iVOD / 164068

Field Value
IVOD_ID 164068
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/164068
日期 2025-10-13
會議資料.會議代碼 委員會-11-4-15-3
會議資料.會議代碼:str 第11屆第4會期內政委員會第3次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 3
會議資料.種類 委員會
會議資料.委員會代碼[0] 15
會議資料.委員會代碼:str[0] 內政委員會
會議資料.標題 第11屆第4會期內政委員會第3次全體委員會議
影片種類 Clip
開始時間 2025-10-13T13:38:53+08:00
結束時間 2025-10-13T13:49:20+08:00
影片長度 00:10:27
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/5d6d14916e595edc2214493e54f63a4d179f4a20aeac8eafeaa2f1cd0be3abd60d19e8fa393994795ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 洪孟楷
委員發言時間 13:38:53 - 13:49:20
會議時間 2025-10-13T09:00:00+08:00
會議名稱 立法院第11屆第4會期內政委員會第3次全體委員會議(事由:邀請內政部部長、原住民族委員會主任委員、農業部部長率所屬單位就「堰塞湖監測、災害預警通報、疏散機制及災後復原重建」進行專題報告,並備質詢,另請經濟部、環境部、衛生福利部、行政院公共工程委員會派員列席備詢。)
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 2.78159375
transcript.pyannote[0].end 2.91659375
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 8.19846875
transcript.pyannote[1].end 12.02909375
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 12.19784375
transcript.pyannote[2].end 12.90659375
transcript.pyannote[3].speaker SPEAKER_02
transcript.pyannote[3].start 12.90659375
transcript.pyannote[3].end 12.92346875
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 13.24409375
transcript.pyannote[4].end 15.48846875
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 17.07471875
transcript.pyannote[5].end 18.07034375
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 19.01534375
transcript.pyannote[6].end 19.47096875
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 19.57221875
transcript.pyannote[7].end 19.96034375
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 20.55096875
transcript.pyannote[8].end 32.16096875
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 32.43096875
transcript.pyannote[9].end 35.28284375
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 35.63721875
transcript.pyannote[10].end 36.12659375
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 36.32909375
transcript.pyannote[11].end 71.58096875
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 72.32346875
transcript.pyannote[12].end 85.89096875
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 86.19471875
transcript.pyannote[13].end 94.12596875
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 94.39596875
transcript.pyannote[14].end 95.18909375
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 95.76284375
transcript.pyannote[15].end 98.86784375
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 98.09159375
transcript.pyannote[16].end 98.59784375
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 102.19221875
transcript.pyannote[17].end 111.62534375
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 103.37346875
transcript.pyannote[18].end 103.60971875
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 109.22909375
transcript.pyannote[19].end 117.19409375
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 116.28284375
transcript.pyannote[20].end 127.87596875
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 122.44221875
transcript.pyannote[21].end 122.67846875
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 128.29784375
transcript.pyannote[22].end 130.94721875
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 131.26784375
transcript.pyannote[23].end 137.59596875
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 137.81534375
transcript.pyannote[24].end 157.40721875
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 142.42221875
transcript.pyannote[25].end 142.54034375
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 152.63159375
transcript.pyannote[26].end 152.96909375
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 157.40721875
transcript.pyannote[27].end 165.55784375
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 165.55784375
transcript.pyannote[28].end 166.03034375
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 166.03034375
transcript.pyannote[29].end 166.04721875
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 166.09784375
transcript.pyannote[30].end 167.05971875
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 167.71784375
transcript.pyannote[31].end 174.04596875
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 168.73034375
transcript.pyannote[32].end 169.35471875
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 171.31221875
transcript.pyannote[33].end 171.63284375
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 174.36659375
transcript.pyannote[34].end 192.79409375
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 179.12534375
transcript.pyannote[35].end 179.49659375
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 193.04721875
transcript.pyannote[36].end 198.24471875
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 198.48096875
transcript.pyannote[37].end 199.72971875
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 199.72971875
transcript.pyannote[38].end 199.76346875
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 199.84784375
transcript.pyannote[39].end 243.87471875
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 204.31971875
transcript.pyannote[40].end 204.35346875
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 204.35346875
transcript.pyannote[41].end 204.52221875
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 210.17534375
transcript.pyannote[42].end 211.98096875
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 222.51096875
transcript.pyannote[43].end 222.96659375
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 223.54034375
transcript.pyannote[44].end 223.75971875
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 237.36096875
transcript.pyannote[45].end 238.96409375
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 238.96409375
transcript.pyannote[46].end 239.79096875
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 244.16159375
transcript.pyannote[47].end 244.17846875
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 244.17846875
transcript.pyannote[48].end 244.43159375
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 244.43159375
transcript.pyannote[49].end 244.46534375
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 244.66784375
transcript.pyannote[50].end 244.70159375
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 244.70159375
transcript.pyannote[51].end 256.81784375
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 256.91909375
transcript.pyannote[52].end 266.62221875
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 267.82034375
transcript.pyannote[53].end 274.68846875
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 270.68909375
transcript.pyannote[54].end 271.14471875
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 273.33846875
transcript.pyannote[55].end 285.70784375
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 274.75596875
transcript.pyannote[56].end 275.16096875
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 280.37534375
transcript.pyannote[57].end 280.81409375
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 285.16784375
transcript.pyannote[58].end 288.52596875
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 286.83846875
transcript.pyannote[59].end 295.59659375
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 288.59346875
transcript.pyannote[60].end 288.64409375
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 295.81596875
transcript.pyannote[61].end 296.35596875
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 296.45721875
transcript.pyannote[62].end 319.91346875
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 304.37159375
transcript.pyannote[63].end 304.65846875
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 306.78471875
transcript.pyannote[64].end 307.40909375
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 316.50471875
transcript.pyannote[65].end 316.84221875
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 320.03159375
transcript.pyannote[66].end 324.41909375
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 324.25034375
transcript.pyannote[67].end 328.99221875
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 326.30909375
transcript.pyannote[68].end 326.84909375
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 328.36784375
transcript.pyannote[69].end 328.92471875
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 328.99221875
transcript.pyannote[70].end 334.61159375
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 333.09284375
transcript.pyannote[71].end 333.48096875
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 334.94909375
transcript.pyannote[72].end 335.70846875
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 334.96596875
transcript.pyannote[73].end 337.46346875
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 337.46346875
transcript.pyannote[74].end 337.85159375
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 338.17221875
transcript.pyannote[75].end 340.09596875
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 340.09596875
transcript.pyannote[76].end 342.13784375
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 340.72034375
transcript.pyannote[77].end 341.98596875
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 342.22221875
transcript.pyannote[78].end 343.96034375
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 342.50909375
transcript.pyannote[79].end 343.85909375
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 344.11221875
transcript.pyannote[80].end 344.38221875
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 344.38221875
transcript.pyannote[81].end 346.39034375
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 346.45784375
transcript.pyannote[82].end 346.81221875
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 346.81221875
transcript.pyannote[83].end 348.28034375
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 348.65159375
transcript.pyannote[84].end 358.65846875
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 358.03409375
transcript.pyannote[85].end 361.32471875
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 359.11409375
transcript.pyannote[86].end 359.50221875
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 361.32471875
transcript.pyannote[87].end 362.86034375
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 362.35409375
transcript.pyannote[88].end 364.86846875
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 363.23159375
transcript.pyannote[89].end 363.51846875
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 365.00346875
transcript.pyannote[90].end 382.77284375
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 382.92471875
transcript.pyannote[91].end 385.43909375
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 386.04659375
transcript.pyannote[92].end 391.02471875
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 391.42971875
transcript.pyannote[93].end 393.77534375
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 394.51784375
transcript.pyannote[94].end 404.67659375
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 404.81159375
transcript.pyannote[95].end 413.21534375
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 413.72159375
transcript.pyannote[96].end 417.94034375
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 418.19346875
transcript.pyannote[97].end 423.69471875
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 423.69471875
transcript.pyannote[98].end 429.43221875
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 429.65159375
transcript.pyannote[99].end 447.58971875
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 432.21659375
transcript.pyannote[100].end 432.75659375
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 436.46909375
transcript.pyannote[101].end 436.87409375
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 447.92721875
transcript.pyannote[102].end 467.60346875
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 455.41971875
transcript.pyannote[103].end 455.84159375
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 467.85659375
transcript.pyannote[104].end 473.88096875
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 474.08346875
transcript.pyannote[105].end 488.91659375
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 485.10284375
transcript.pyannote[106].end 485.47409375
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 486.50346875
transcript.pyannote[107].end 486.84096875
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 487.71846875
transcript.pyannote[108].end 496.02096875
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 492.67971875
transcript.pyannote[109].end 497.03346875
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 496.07159375
transcript.pyannote[110].end 499.66596875
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 499.66596875
transcript.pyannote[111].end 509.06534375
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 500.17221875
transcript.pyannote[112].end 500.42534375
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 509.13284375
transcript.pyannote[113].end 520.82721875
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 511.46159375
transcript.pyannote[114].end 511.91721875
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 520.89471875
transcript.pyannote[115].end 532.79159375
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 525.67034375
transcript.pyannote[116].end 526.00784375
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 532.28534375
transcript.pyannote[117].end 561.51284375
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 543.74346875
transcript.pyannote[118].end 544.19909375
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 561.63096875
transcript.pyannote[119].end 570.47346875
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 569.24159375
transcript.pyannote[120].end 572.24534375
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 571.73909375
transcript.pyannote[121].end 572.07659375
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 572.51534375
transcript.pyannote[122].end 574.86096875
transcript.pyannote[123].speaker SPEAKER_01
transcript.pyannote[123].start 574.25346875
transcript.pyannote[123].end 574.69221875
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 574.87784375
transcript.pyannote[124].end 592.98471875
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 586.01534375
transcript.pyannote[125].end 586.43721875
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 591.41534375
transcript.pyannote[126].end 617.63909375
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 615.41159375
transcript.pyannote[127].end 615.61409375
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 618.75284375
transcript.pyannote[128].end 622.70159375
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 622.93784375
transcript.pyannote[129].end 622.97159375
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 622.97159375
transcript.pyannote[130].end 623.27534375
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 623.27534375
transcript.pyannote[131].end 623.49471875
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 625.21596875
transcript.pyannote[132].end 626.31284375
transcript.pyannote[133].speaker SPEAKER_01
transcript.pyannote[133].start 626.66721875
transcript.pyannote[133].end 626.97096875
transcript.whisperx[0].start 8.22
transcript.whisperx[0].end 35.037
transcript.whisperx[0].text 好主席謝謝麻煩請內政部劉世芳部長我們請劉部長那可能農業部次長也麻煩還有農業部次長好部長那個本期間當然大家都關心所謂艷澀湖的相關的一個後續的狀況其實就是花蓮的一個部分嘛那我先跟您這邊再做個確認因為本期記得在兩個禮拜前左右的這個特別條例
transcript.whisperx[1].start 36.414
transcript.whisperx[1].end 54.138
transcript.whisperx[1].text 的一个质询的时候我有请教当时李洪源前部长他也是用他的专家的一个意见是讲是说目前还有所谓3.2亿泥沙本来上面有3.2亿泥沙那现在这一次下来7000万泥沙还有2.5亿泥沙左右但是
transcript.whisperx[2].start 54.517
transcript.whisperx[2].end 80.026
transcript.whisperx[2].text 他講的我後來特別注意到他講的所謂是泥沙的部分並不是水量的部分今天幾個部會給我們的數據就說現在到目前為止馬太安溪的這個堰塞湖的水量約蓄水量是155萬公噸所以我先請教一下因為9月24號本期有看到一個數字是李洪源部長這邊有跟內政部這邊來做討論是說9月24號上面還有所謂3000萬公噸的水量
transcript.whisperx[3].start 84.79
transcript.whisperx[3].end 97.015
transcript.whisperx[3].text 那到今天提供的資料只剩155萬公噸所以是不是這個驗射壺它其實還是有持續有把這些水量排放的一個狀況說明一下好不好我想因為監測單位是農業部我請他來回應好嗎
transcript.whisperx[4].start 102.393
transcript.whisperx[4].end 126.574
transcript.whisperx[4].text 跟委員報告目前確實是他達到一個差不多平衡的狀態就是進多少水他就出多少水所以他其實過去到現在一直還是有所謂的水量有流失的一個狀況是不是自然的流失他目前是維持平衡目前的這個水量沒有太多的消長那現在會因為是您剛所說到剩下150萬噸
transcript.whisperx[5].start 128.482
transcript.whisperx[5].end 155.531
transcript.whisperx[5].text 跟之前的数据有比较大差是因为我们重新安装水位计之后发现到它应该是在之前923的时候溢流溃绝的过程当中它有很多的泥沙也往湖区来沉积然后当天下大雨所以也有很多泥沙进来所以它现在的湖底的形状可能从原本比较像一个碗的形状变成是一个浅碟子的形状所以水量是变少但是那边的问题现在是
transcript.whisperx[6].start 155.991
transcript.whisperx[6].end 166.883
transcript.whisperx[6].text 您剛所提到土砂的問題是泥沙的問題嗎是 所以我想要確認的地方就是說你今天白紫黑字的資料是155萬公噸的水量對那泥沙勒
transcript.whisperx[7].start 167.919
transcript.whisperx[7].end 191.77
transcript.whisperx[7].text 泥沙现在李洪源部长他在上个礼拜的记者会其实让我们这个数字我觉得相信对于当地的居民来说或者说全国民众来说也是会感到焦虑的就是说上面有3.2亿吨的泥沙但这一次即便是那么严重的风灾只下来了7000不能讲只下来了7000万公吨那上面还有2.5亿
transcript.whisperx[8].start 193.956
transcript.whisperx[8].end 197.624
transcript.whisperx[8].text 那會不會接下來現在極端氣候那我們要怎麼樣因應
transcript.whisperx[9].start 198.598
transcript.whisperx[9].end 223.431
transcript.whisperx[9].text 我覺得這才是關鍵嘛對這也是我們後續要特別在監測跟防範的那就是上頭的這些差不多還有2.5億萬立方的這個泥沙他未來會隨著比如說大雨這個他有可能還是會逐漸往下一動那即使是沒有好大雨的情況下長期有時候下小雨他還是會比較緩慢的向下移動
transcript.whisperx[10].start 224.191
transcript.whisperx[10].end 243.584
transcript.whisperx[10].text 所以包含最下游的青枢还有刚刚今天大家所关注的堤防的这个加高还有就是说怎么样在中上游想办法能够有一些蓝沙或主沙不要让这些沙一次一次性的严重性的对对这个都是后续从上中下游都要去努力的好
transcript.whisperx[11].start 244.795
transcript.whisperx[11].end 266.392
transcript.whisperx[11].text 那所以剛剛也確認是說現在確實上面還有2.5億公噸的一個泥沙是好那現在比較積極的作為我相信一定會有可是如果說短時間內這可能就要回來到部長這邊部長上禮拜我記得我質詢的時候有特別詢問過所謂有沒有中央啟動千春計畫那當時您給我的答覆是說一個禮拜現在在一
transcript.whisperx[12].start 268.724
transcript.whisperx[12].end 286.31
transcript.whisperx[12].text 諮詢相關這個村民的一個意見對受災戶的意見那現在狀況怎麼樣你說一個禮拜內跟委員報告那個我們現在在重災戶的部分呢幾乎每一戶都有找到人因為有的時候他們到收容安置或者依親到別的地方那我們現在呢所以我們重災戶這樣子總共計算下來89戶
transcript.whisperx[13].start 289.071
transcript.whisperx[13].end 295.078
transcript.whisperx[13].text 那現在有58戶在收容安置那39戶依親那目前為止有40戶表達需要中繼屋那到目前為止沒有人表達要遷村
transcript.whisperx[14].start 305.248
transcript.whisperx[14].end 334.269
transcript.whisperx[14].text 那這個是個別災戶的意見所以我們現在可能就是先朝著說在台塘的一塊五公頃的土地上面看是不是先來蓋中繼屋然後才慢慢解決他們未來收容安置的問題所以說中繼屋有可能是在台塘這邊會由內政部這邊來做進行嗎是的 我們會負責處理這一塊但是他們要不要去中繼屋還要再問他們你剛剛有提到就是說有40戶表達意願是他們是希望去中繼屋所以說其實也還沒有到一半
transcript.whisperx[15].start 335.129
transcript.whisperx[15].end 348.072
transcript.whisperx[15].text 因為你89戶的重災戶嘛那剩下的這些重災戶勒有的人可能要移清有的人可能要移清有人要移清有人要租屋有的人要回到原住所
transcript.whisperx[16].start 348.706
transcript.whisperx[16].end 359.23
transcript.whisperx[16].text 因為本席有看到您這邊今天內政部的相關資料有包括說衣輕有包括說租屋補貼或是租金補貼或是短期旅宿等等的部分這是最近現在這個狀態現在這個狀態但比較長期的狀態重災戶是89戶是
transcript.whisperx[17].start 365.712
transcript.whisperx[17].end 392.477
transcript.whisperx[17].text 所以本席現在想確認的地方就說因為剛剛我們也詢問完畢了嘛就說上面如果說至少有2.5億公噸的泥沙那其某程度上我們短時間內也沒有辦法有比較積極的作為當然你有123的步驟但實際上在那個地方到底適不適合居住這可能大家都還要再評估甚至打一個問號所以說我們現在想是說怎麼樣保障地方的鄉親的一個權利本席那個時候提出來當時在
transcript.whisperx[18].start 394.734
transcript.whisperx[18].end 413.071
transcript.whisperx[18].text 不管是921地震或是88風災莫拉克風災的時候其實就是中央跟地方有一起配合尤其是中央提出所謂的災後復原計畫條例那並且中央這邊協助引導不管是部會的溝通以及編列的預算還有後續的整合的部分
transcript.whisperx[19].start 413.789
transcript.whisperx[19].end 417.73
transcript.whisperx[19].text 所以我現在才請教是說那到底我們後續這一個部分重災戶也好或是說花蓮的鄉親在這邊的一個鄉親他後續何去何從報告委員我們上個禮拜的行政院議會已經有通過一個丹納斯颱風加上這一次這個那個豔賽湖的部分
transcript.whisperx[20].start 433.175
transcript.whisperx[20].end 438.837
transcript.whisperx[20].text 所以我們的預算呢是編列250億就除了丹納斯以外的這個600億以外編列250億那針對後續的這個收容安置的部分的話大概我們提出三種條件一個就是異地重建一個是原地重建那這個部分呢當然是要問過災民的意見那還有一個在這中間的中繼的部分的話呢我要求我們的次長來協助看是不是這個東華大學
transcript.whisperx[21].start 461.986
transcript.whisperx[21].end 465.768
transcript.whisperx[21].text 跟都市防災有關的或是區域計劃有關的幫我們做一下基本上如果未來這個地方仍然有這個驗賽湖的這個危機的話要不要做不同的都市計劃包括說是不是整個要遷移到某個地方因為這一次呢目前為止是緩和的狀態明年的汛期有沒有更大的颱風要來沒有人敢保證
transcript.whisperx[22].start 487.763
transcript.whisperx[22].end 506.742
transcript.whisperx[22].text 甚至不一定以現在的極端氣候其實你說十月有可能台風也會沒有人敢沒有人敢預測也因此這個事情要快要一快不一慢嘛是所以我們希望在兩三個月之內啊包括東華大學的這個都市建築研究所在提供告訴我們說過去的歷史紀錄裡面以來
transcript.whisperx[23].start 509.524
transcript.whisperx[23].end 525.137
transcript.whisperx[23].text 現在的重災區媽祖街那個地方89戶是不是都不宜居住那這個部分出來以後我們會朝著這方向再跟花蓮縣政府或是光復鄉公所來做比較好的溝通是因為其實我覺得對災民來講他們也需要是專業的判斷
transcript.whisperx[24].start 525.657
transcript.whisperx[24].end 528.859
transcript.whisperx[24].text 告訴他們說到底他們的家園後續要怎麼做會對於他們的生命財產安全其實是最有利的幫助對 這是中長期我們要處理的計畫但在短期內就是我們這兩天這個紀連城政委希望跟花蓮縣政府還有三個鄉鎮公所展開處理一下疏散撤離的機制
transcript.whisperx[25].start 543.906
transcript.whisperx[25].end 554.179
transcript.whisperx[25].text 因為現在的人已經不居住在原地是他在收容安置所或在別的地方所以怎麼樣把人口做最好的清查知道他人在哪裡到時候有狀況怎麼樣把它撤離出來才不會找不到人那這樣會對於那個有效的這個做疏散撤離計畫會打折
transcript.whisperx[26].start 562.064
transcript.whisperx[26].end 571.746
transcript.whisperx[26].text 所以我想雖然我們不是花蓮鄉親但是我們對花蓮鄉親的關心是沒有分彼此的報告委員我們現在跟花蓮縣政委一樣都是為期一級開設這個一級開設其實每一天滾動進來的數據我們都會做判斷所以才會有前進指揮所陸陸續續有市長跟政務委員都在現場幫忙
transcript.whisperx[27].start 586.289
transcript.whisperx[27].end 612.186
transcript.whisperx[27].text 我想很多跨部會應該處理的部分我想行政院都非常盡力在幫忙處理一快不一慢啦就像我那天總執軍的時候特別提到是說後續的這個所謂的重建計畫等等的也希望能夠有政委來做一個調和不管是農業部不管是內政部相關部會都一起來做我還是再次強調就是說雖然花蓮我們並不是花蓮的鄉親但是花蓮在這一次的受災我們全國都感同身受
transcript.whisperx[28].start 612.574
transcript.whisperx[28].end 621.401
transcript.whisperx[28].text 也因此特別運用這個機會來跟您就教未來我們還會持續追蹤也請內政部把握這樣子一個專業的精神勇於認識謝謝謝謝謝謝