看喔 除了共同廣告之外我們強化能源的這個部分這一次因為那個斷電 斷訊很多 這個都是在基礎建設的時候可以用 對不對
transcript.whisperx[25].start 569.383
transcript.whisperx[25].end 597.782
transcript.whisperx[25].text 有沒有 那個這部分我還是要再請那個審計長你從你過去的一些長期以來在審計部門也曾經在主計部門待過的角色當中你再寫一份報告可以不可以可以 這兩份報告寫出來我們來建構一個屬於法治面的一個社會韌性還有一個基礎工程面的社會韌性把錢花在刀口上那我也請主計長改變一下角色不要再當滅絕師太
transcript.whisperx[26].start 600.163
transcript.whisperx[26].end 627.871
transcript.whisperx[26].text 當一下王母娘娘好不好然後最後呢你現在就可以當王母娘娘最後一個你看我們最近的一個特別條例喔丹奈斯颱風的特別條例第一筆用到的錢就用在花蓮丹奈斯颱風耶用在花蓮在車輛受損的部分就五萬然後機車就有一萬放在台南的時候情何以堪台南中央沒有拿到任何錢而且地方給一萬跟五千耶
transcript.whisperx[27].start 630.138
transcript.whisperx[27].end 634.083
transcript.whisperx[27].text 這個部分他有增加250億啦他增加30億現在就動用了對 他在30億的預備金當中動用了1億那既然30億裡頭可以動用到花蓮為什麼不能動用到台南你們
transcript.whisperx[28].start 647.2
transcript.whisperx[28].end 666.802
transcript.whisperx[28].text 請主席長跟相關部會講一下思考一下把這些一樣要用在刀口上把這個特別條例或強化社會韌性條例當中構思一下同時在進行所謂的社會工程的這個韌性的建構還有法治工程的一個社會韌性的建構有沒有可能
transcript.whisperx[29].start 668.035
transcript.whisperx[29].end 677.629
transcript.whisperx[29].text 我不相信這兩個特別條例下去之後這兩種社會任性就可以建立起來我不相信但是從這兩個特別條例開始然後再從那個審議長這兩個報告繼續延續好不好好 感謝兩位