iVOD / 164060

Field Value
IVOD_ID 164060
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/164060
日期 2025-10-13
會議資料.會議代碼 委員會-11-4-26-3
會議資料.會議代碼:str 第11屆第4會期社會福利及衛生環境委員會第3次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 3
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.標題 第11屆第4會期社會福利及衛生環境委員會第3次全體委員會議
影片種類 Clip
開始時間 2025-10-13T13:19:40+08:00
結束時間 2025-10-13T13:32:27+08:00
影片長度 00:12:47
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/5d6d14916e595edccb43aa97f50f8304eadaba87319979820384c49a5c493879343b689e4d41e2da5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 楊曜
委員發言時間 13:19:40 - 13:32:27
會議時間 2025-10-13T09:00:00+08:00
會議名稱 立法院第11屆第4會期社會福利及衛生環境委員會第3次全體委員會議(事由:邀請衛生福利部部長及行政院食品安全辦公室就「重大食安事件處理之檢討與食安稽核人力不足問題」進行專題報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 1.36409375
transcript.pyannote[0].end 2.41034375
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 2.41034375
transcript.pyannote[1].end 2.42721875
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 10.27409375
transcript.pyannote[2].end 12.18096875
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 13.54784375
transcript.pyannote[3].end 15.55596875
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 14.08784375
transcript.pyannote[4].end 14.64471875
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 18.00284375
transcript.pyannote[5].end 18.01971875
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 18.01971875
transcript.pyannote[6].end 22.98096875
transcript.pyannote[7].speaker SPEAKER_02
transcript.pyannote[7].start 18.18846875
transcript.pyannote[7].end 18.23909375
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 24.14534375
transcript.pyannote[8].end 25.52909375
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 26.30534375
transcript.pyannote[9].end 39.26534375
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 36.58221875
transcript.pyannote[10].end 36.95346875
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 40.00784375
transcript.pyannote[11].end 41.02034375
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 41.52659375
transcript.pyannote[12].end 46.74096875
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 46.85909375
transcript.pyannote[13].end 76.74471875
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 67.22721875
transcript.pyannote[14].end 68.15534375
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 69.40409375
transcript.pyannote[15].end 69.55596875
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 77.41971875
transcript.pyannote[16].end 84.64221875
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 84.57471875
transcript.pyannote[17].end 87.78096875
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 87.78096875
transcript.pyannote[18].end 96.13409375
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 90.16034375
transcript.pyannote[19].end 90.54846875
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 96.13409375
transcript.pyannote[20].end 96.43784375
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 96.37034375
transcript.pyannote[21].end 101.93909375
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 101.39909375
transcript.pyannote[22].end 111.50721875
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 109.46534375
transcript.pyannote[23].end 112.04721875
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 112.31721875
transcript.pyannote[24].end 120.88971875
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 121.73346875
transcript.pyannote[25].end 123.53909375
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 124.48409375
transcript.pyannote[26].end 131.60534375
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 132.06096875
transcript.pyannote[27].end 166.68846875
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 160.34346875
transcript.pyannote[28].end 160.81596875
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 166.68846875
transcript.pyannote[29].end 180.44159375
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 173.69159375
transcript.pyannote[30].end 174.11346875
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 180.34034375
transcript.pyannote[31].end 180.89721875
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 180.59346875
transcript.pyannote[32].end 186.29721875
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 185.18346875
transcript.pyannote[33].end 185.65596875
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 187.25909375
transcript.pyannote[34].end 220.13159375
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 196.43909375
transcript.pyannote[35].end 199.72971875
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 200.45534375
transcript.pyannote[36].end 201.28221875
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 206.93534375
transcript.pyannote[37].end 208.31909375
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 210.22596875
transcript.pyannote[38].end 210.86721875
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 213.49971875
transcript.pyannote[39].end 213.55034375
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 213.55034375
transcript.pyannote[40].end 213.90471875
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 219.91221875
transcript.pyannote[41].end 220.33409375
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 220.18221875
transcript.pyannote[42].end 228.61971875
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 221.04284375
transcript.pyannote[43].end 221.44784375
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 228.61971875
transcript.pyannote[44].end 229.02471875
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 228.63659375
transcript.pyannote[45].end 229.41284375
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 229.41284375
transcript.pyannote[46].end 229.76721875
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 229.46346875
transcript.pyannote[47].end 229.49721875
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 229.76721875
transcript.pyannote[48].end 234.72846875
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 234.40784375
transcript.pyannote[49].end 234.71159375
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 234.72846875
transcript.pyannote[50].end 235.36971875
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 235.36971875
transcript.pyannote[51].end 235.74096875
transcript.pyannote[52].speaker SPEAKER_02
transcript.pyannote[52].start 235.74096875
transcript.pyannote[52].end 235.77471875
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 235.77471875
transcript.pyannote[53].end 237.14159375
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 235.80846875
transcript.pyannote[54].end 241.22534375
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 238.57596875
transcript.pyannote[55].end 239.31846875
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 239.72346875
transcript.pyannote[56].end 240.17909375
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 240.88784375
transcript.pyannote[57].end 275.32971875
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 267.53346875
transcript.pyannote[58].end 269.08596875
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 274.97534375
transcript.pyannote[59].end 290.44971875
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 277.50659375
transcript.pyannote[60].end 277.91159375
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 278.28284375
transcript.pyannote[61].end 279.64971875
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 284.54346875
transcript.pyannote[62].end 284.79659375
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 285.16784375
transcript.pyannote[63].end 285.70784375
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 286.14659375
transcript.pyannote[64].end 287.07471875
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 290.44971875
transcript.pyannote[65].end 334.44284375
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 294.48284375
transcript.pyannote[66].end 294.80346875
transcript.pyannote[67].speaker SPEAKER_02
transcript.pyannote[67].start 297.25034375
transcript.pyannote[67].end 297.95909375
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 298.00971875
transcript.pyannote[68].end 298.27971875
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 304.79346875
transcript.pyannote[69].end 305.09721875
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 332.94096875
transcript.pyannote[70].end 346.93034375
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 341.88471875
transcript.pyannote[71].end 342.17159375
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 346.93034375
transcript.pyannote[72].end 347.38596875
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 347.38596875
transcript.pyannote[73].end 352.44846875
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 350.65971875
transcript.pyannote[74].end 351.04784375
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 352.81971875
transcript.pyannote[75].end 356.12721875
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 355.55346875
transcript.pyannote[76].end 356.00909375
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 356.38034375
transcript.pyannote[77].end 363.16409375
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 363.16409375
transcript.pyannote[78].end 370.18409375
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 370.09971875
transcript.pyannote[79].end 370.47096875
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 370.35284375
transcript.pyannote[80].end 381.82784375
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 382.73909375
transcript.pyannote[81].end 393.47159375
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 393.99471875
transcript.pyannote[82].end 400.76159375
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 400.62659375
transcript.pyannote[83].end 400.99784375
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 400.81221875
transcript.pyannote[84].end 403.47846875
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 403.47846875
transcript.pyannote[85].end 413.40096875
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 413.46846875
transcript.pyannote[86].end 415.40909375
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 415.79721875
transcript.pyannote[87].end 420.60659375
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 420.67409375
transcript.pyannote[88].end 428.09909375
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 428.43659375
transcript.pyannote[89].end 448.58534375
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 449.68221875
transcript.pyannote[90].end 476.69909375
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 467.55284375
transcript.pyannote[91].end 468.05909375
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 476.10846875
transcript.pyannote[92].end 476.46284375
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 476.69909375
transcript.pyannote[93].end 518.56596875
transcript.pyannote[94].speaker SPEAKER_02
transcript.pyannote[94].start 476.71596875
transcript.pyannote[94].end 477.77909375
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 487.41471875
transcript.pyannote[95].end 487.87034375
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 501.53909375
transcript.pyannote[96].end 501.69096875
transcript.pyannote[97].speaker SPEAKER_02
transcript.pyannote[97].start 514.36409375
transcript.pyannote[97].end 514.38096875
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 514.41471875
transcript.pyannote[98].end 514.43159375
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 514.46534375
transcript.pyannote[99].end 514.49909375
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 516.47346875
transcript.pyannote[100].end 516.84471875
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 518.09346875
transcript.pyannote[101].end 535.32284375
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 531.57659375
transcript.pyannote[102].end 540.36846875
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 535.32284375
transcript.pyannote[103].end 535.35659375
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 538.22534375
transcript.pyannote[104].end 538.63034375
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 538.63034375
transcript.pyannote[105].end 538.69784375
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 540.55409375
transcript.pyannote[106].end 544.65471875
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 542.03909375
transcript.pyannote[107].end 542.20784375
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 542.20784375
transcript.pyannote[108].end 542.78159375
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 545.90346875
transcript.pyannote[109].end 547.47284375
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 547.69221875
transcript.pyannote[110].end 548.80596875
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 548.97471875
transcript.pyannote[111].end 549.70034375
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 552.88971875
transcript.pyannote[112].end 556.85534375
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 556.46721875
transcript.pyannote[113].end 557.29409375
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 557.24346875
transcript.pyannote[114].end 566.72721875
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 567.41909375
transcript.pyannote[115].end 572.56596875
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 572.81909375
transcript.pyannote[116].end 595.22909375
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 574.21971875
transcript.pyannote[117].end 574.55721875
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 596.47784375
transcript.pyannote[118].end 597.13596875
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 598.73909375
transcript.pyannote[119].end 601.45596875
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 602.90721875
transcript.pyannote[120].end 607.02471875
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 607.49721875
transcript.pyannote[121].end 612.13784375
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 610.82159375
transcript.pyannote[122].end 611.51346875
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 612.77909375
transcript.pyannote[123].end 622.97159375
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 617.26784375
transcript.pyannote[124].end 617.82471875
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 621.77346875
transcript.pyannote[125].end 622.48221875
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 622.97159375
transcript.pyannote[126].end 623.44409375
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 623.44409375
transcript.pyannote[127].end 623.96721875
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 623.96721875
transcript.pyannote[128].end 624.03471875
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 624.03471875
transcript.pyannote[129].end 624.96284375
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 624.96284375
transcript.pyannote[130].end 625.03034375
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 625.03034375
transcript.pyannote[131].end 625.97534375
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 625.97534375
transcript.pyannote[132].end 627.42659375
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 626.80221875
transcript.pyannote[133].end 627.76409375
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 628.48971875
transcript.pyannote[134].end 628.99596875
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 629.77221875
transcript.pyannote[135].end 646.00596875
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 646.34346875
transcript.pyannote[136].end 706.62096875
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 666.37409375
transcript.pyannote[137].end 667.97721875
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 706.87409375
transcript.pyannote[138].end 707.59971875
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 707.93721875
transcript.pyannote[139].end 712.61159375
transcript.pyannote[140].speaker SPEAKER_01
transcript.pyannote[140].start 712.02096875
transcript.pyannote[140].end 753.63471875
transcript.pyannote[141].speaker SPEAKER_00
transcript.pyannote[141].start 714.16409375
transcript.pyannote[141].end 714.53534375
transcript.pyannote[142].speaker SPEAKER_00
transcript.pyannote[142].start 736.40534375
transcript.pyannote[142].end 736.59096875
transcript.pyannote[143].speaker SPEAKER_00
transcript.pyannote[143].start 748.16721875
transcript.pyannote[143].end 748.38659375
transcript.pyannote[144].speaker SPEAKER_01
transcript.pyannote[144].start 753.92159375
transcript.pyannote[144].end 764.36721875
transcript.pyannote[145].speaker SPEAKER_00
transcript.pyannote[145].start 762.34221875
transcript.pyannote[145].end 762.39284375
transcript.pyannote[146].speaker SPEAKER_00
transcript.pyannote[146].start 762.40971875
transcript.pyannote[146].end 762.49409375
transcript.pyannote[147].speaker SPEAKER_00
transcript.pyannote[147].start 763.28721875
transcript.pyannote[147].end 763.89471875
transcript.whisperx[0].start 10.641
transcript.whisperx[0].end 22.526
transcript.whisperx[0].text 謝謝主席 主席請一下部長和署長還有署長兩位好 兩個人同樣專業就不知道要問哪一個這兩個人很專業
transcript.whisperx[1].start 26.645
transcript.whisperx[1].end 45.171
transcript.whisperx[1].text 我直接這樣子問好了就是我們今年大概有到9月底有47個7項的藥品包括學名藥跟針劑將提供供應請問一下這個到底跟藥價有沒有關係
transcript.whisperx[2].start 47.129
transcript.whisperx[2].end 74.888
transcript.whisperx[2].text 根委員報告這個47項裡面大概屬於原廠要的是24個但是這個原廠都已經有學民要出來所以他們多數是考慮到他們的市場定位像那個什麼百優姐千優姐他根本就是不做了因為跟學民要太多了他不要再跟人家競爭了他就轉變他的這個商業的策略去發展他的專利要為主
transcript.whisperx[3].start 77.709
transcript.whisperx[3].end 95.378
transcript.whisperx[3].text 這全部沒有一樣是專利期內的藥不供應都是過了專利期同時有學名藥所以其實跟藥價是沒有關係的藥價我們都可以來提高所以像4月到現在我們也合訂了200多項的藥品給他提高藥價
transcript.whisperx[4].start 96.738
transcript.whisperx[4].end 122.659
transcript.whisperx[4].text 如果真的是因為成本啊物料的價格的影響也可以來提其實有學名藥出來以後的延長藥其實它的價格本來也就跟學名藥差不多對 這個全世界都是應該是這樣只是說我們要去確保這些學名藥的療效讓它相等在保障這個病人用藥的安全會不會引發缺藥的問題啊
transcript.whisperx[5].start 125.841
transcript.whisperx[5].end 142.308
transcript.whisperx[5].text 會缺藥是這個病人拿不到藥叫做缺藥所以我們要處理的是要預警就不要你突然間斷藥了斷藥的時候病人他換藥也要有一定的時間去適應所以我們才會要求說這些要停止
transcript.whisperx[6].start 142.888
transcript.whisperx[6].end 157.23
transcript.whisperx[6].text 提供應的一定要提早講提早講我們就有辦法來因應不論是開始做統一的控貨或者是輔導其他的業者增加產量因為有些有學名要可是他產線有限
transcript.whisperx[7].start 158.351
transcript.whisperx[7].end 184.456
transcript.whisperx[7].text 它要一下子增加也要時間所以這些我們都有辦法因為只要提早預警我們後面就不會有缺藥的問題我們還是利用這個機會讓部長和署長講一下原廠藥跟學名藥因為大概這一次缺藥所以很多人對學名藥會有誤解我覺得這個部裡面跟署裡面應該要去加強宣導
transcript.whisperx[8].start 187.352
transcript.whisperx[8].end 209.92
transcript.whisperx[8].text 原廠藥就是因為藥廠他負責研發所以研發的費用很貴所以給他5年的專利期不只喔專利期有時候很長 20幾年都有可能看他專利期過了以後他大概就會公佈他的成分 劑量跟劑型
transcript.whisperx[9].start 210.9
transcript.whisperx[9].end 228.691
transcript.whisperx[9].text 那其他的藥廠就可以根據這三項去形塑出來它可能藥的包裝不一樣然後形塑的過程會有差異可是通常來講藥效並沒有說一定就是原廠的比較好對不對
transcript.whisperx[10].start 229.952
transcript.whisperx[10].end 252.036
transcript.whisperx[10].text 譬如說大家最接受的普拿疼他就是學民藥跟委員報告 對很多人以為普拿疼是原廠藥不是 他也是學民藥對 所以我才想說藉這個機會是不是提醒一下部裡面跟署裡面就是盡可能讓國人知道避免恐慌大家都以為說原廠藥的療效比較好
transcript.whisperx[11].start 257.657
transcript.whisperx[11].end 276.577
transcript.whisperx[11].text 其實不見得啦應該這麼講就是學名要問世問世的前提就是原廠要公佈了他的所有的配方所以理論上應該是沒有不必要造成這麼大的恐慌只要他的製程符合規則
transcript.whisperx[12].start 277.178
transcript.whisperx[12].end 292.539
transcript.whisperx[12].text 像我們現在是Peace GNP廠自成符合規範配方對了其實有的都還會做臨床試驗做BABE生物相等性這些所以那個可以確保這個要效是相當的基本上就是不一定
transcript.whisperx[13].start 293.18
transcript.whisperx[13].end 316.651
transcript.whisperx[13].text 不一定完全一樣啦那每個病人接受的也不一樣啦可是我覺得我們有必要把這個觀念跟國人做個說明啦不要大家對於因為其實這個就是民意代表當久了你大概就會遇到很多問題啦其實我們很常被問這個問題啦就是說
transcript.whisperx[14].start 320.473
transcript.whisperx[14].end 346.234
transcript.whisperx[14].text 為什麼醫學中心的藥好像就比澎湖好那我通常都會跟他說不會啦就是一般來講不管是原廠 學民他的療效應該都是跟委員補充說川普總統美國川普總統提告提到說要增加那個進口的藥的藥價的那個不是 關稅要增加他也是針對所謂的原廠藥
transcript.whisperx[15].start 347.635
transcript.whisperx[15].end 361.064
transcript.whisperx[15].text 他也是要扶植他自己國內的學民藥所以他只針對原廠藥去提高那個關稅所以道理是一樣的就是原廠藥應該價格要下降那個有學民藥出來了不應該還是在專利期這麼高對 那他
transcript.whisperx[16].start 365.266
transcript.whisperx[16].end 380.779
transcript.whisperx[16].text 有學名要出來他還可以這麼高可能是很多觀念造成的要不然有相同療效的東西出來理論上他不應該這樣子部長既然直接講到川普那我也直接問一下就是說其實藥品
transcript.whisperx[17].start 382.856
transcript.whisperx[17].end 401.502
transcript.whisperx[17].text 是比戰略物資更重要因為它本身也是戰略物資而且它是不管軍民都必須要用的那我們國內川普他是用關稅來保障學民藥的製作嘛那我們國內有沒有相關的
transcript.whisperx[18].start 405.223
transcript.whisperx[18].end 427.33
transcript.whisperx[18].text 我們的做法上是因為這個所有的藥品健保是最大的買方所以在價格上我們對於國產的學民藥那麼在合價上面如果他是專利期剛過前幾個來就鼓勵趕快有學民藥在台灣製造的我們前兩張我們給的價格跟他跟原廠藥一樣
transcript.whisperx[19].start 428.95
transcript.whisperx[19].end 448.389
transcript.whisperx[19].text 我們原廠藥一旦過了專利期大概有五年的時間慢慢調藥價但是如果在這個五年時間有台灣的學名藥跟他一樣我們就給他一樣的價格來鼓勵那第二個呢就是如果你這個是台灣的學名藥同時有做臨床試驗來證明他的療效相等
transcript.whisperx[20].start 449.724
transcript.whisperx[20].end 476.352
transcript.whisperx[20].text 本來不一定要 但是你做了這個事情我們也給你加價10%價格比較高那另外如果你這個這一組的藥裡面 學名藥的品項低於3個以下的我們那一年也不給你調藥價不砍藥價來鼓勵大家來供藥讓它韌性可以好一點那甚至呢還可以來提彈性提高它的藥價所以當然我們也做了這一些
transcript.whisperx[21].start 478.053
transcript.whisperx[21].end 500.77
transcript.whisperx[21].text 甚至於我的看法啦就是說扶植國內的廠商其實台灣有的時候就是大家也怕圖利啦要不然其實國內的藥品的相關廠商其實應該要給必要的資源就給啦
transcript.whisperx[22].start 502.191
transcript.whisperx[22].end 516.091
transcript.whisperx[22].text 因為這個國內不自己扶植自己的藥廠然後萬一有就是等於你的脖子被其他的國家掐住這個對於台灣
transcript.whisperx[23].start 518.154
transcript.whisperx[23].end 547.269
transcript.whisperx[23].text 跟委員報我們最多的時候齁在我們實施Peace GMP前大概國內的藥廠大概400多家現在呢實施Peace GMP已經到100多家了所以留下來的這個都是有品質的製藥廠所以這個進國人給予多方面的協助啦好 謝謝部長 謝謝署長謝謝委員你要跟我問一下國安辦主任嗎國安辦主任麻煩一下
transcript.whisperx[24].start 547.85
transcript.whisperx[24].end 559.894
transcript.whisperx[24].text 主任好主任我大概問一下因為時間的關係我還是想要因為我們設立食安辦公室
transcript.whisperx[25].start 567.475
transcript.whisperx[25].end 593.767
transcript.whisperx[25].text 本身就表示在宣示政府對於人民的食品安全有多重視那看起來就是這一次整個從先不要講前端就從你們知情到稽查到存封的速度都太慢了這個第一點第二點就是我問一個問題就是說你們
transcript.whisperx[26].start 598.769
transcript.whisperx[26].end 626.801
transcript.whisperx[26].text 以後要怎麼防止非關注化學物質進入食品 食品廠要 要 要目前有沒有什麼想法好 應該這樣講 講大方向就好了假如已經列入關注化學物質都會納管他不是 不是 不是對 現在就是還沒有納入關注化學物質 對 對可是他就是明明不應該在食品廠的東西 對 對 對
transcript.whisperx[27].start 628.57
transcript.whisperx[27].end 645.042
transcript.whisperx[27].text 所以有兩個方法我們會去檢討說這一些的項目適不適合納進去因為最早我們的顧慮就是說有一些這一些的化學品是有當成10天在用的那會讓
transcript.whisperx[28].start 646.463
transcript.whisperx[28].end 668.103
transcript.whisperx[28].text 民眾會覺得說那怎麼會這些是毒化物然後是可以值得會誤會所以我們未來會用關注化學物質去溝通假如它是沒有定在關注化學物質裡面它運作的紀錄會不夠我們就要靠地形的集合
transcript.whisperx[29].start 669.024
transcript.whisperx[29].end 684.044
transcript.whisperx[29].text 去看它進來的這一些非實天的化學品的管理它的庫存 它的使用紀錄我們去強化我們在實安叫做三專管理專人 專櫃跟專測它每領一瓶出來使用
transcript.whisperx[30].start 684.825
transcript.whisperx[30].end 707.351
transcript.whisperx[30].text 多少應該都要寫記錄那我們就要強化這一些管理他買進來的非實天的化學品所有都應該去列管那用這樣的一個方法強化管理因為他如果對不肖的黑心的業者他硬要做壞事不讓我們查那我們就
transcript.whisperx[31].start 708.535
transcript.whisperx[31].end 731.081
transcript.whisperx[31].text 得要靠其他的方法去讓它浮出來從蘇丹紅到這一次的事件都是非關注化學的物質假如說每個業者都很有良心也不需要設立食安辦所以我因為時間的關係我今天不大想已經沒有辦法跟你
transcript.whisperx[32].start 732.161
transcript.whisperx[32].end 752.498
transcript.whisperx[32].text 溝通很多啦不過我覺得我去找委員我覺得現在沒有納入非關注的部分你們要怎麼去查查這個你們要好好的想一想然後人力不足的部分我是覺得
transcript.whisperx[33].start 754.159
transcript.whisperx[33].end 764.261
transcript.whisperx[33].text 食藥署那邊好像已經有增加24個名額也還沒有用要進出補足啦好 謝謝主任 謝謝主席