iVOD / 164055

Field Value
IVOD_ID 164055
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/164055
日期 2025-10-13
會議資料.會議代碼 委員會-11-4-26-3
會議資料.會議代碼:str 第11屆第4會期社會福利及衛生環境委員會第3次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 3
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.標題 第11屆第4會期社會福利及衛生環境委員會第3次全體委員會議
影片種類 Clip
開始時間 2025-10-13T12:22:29+08:00
結束時間 2025-10-13T12:32:25+08:00
影片長度 00:09:56
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/5d6d14916e595edc2d4f80525efd1c44eadaba873199798254e55ddf1b168a31a12d4359cc2b37275ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 謝衣鳯
委員發言時間 12:22:29 - 12:32:25
會議時間 2025-10-13T09:00:00+08:00
會議名稱 立法院第11屆第4會期社會福利及衛生環境委員會第3次全體委員會議(事由:邀請衛生福利部部長及行政院食品安全辦公室就「重大食安事件處理之檢討與食安稽核人力不足問題」進行專題報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 5.07659375
transcript.pyannote[0].end 7.05096875
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 7.86096875
transcript.pyannote[1].end 8.60346875
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 11.20221875
transcript.pyannote[2].end 12.06284375
transcript.pyannote[3].speaker SPEAKER_02
transcript.pyannote[3].start 11.25284375
transcript.pyannote[3].end 23.53784375
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 13.80096875
transcript.pyannote[4].end 13.88534375
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 23.95971875
transcript.pyannote[5].end 34.15221875
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 34.52346875
transcript.pyannote[6].end 40.31159375
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 40.34534375
transcript.pyannote[7].end 40.36221875
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 40.36221875
transcript.pyannote[8].end 40.49721875
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 40.49721875
transcript.pyannote[9].end 45.74534375
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 44.47971875
transcript.pyannote[10].end 47.60159375
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 47.38221875
transcript.pyannote[11].end 51.53346875
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 50.99346875
transcript.pyannote[12].end 53.87909375
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 53.62596875
transcript.pyannote[13].end 71.02409375
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 55.90409375
transcript.pyannote[14].end 56.15721875
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 58.67159375
transcript.pyannote[15].end 59.53221875
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 67.51409375
transcript.pyannote[16].end 67.53096875
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 67.53096875
transcript.pyannote[17].end 68.71221875
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 71.02409375
transcript.pyannote[18].end 71.54721875
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 71.36159375
transcript.pyannote[19].end 71.37846875
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 71.37846875
transcript.pyannote[20].end 74.48346875
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 71.54721875
transcript.pyannote[21].end 71.59784375
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 71.59784375
transcript.pyannote[22].end 72.25596875
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 74.48346875
transcript.pyannote[23].end 89.09721875
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 79.56284375
transcript.pyannote[24].end 80.01846875
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 88.23659375
transcript.pyannote[25].end 88.75971875
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 89.40096875
transcript.pyannote[26].end 93.70409375
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 91.32471875
transcript.pyannote[27].end 106.00596875
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 98.71596875
transcript.pyannote[28].end 99.67784375
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 99.67784375
transcript.pyannote[29].end 99.71159375
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 99.71159375
transcript.pyannote[30].end 99.72846875
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 99.72846875
transcript.pyannote[31].end 99.86346875
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 100.09971875
transcript.pyannote[32].end 100.21784375
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 100.47096875
transcript.pyannote[33].end 100.57221875
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 100.57221875
transcript.pyannote[34].end 100.58909375
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 100.58909375
transcript.pyannote[35].end 100.69034375
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 105.06096875
transcript.pyannote[36].end 107.03534375
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 107.55846875
transcript.pyannote[37].end 118.49346875
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 113.83596875
transcript.pyannote[38].end 114.22409375
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 117.43034375
transcript.pyannote[39].end 121.12596875
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 120.88971875
transcript.pyannote[40].end 124.18034375
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 121.71659375
transcript.pyannote[41].end 122.84721875
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 124.36596875
transcript.pyannote[42].end 125.37846875
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 124.97346875
transcript.pyannote[43].end 126.71159375
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 126.71159375
transcript.pyannote[44].end 131.45346875
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 132.14534375
transcript.pyannote[45].end 132.16221875
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 132.16221875
transcript.pyannote[46].end 133.39409375
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 132.17909375
transcript.pyannote[47].end 144.36284375
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 138.38909375
transcript.pyannote[48].end 138.81096875
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 144.36284375
transcript.pyannote[49].end 144.95346875
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 144.83534375
transcript.pyannote[50].end 146.97846875
transcript.pyannote[51].speaker SPEAKER_02
transcript.pyannote[51].start 145.47659375
transcript.pyannote[51].end 185.95971875
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 148.00784375
transcript.pyannote[52].end 148.27784375
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 158.13284375
transcript.pyannote[53].end 160.20846875
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 176.94846875
transcript.pyannote[54].end 177.50534375
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 186.14534375
transcript.pyannote[55].end 186.38159375
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 186.58409375
transcript.pyannote[56].end 206.96909375
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 203.12159375
transcript.pyannote[57].end 203.56034375
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 205.95659375
transcript.pyannote[58].end 206.00721875
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 206.24346875
transcript.pyannote[59].end 206.27721875
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 207.30659375
transcript.pyannote[60].end 224.70471875
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 213.61784375
transcript.pyannote[61].end 214.03971875
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 225.75096875
transcript.pyannote[62].end 239.06534375
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 239.31846875
transcript.pyannote[63].end 239.72346875
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 239.74034375
transcript.pyannote[64].end 274.03034375
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 273.32159375
transcript.pyannote[65].end 303.47721875
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 277.62471875
transcript.pyannote[66].end 277.96221875
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 278.77221875
transcript.pyannote[67].end 278.97471875
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 279.83534375
transcript.pyannote[68].end 280.24034375
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 280.99971875
transcript.pyannote[69].end 281.43846875
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 281.43846875
transcript.pyannote[70].end 281.47221875
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 292.82909375
transcript.pyannote[71].end 293.26784375
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 299.05596875
transcript.pyannote[72].end 299.61284375
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 303.47721875
transcript.pyannote[73].end 303.76409375
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 303.76409375
transcript.pyannote[74].end 350.99721875
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 303.79784375
transcript.pyannote[75].end 303.84846875
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 313.06221875
transcript.pyannote[76].end 313.41659375
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 313.85534375
transcript.pyannote[77].end 314.17596875
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 350.99721875
transcript.pyannote[78].end 395.53034375
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 365.54346875
transcript.pyannote[79].end 366.48846875
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 368.90159375
transcript.pyannote[80].end 370.08284375
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 371.26409375
transcript.pyannote[81].end 372.41159375
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 372.41159375
transcript.pyannote[82].end 372.42846875
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 373.37346875
transcript.pyannote[83].end 374.48721875
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 374.48721875
transcript.pyannote[84].end 374.79096875
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 376.86659375
transcript.pyannote[85].end 376.88346875
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 376.88346875
transcript.pyannote[86].end 377.28846875
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 377.28846875
transcript.pyannote[87].end 377.30534375
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 394.26471875
transcript.pyannote[88].end 399.73221875
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 399.81659375
transcript.pyannote[89].end 402.53346875
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 400.94721875
transcript.pyannote[90].end 405.31784375
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 404.76096875
transcript.pyannote[91].end 409.24971875
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 407.96721875
transcript.pyannote[92].end 408.50721875
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 409.62096875
transcript.pyannote[93].end 427.54221875
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 413.89034375
transcript.pyannote[94].end 413.94096875
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 420.21846875
transcript.pyannote[95].end 420.26909375
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 420.26909375
transcript.pyannote[96].end 420.38721875
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 420.60659375
transcript.pyannote[97].end 420.80909375
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 427.69409375
transcript.pyannote[98].end 435.84471875
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 436.26659375
transcript.pyannote[99].end 451.03221875
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 441.97034375
transcript.pyannote[100].end 442.25721875
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 448.88909375
transcript.pyannote[101].end 449.32784375
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 451.77471875
transcript.pyannote[102].end 460.53284375
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 460.95471875
transcript.pyannote[103].end 467.90721875
transcript.pyannote[104].speaker SPEAKER_01
transcript.pyannote[104].start 467.72159375
transcript.pyannote[104].end 470.11784375
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 469.45971875
transcript.pyannote[105].end 471.26534375
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 470.43846875
transcript.pyannote[106].end 488.08971875
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 488.10659375
transcript.pyannote[107].end 488.17409375
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 488.17409375
transcript.pyannote[108].end 488.52846875
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 488.49471875
transcript.pyannote[109].end 494.58659375
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 494.95784375
transcript.pyannote[110].end 505.21784375
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 503.88471875
transcript.pyannote[111].end 507.44534375
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 505.50471875
transcript.pyannote[112].end 507.17534375
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 507.59721875
transcript.pyannote[113].end 514.11096875
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 507.64784375
transcript.pyannote[114].end 511.79909375
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 513.84096875
transcript.pyannote[115].end 552.18096875
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 516.62534375
transcript.pyannote[116].end 517.01346875
transcript.pyannote[117].speaker SPEAKER_01
transcript.pyannote[117].start 552.29909375
transcript.pyannote[117].end 565.14096875
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 565.14096875
transcript.pyannote[118].end 572.85284375
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 572.24534375
transcript.pyannote[119].end 579.18096875
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 575.73846875
transcript.pyannote[120].end 576.59909375
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 577.17284375
transcript.pyannote[121].end 583.38284375
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 583.66971875
transcript.pyannote[122].end 592.03971875
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 592.49534375
transcript.pyannote[123].end 593.33909375
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 593.33909375
transcript.pyannote[124].end 594.72284375
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 594.97596875
transcript.pyannote[125].end 595.97159375
transcript.whisperx[0].start 5.377
transcript.whisperx[0].end 33.904
transcript.whisperx[0].text 謝謝主席我想請部長請施部長部長我想請問一下就是那如果像剛才所有委員在質詢的那現在跟百威這樣子就是工廠加工廠到底就是不管當然經濟部有納管而沒有合法的還有一些沒有納管也不合法的那到底在市面上還有多少
transcript.whisperx[1].start 34.554
transcript.whisperx[1].end 57.861
transcript.whisperx[1].text 大概我們的做法會是這樣子處理就是用他的這個稅籍跟我們的食品業者的登錄每年都會做勾結去發現用業者的稅籍跟我們的登錄食品業的目前稅籍加上食品業的登錄兩邊登錄如果不一致的今年查查的結果大概4萬家
transcript.whisperx[2].start 60.963
transcript.whisperx[2].end 88.554
transcript.whisperx[2].text 71萬的食品廠大概有差不多4萬家這有不合不合我們就會去由各衛生局去把它對就會去查核然後所以目前報的只是冰山一角是不是這邊跟委員進一步說明因為4萬家是這樣我家做生意所以我先登錄了一些相次但它實際上營業的是沒有所以因為只要是有不一樣的我們就把它挑出來並不是說這4萬家都是有問題的是因為它
transcript.whisperx[3].start 89.574
transcript.whisperx[3].end 116.147
transcript.whisperx[3].text 申请这个营业项目跟实际上是不一样的所以目前你们所宣称的4万家只是说就是营业项目跟登录有不一样的部分是不是那这只是说在可是到底有多少家你们很清楚所以我们跟委员说明这4万家我们是泽乌城卫生局逐家去查查他确立他的营业项目到底跟他登记的能不能够一致
transcript.whisperx[4].start 116.747
transcript.whisperx[4].end 131.185
transcript.whisperx[4].text 那四萬家是跟目前百威的狀況一樣嗎不一樣 百威是完全沒有登錄的它是沒有登錄的它完全連登錄都沒登錄的那你們現在查有登錄的結果沒有登錄的才有問題啊 是不是
transcript.whisperx[5].start 132.242
transcript.whisperx[5].end 158.97
transcript.whisperx[5].text 現在是不是這樣意思沒有登錄的意思就是說在我們的這個食安法裡面有規範你這個食品業者你都包含攤商你都應該去確認你的來源的合法性要來自你合法的來源所以你這樣子說你從下游去查但是你先剛才按照你所跟我說的你其實是去查那些已經有稅籍的然後與登錄不符的部分是不是事萬家
transcript.whisperx[6].start 159.85
transcript.whisperx[6].end 185.641
transcript.whisperx[6].text 但是百威的狀況並不是這樣他違法使用工業的雙氧水然後去來就是說去來清洗這個豬大腸導致這樣子有食品安全疑慮的進到了所有的小吃的商家嘛對不對我們甚至還不知道進到哪一家我從新聞看也只知道說有著名的麵線而已啊那其他呢
transcript.whisperx[7].start 187.042
transcript.whisperx[7].end 205.714
transcript.whisperx[7].text 這個案子是分成兩塊一個是本身他的登記他沒有他做這個加工可是他沒有去合法登記這個是一個問題第二個是在加工的過程使用了我們不允許的添加物就是這個工業用的這個雙氧水
transcript.whisperx[8].start 206.334
transcript.whisperx[8].end 223.382
transcript.whisperx[8].text 那所以這個整個流向是清楚啦所有從他的帳部裡面流向我們都對外都已經清楚公佈主要流入市場的就是在台北市跟這個屏東這兩個市場的地方而已所以流向是清楚那我們的重點是第一個這一個
transcript.whisperx[9].start 225.799
transcript.whisperx[9].end 254.962
transcript.whisperx[9].text 没有登录完整的这个业者是重罚的那当然也要提醒所有的这个整个食品链当中的所有的业者你都要去确认你的来源是合法不要去购买不明来源的货源这个也是有责任的那第二个就是我们透过这个追踪追溯的系统去把整个这个产制销整个链都能够建构起来
transcript.whisperx[10].start 255.422
transcript.whisperx[10].end 272.591
transcript.whisperx[10].text 所以才能夠掌握這每一個地方都是來自於合法的這個業者所以這個是追蹤追溯的這個系統的建立那讓他更及時的話那就是做到電子化包含這個電子發票的開立跟電子登錄
transcript.whisperx[11].start 273.832
transcript.whisperx[11].end 303.36
transcript.whisperx[11].text 可是我是說其實當然你剛才講的後端的就是一些登錄跟就是說登記不實的這部分當然是另外一個部分但是其實最重要的是就是說我們這一次發生這個食安問題最重要的部分在於它使用非法的這樣子的一個加工的這個東西那這個部分的我認為你們應該要全面性去清查這對於民眾現在時的安全是最重要的
transcript.whisperx[12].start 303.86
transcript.whisperx[12].end 331.272
transcript.whisperx[12].text 那當然你們必須要了解像這樣子的工業用的雙氧水到底有多少用在食品的這個添加物裡面嘛是不是然後或者是用來相關處理食品的這樣子的一個程序裡面那這才是民眾目前最擔心也最擔憂的因為畢竟這都是銅板美食嘛那對於民眾可能日常都會接觸到的啊是不是
transcript.whisperx[13].start 332.172
transcript.whisperx[13].end 350.127
transcript.whisperx[13].text 如果在現在食物價格高漲的情況下如果我們在平常使用的銅板美食那是一般庶民小民最常使用的都有這樣的疑慮我們衛福部就沒有辦法保障民眾食的安全
transcript.whisperx[14].start 351.388
transcript.whisperx[14].end 366.35
transcript.whisperx[14].text 所以跟委員報告說我們馬上就採取了兩件事情第一件事情就是說所有市面上的這個大廠的產品都去加強湊驗看看有沒有這個雙氧水就是H2O2的殘留那目前有沒有
transcript.whisperx[15].start 366.57
transcript.whisperx[15].end 390.328
transcript.whisperx[15].text 到目前查了起來都沒有已經查了一千多件了一千多件全國都查了那第二個呢是生產的工廠也進去加強茶廠那麼去確認他所使用有沒有使用到雙氧水那如果有使用到的是食品級的還是用工業級的所以這個也有抽查了1990家業者
transcript.whisperx[16].start 393.371
transcript.whisperx[16].end 408.967
transcript.whisperx[16].text 所以这个是会不会你抽查的都是抽查到好的啊没有抽查到对啊没有就是全面性的查会不会都是抽查到好的不会我们都是全面性全国去去查了有在供应的这样
transcript.whisperx[17].start 409.868
transcript.whisperx[17].end 430.765
transcript.whisperx[17].text 還有我想要問一下就是川普總統他說10月1號開始所有品牌藥跟專利藥開徵百分之百的關稅只有在美國設廠或者是動工的藥廠藥品可以免稅所以對於我們目前有214個進口的藥專利藥可能會受到波及
transcript.whisperx[18].start 436.349
transcript.whisperx[18].end 450.149
transcript.whisperx[18].text 我想要请问我们任性特别条例有200亿要拨给健保基金来使用那这有没有办法确保民众用药安全还是因为你拨到健保基金是一个大水库你会不会把这200亿
transcript.whisperx[19].start 453.478
transcript.whisperx[19].end 467.302
transcript.whisperx[19].text 你健保裡面還有很多事情要做嘛要改變嘛對不對那會不會用到別處那反而我們為了這個關稅因應所撥的這200億會不會被你拿去做別的使用
transcript.whisperx[20].start 467.682
transcript.whisperx[20].end 494.22
transcript.whisperx[20].text 不会跟委员报告过去都还有这样的例子虽然川普总统有曾经宣布这样的事情可是到目前的法规我们都密切的在追踪还没有正式的文件正式的文件出来以他初步的说法主要是针对原厂药不是学民药所以学民药是排除在外那么他也排除了原料药
transcript.whisperx[21].start 495.421
transcript.whisperx[21].end 508.296
transcript.whisperx[21].text 所以原料要的部分也沒在這個加徵的範圍裡面所以評估起來大概影響的程度就大幅的降低了所以大幅的降低那一邊200億一邊200億有那麼多是不是只是在補這個還是在補其他你健保的東西
transcript.whisperx[22].start 514.302
transcript.whisperx[22].end 535.219
transcript.whisperx[22].text 專利期內的還是有可能受影響因為他的對象是針對那個原廠藥跟專利期內的那個藥所以還是有可能受影響但是我們因為他還沒有正式公佈正式的文件我們是密切的在注意那至於我們在特別條例裡面特別預算編的這個200億優先會使用在應用這個關稅萬一如果
transcript.whisperx[23].start 537.34
transcript.whisperx[23].end 564.931
transcript.whisperx[23].text 造成這個藥品成本的上升可以來提高藥價像4月到現在我們也增加了200多項藥品的價格我們已經合出去已經提高了所以我們這一筆錢會優先應應在健保裡面的藥價調整因為我們的藥價不知道會發生什麼所以預備在那裡但是如果沒有用掉的還是在健保基金裡頭不會拿來做其他的用途
transcript.whisperx[24].start 565.191
transcript.whisperx[24].end 591.861
transcript.whisperx[24].text 不是啦 我是說你健保基金裡面當然除了這個藥以外你還有其他的部分嘛 對不對不會啦 健保的基金都是使用在民眾的服務上面沒有其他的公務運算使用是不是就是特別多編然後來補你健保的缺口嘛 是不是健保的缺口也是用在這個民眾跟醫療服務單位的也不會是政府部門拿來自己用的
transcript.whisperx[25].start 592.591
transcript.whisperx[25].end 592.611
transcript.whisperx[25].text 好,謝謝