iVOD / 164051

Field Value
IVOD_ID 164051
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/164051
日期 2025-10-13
會議資料.會議代碼 委員會-11-4-26-3
會議資料.會議代碼:str 第11屆第4會期社會福利及衛生環境委員會第3次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 3
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.標題 第11屆第4會期社會福利及衛生環境委員會第3次全體委員會議
影片種類 Clip
開始時間 2025-10-13T12:12:52+08:00
結束時間 2025-10-13T12:22:20+08:00
影片長度 00:09:28
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/5d6d14916e595edcef2072f021dfb3d3eadaba873199798254e55ddf1b168a3139c7ac6a666915c55ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 洪孟楷
委員發言時間 12:12:52 - 12:22:20
會議時間 2025-10-13T09:00:00+08:00
會議名稱 立法院第11屆第4會期社會福利及衛生環境委員會第3次全體委員會議(事由:邀請衛生福利部部長及行政院食品安全辦公室就「重大食安事件處理之檢討與食安稽核人力不足問題」進行專題報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 4.46909375
transcript.pyannote[0].end 6.39284375
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 7.64159375
transcript.pyannote[1].end 8.56971875
transcript.pyannote[2].speaker SPEAKER_02
transcript.pyannote[2].start 10.84784375
transcript.pyannote[2].end 12.28221875
transcript.pyannote[3].speaker SPEAKER_02
transcript.pyannote[3].start 12.99096875
transcript.pyannote[3].end 30.47346875
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 30.47346875
transcript.pyannote[4].end 30.82784375
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 30.82784375
transcript.pyannote[5].end 38.75909375
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 39.40034375
transcript.pyannote[6].end 40.53096875
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 41.05409375
transcript.pyannote[7].end 41.22284375
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 41.22284375
transcript.pyannote[8].end 44.63159375
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 44.80034375
transcript.pyannote[9].end 50.23409375
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 51.26346875
transcript.pyannote[10].end 83.76471875
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 59.17784375
transcript.pyannote[11].end 59.36346875
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 59.93721875
transcript.pyannote[12].end 60.37596875
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 63.66659375
transcript.pyannote[13].end 65.97846875
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 67.71659375
transcript.pyannote[14].end 67.81784375
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 83.76471875
transcript.pyannote[15].end 84.23721875
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 84.27096875
transcript.pyannote[16].end 85.13159375
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 84.33846875
transcript.pyannote[17].end 84.64221875
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 84.81096875
transcript.pyannote[18].end 90.21096875
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 90.17721875
transcript.pyannote[19].end 90.51471875
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 90.76784375
transcript.pyannote[20].end 93.72096875
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 94.24409375
transcript.pyannote[21].end 114.10596875
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 106.10721875
transcript.pyannote[22].end 107.03534375
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 114.25784375
transcript.pyannote[23].end 114.52784375
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 114.64596875
transcript.pyannote[24].end 123.70784375
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 123.99471875
transcript.pyannote[25].end 138.59159375
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 134.64284375
transcript.pyannote[26].end 135.25034375
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 140.85284375
transcript.pyannote[27].end 163.53284375
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 150.52221875
transcript.pyannote[28].end 150.75846875
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 152.96909375
transcript.pyannote[29].end 154.43721875
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 154.43721875
transcript.pyannote[30].end 155.36534375
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 162.04784375
transcript.pyannote[31].end 163.97159375
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 163.97159375
transcript.pyannote[32].end 164.59596875
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 164.24159375
transcript.pyannote[33].end 164.47784375
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 164.59596875
transcript.pyannote[34].end 164.68034375
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 164.68034375
transcript.pyannote[35].end 164.93346875
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 164.93346875
transcript.pyannote[36].end 165.27096875
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 165.27096875
transcript.pyannote[37].end 171.04221875
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 165.30471875
transcript.pyannote[38].end 165.64221875
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 171.93659375
transcript.pyannote[39].end 177.87659375
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 174.09659375
transcript.pyannote[40].end 175.71659375
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 177.87659375
transcript.pyannote[41].end 178.06221875
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 178.06221875
transcript.pyannote[42].end 188.89596875
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 182.78721875
transcript.pyannote[43].end 183.68159375
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 186.21284375
transcript.pyannote[44].end 187.39409375
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 188.89596875
transcript.pyannote[45].end 189.36846875
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 189.36846875
transcript.pyannote[46].end 191.98409375
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 189.55409375
transcript.pyannote[47].end 190.41471875
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 192.67596875
transcript.pyannote[48].end 242.01846875
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 193.68846875
transcript.pyannote[49].end 193.97534375
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 202.31159375
transcript.pyannote[50].end 202.64909375
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 217.70159375
transcript.pyannote[51].end 218.12346875
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 219.22034375
transcript.pyannote[52].end 219.23721875
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 219.23721875
transcript.pyannote[53].end 219.86159375
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 219.86159375
transcript.pyannote[54].end 219.92909375
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 224.41784375
transcript.pyannote[55].end 224.85659375
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 227.91096875
transcript.pyannote[56].end 228.26534375
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 235.21784375
transcript.pyannote[57].end 235.57221875
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 241.91721875
transcript.pyannote[58].end 242.67659375
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 242.23784375
transcript.pyannote[59].end 251.90721875
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 247.95846875
transcript.pyannote[60].end 248.32971875
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 251.90721875
transcript.pyannote[61].end 252.17721875
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 252.17721875
transcript.pyannote[62].end 264.14159375
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 259.09596875
transcript.pyannote[63].end 263.56784375
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 263.83784375
transcript.pyannote[64].end 263.87159375
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 264.14159375
transcript.pyannote[65].end 264.61409375
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 264.73221875
transcript.pyannote[66].end 278.75534375
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 271.58346875
transcript.pyannote[67].end 271.90409375
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 273.96284375
transcript.pyannote[68].end 276.15659375
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 279.02534375
transcript.pyannote[69].end 296.76096875
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 290.95596875
transcript.pyannote[70].end 291.29346875
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 294.44909375
transcript.pyannote[71].end 294.46596875
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 296.96346875
transcript.pyannote[72].end 318.19221875
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 297.73971875
transcript.pyannote[73].end 298.88721875
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 303.47721875
transcript.pyannote[74].end 304.05096875
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 304.38846875
transcript.pyannote[75].end 304.57409375
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 304.57409375
transcript.pyannote[76].end 304.59096875
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 318.17534375
transcript.pyannote[77].end 318.56346875
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 318.56346875
transcript.pyannote[78].end 325.46534375
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 325.09409375
transcript.pyannote[79].end 325.85346875
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 325.90409375
transcript.pyannote[80].end 331.30409375
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 331.86096875
transcript.pyannote[81].end 333.05909375
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 333.21096875
transcript.pyannote[82].end 348.95534375
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 338.44221875
transcript.pyannote[83].end 338.94846875
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 339.03284375
transcript.pyannote[84].end 339.18471875
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 339.35346875
transcript.pyannote[85].end 339.43784375
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 339.48846875
transcript.pyannote[86].end 340.41659375
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 341.61471875
transcript.pyannote[87].end 342.81284375
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 349.22534375
transcript.pyannote[88].end 363.51846875
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 353.00534375
transcript.pyannote[89].end 353.02221875
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 353.05596875
transcript.pyannote[90].end 353.12346875
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 357.42659375
transcript.pyannote[91].end 357.96659375
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 363.58596875
transcript.pyannote[92].end 365.66159375
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 363.72096875
transcript.pyannote[93].end 364.14284375
transcript.pyannote[94].speaker SPEAKER_02
transcript.pyannote[94].start 365.67846875
transcript.pyannote[94].end 365.72909375
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 365.72909375
transcript.pyannote[95].end 366.13409375
transcript.pyannote[96].speaker SPEAKER_02
transcript.pyannote[96].start 366.13409375
transcript.pyannote[96].end 391.83471875
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 366.18471875
transcript.pyannote[97].end 366.37034375
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 368.27721875
transcript.pyannote[98].end 368.66534375
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 392.88096875
transcript.pyannote[99].end 395.17596875
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 395.59784375
transcript.pyannote[100].end 395.61471875
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 395.61471875
transcript.pyannote[101].end 396.32346875
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 396.62721875
transcript.pyannote[102].end 396.67784375
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 396.67784375
transcript.pyannote[103].end 396.81284375
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 396.81284375
transcript.pyannote[104].end 397.90971875
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 397.90971875
transcript.pyannote[105].end 398.02784375
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 398.02784375
transcript.pyannote[106].end 409.24971875
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 399.15846875
transcript.pyannote[107].end 399.46221875
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 401.89221875
transcript.pyannote[108].end 402.48284375
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 403.25909375
transcript.pyannote[109].end 403.41096875
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 409.68846875
transcript.pyannote[110].end 410.16096875
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 410.49846875
transcript.pyannote[111].end 411.93284375
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 412.40534375
transcript.pyannote[112].end 413.55284375
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 414.24471875
transcript.pyannote[113].end 418.22721875
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 418.93596875
transcript.pyannote[114].end 434.96721875
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 433.75221875
transcript.pyannote[115].end 433.93784375
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 434.96721875
transcript.pyannote[116].end 438.52784375
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 438.67971875
transcript.pyannote[117].end 463.08096875
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 445.29471875
transcript.pyannote[118].end 445.58159375
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 446.02034375
transcript.pyannote[119].end 446.27346875
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 455.38596875
transcript.pyannote[120].end 455.94284375
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 463.70534375
transcript.pyannote[121].end 478.38659375
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 475.58534375
transcript.pyannote[122].end 476.24346875
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 476.51346875
transcript.pyannote[123].end 476.76659375
transcript.pyannote[124].speaker SPEAKER_02
transcript.pyannote[124].start 479.06159375
transcript.pyannote[124].end 486.41909375
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 487.07721875
transcript.pyannote[125].end 492.22409375
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 488.02221875
transcript.pyannote[126].end 488.68034375
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 489.91221875
transcript.pyannote[127].end 492.07221875
transcript.pyannote[128].speaker SPEAKER_02
transcript.pyannote[128].start 492.32534375
transcript.pyannote[128].end 494.95784375
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 495.05909375
transcript.pyannote[129].end 500.44221875
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 495.56534375
transcript.pyannote[130].end 495.90284375
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 499.34534375
transcript.pyannote[131].end 519.19034375
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 519.81471875
transcript.pyannote[132].end 527.72909375
transcript.pyannote[133].speaker SPEAKER_02
transcript.pyannote[133].start 524.99534375
transcript.pyannote[133].end 525.13034375
transcript.pyannote[134].speaker SPEAKER_02
transcript.pyannote[134].start 526.39596875
transcript.pyannote[134].end 526.71659375
transcript.pyannote[135].speaker SPEAKER_02
transcript.pyannote[135].start 527.27346875
transcript.pyannote[135].end 552.68721875
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 552.68721875
transcript.pyannote[136].end 552.92346875
transcript.pyannote[137].speaker SPEAKER_02
transcript.pyannote[137].start 553.10909375
transcript.pyannote[137].end 553.59846875
transcript.pyannote[138].speaker SPEAKER_02
transcript.pyannote[138].start 554.20596875
transcript.pyannote[138].end 559.62284375
transcript.pyannote[139].speaker SPEAKER_02
transcript.pyannote[139].start 559.79159375
transcript.pyannote[139].end 565.61346875
transcript.pyannote[140].speaker SPEAKER_01
transcript.pyannote[140].start 565.76534375
transcript.pyannote[140].end 565.83284375
transcript.pyannote[141].speaker SPEAKER_02
transcript.pyannote[141].start 565.83284375
transcript.pyannote[141].end 567.21659375
transcript.pyannote[142].speaker SPEAKER_02
transcript.pyannote[142].start 567.40221875
transcript.pyannote[142].end 568.65096875
transcript.whisperx[0].start 4.465
transcript.whisperx[0].end 6.087
transcript.whisperx[0].text 好 主席謝謝 麻煩請石部長麻煩石部長好 部長
transcript.whisperx[1].start 13.055
transcript.whisperx[1].end 40.276
transcript.whisperx[1].text 国人看到近期发生这个黑心大肠的事件其实对于我们全民国食安都有非常大的一个影响那我想先请教一下因为本席有看到是说相关的一个资料第一这一家公司它在屏东已经从事珠藏加工作业多年对不对可是它是新北市这边有讲法说为如实进行食品业者登陆及为投保产品责任险
transcript.whisperx[2].start 41.441
transcript.whisperx[2].end 49.981
transcript.whisperx[2].text 換言之他就所謂的我們一般俗稱的是地下工廠那這種非典型的這個食安破口來講我們想請教到底全台灣目前還有多少家
transcript.whisperx[3].start 51.291
transcript.whisperx[3].end 68.402
transcript.whisperx[3].text 按照我們的食安法的規定他本身是這個百威啊是登記在台北的一家食品公司一個食品公司只是他的倉儲設在新北是倉儲在新北然後加工在屏東對加工廠在屏東屏東的這個加工廠沒有登入進他的這個
transcript.whisperx[4].start 72.905
transcript.whisperx[4].end 93.325
transcript.whisperx[4].text 他已經在屏東加工豬場多年了據這個相關政府的這個回報他已經多年可是自始至終沒有登錄食品業者那再來他也沒有投保沒有登錄食品廠那他們也沒有投保相關的責任險那這就不是只是單一個案嗎
transcript.whisperx[5].start 94.466
transcript.whisperx[5].end 113.839
transcript.whisperx[5].text 還是全台灣因為見為知著嘛就是說我們現在想要理解說到底這樣子的一個個案到全台灣還有多少因為本席有看到食藥署近期公告擴大實施食品安全的檢測計畫本席予以肯定因為這個是食安把關但是這個心智主要是針對有登記有規模的業者
transcript.whisperx[6].start 114.739
transcript.whisperx[6].end 138.309
transcript.whisperx[6].text 那如果說以百威食品這個案例來講他就自始自終沒登記啊所以你們再怎麼擴大食品安全檢測是檢測不到百威的所以才會從下游往上查下游就是說販賣端就是販賣給消費者端他要去確認他的食材的來源是合法那我們可不可以講一個大白話大實話到底全台灣現在還有多少百威
transcript.whisperx[7].start 141.285
transcript.whisperx[7].end 159.398
transcript.whisperx[7].text 我們當然不敢講不過整個從我們現在食安五環的概念它是必須比如說你是販賣這個麵線的那你用了這個大廠你的來源你要確認它是來自於合法應該說我們期待的是所有的食品最終端的食品業者
transcript.whisperx[8].start 159.798
transcript.whisperx[8].end 170.671
transcript.whisperx[8].text 他要進口的他要購買的原料也都是合格的確認來自於合格的那我再請教這個百威食品現在我們查獲所用的豬腸來自於哪裡
transcript.whisperx[9].start 171.977
transcript.whisperx[9].end 191.607
transcript.whisperx[9].text 那個是農場就是那個是國內的還是國內的土宅廠那照理講國內的土宅廠他賣給誰這就兩端嘛一個是國內的土宅廠他是合法合格的土宅廠那他賣給一個百威但是百威他是
transcript.whisperx[10].start 192.728
transcript.whisperx[10].end 213.468
transcript.whisperx[10].text 不合格沒登記應該這麼講因為他還是登記他是食品廠所以他賣給他的時候認為他是賣給一個食品業者因為他有登記食品公司只是這一個操作的點是沒有登入進來的合法的場所所以署長我們在這個案例裡面就像剛剛你也講到是說可以從下游管理但是
transcript.whisperx[11].start 213.948
transcript.whisperx[11].end 240.88
transcript.whisperx[11].text 某種程度上上游來溯源也是可以的兩端應該都要一起因為我們不要說整個一個供應鏈來講中間有一個破口但是很明顯這個案例裡面就是中間出現了破口他用非法的工業用的雙氧水來去做加工造成說上游以為他賣給是一個合法的食品廠下游以為他可能買到的也是一個合法的但中間他做的是一個黑心的事情
transcript.whisperx[12].start 242.501
transcript.whisperx[12].end 263.995
transcript.whisperx[12].text 那如果說從這部分來講的話我們未來可以怎麼樣因應因為你現在擴大稽查中間的工廠可是你查不到這些地下工廠啊所以當然是規定都已經有了所以一旦查獲的話一定是嚴懲不要讓他們有這個矯悉的心態可是我們希望的是不要有這樣的狀況發生因為大家都已經吃下肚了嘛
transcript.whisperx[13].start 265.315
transcript.whisperx[13].end 280.303
transcript.whisperx[13].text 然後另一方面就透過這個E化讓它整個這個食品鏈能夠串起來包含電子發票電子登錄讓它串起來部長 那我們這樣子這些作為什麼時候可以更加強改善我們現在已經讓這個電子發票跟
transcript.whisperx[14].start 283.824
transcript.whisperx[14].end 306.294
transcript.whisperx[14].text 電子登錄的百分比大概是在食品廠的九成到九成五各縣市當然不一樣那我們希望把這最後一里路趕快把它完成那最後一里路還沒有辦法完成主要原因是什麼沒錢沒人沒有就是這些業者本身的意願或者是他的規模等等會有這些所以部長您提到其實很
transcript.whisperx[15].start 307.054
transcript.whisperx[15].end 331.033
transcript.whisperx[15].text 中肯的一個狀況就說我們至少百分之九十幾就是能夠全面的來做這樣子的一個路線你影響的大多數消費者也是有比較保障但是在這個案例你有沒有再請教我有看到我們食藥署業已經重罰五千四百萬罰還可是查了一下百威這個食品業食品公司他登記資本額只有
transcript.whisperx[16].start 333.334
transcript.whisperx[16].end 348.019
transcript.whisperx[16].text 500萬對那5000是收得到嗎我們向法院申請假扣押已經申請了那這一個負責人他有一個三天的時間然後之後我們就申請所以第一我們已經申請假扣押所以他名下的這些財產相關方面也不會讓他脫產
transcript.whisperx[17].start 349.279
transcript.whisperx[17].end 364.35
transcript.whisperx[17].text 我們第一步呢先依請這個行政執行署來做強制執行然後第二個再跟法院做假扣押那這一個負責人因為我看到地檢署還有在偵辦有可能有所謂的刑事責任所以會持續偵辦當中
transcript.whisperx[18].start 366.171
transcript.whisperx[18].end 394.542
transcript.whisperx[18].text 對 那我們行政法我們就先走了那那個形式的部分由這個檢調繼續在偵查中好 那最後啦 一個部分因為今年4月中央政府有對於未登記的食品工廠福島轉型合格納管工廠的專案我們全台灣到目前為止這今年4月的資料還有134家未登記的食品工廠是不是這可能跟這個食安辦比較有相關
transcript.whisperx[19].start 396.115
transcript.whisperx[19].end 417.774
transcript.whisperx[19].text 跟委員報告 具體的數目是要問經濟部產業發展署有一些是特登的工廠我們在幾年前有一個工廠管理法的修法之後
transcript.whisperx[20].start 419.028
transcript.whisperx[20].end 431.738
transcript.whisperx[20].text 有做一些特登工廠去輔導那至於您剛問說還有多少沒有納管那個具體的數字我沒有不過可能還有所以
transcript.whisperx[21].start 434.9
transcript.whisperx[21].end 461.806
transcript.whisperx[21].text 來 部長也好 或是我們食安辦主任有沒有注意到一個重點今天我們面臨到一個是食安看到的是食品工廠本行拿這個資料是今年4月你們所提供的新聞稿相關資料所以有134家有掌握但還沒有登記的食品工廠那需要配合工廠輔導管理法來去協助他做合法可是這個時間期限在什麼時候我們在2030
transcript.whisperx[22].start 465.227
transcript.whisperx[22].end 486.098
transcript.whisperx[22].text 2040對不對一個是2030你要去完成登記特種工廠一個是要整個用地完全合法是2040當然這是法令規定可是凸顯什麼問題凸顯工廠要問經濟部食安要問衛福部然後我們還有一個行政院食品安全辦公室
transcript.whisperx[23].start 487.165
transcript.whisperx[23].end 509.511
transcript.whisperx[23].text 可是三方面就是一問到工廠問經濟部經濟部今天剛好沒來那食安衛福部要管理然後還有我們行政院食安辦公室結果又說這應該是兩個部會各自要去協調這個從法規上面確實這樣不過因為在食安管理上面跟用地所在地是無關的只要他是做食品業者有這個行為都要去
transcript.whisperx[24].start 510.972
transcript.whisperx[24].end 518.42
transcript.whisperx[24].text 衛福部的這個去登錄然後要去接受這個GHP的這個定期的集合
transcript.whisperx[25].start 519.898
transcript.whisperx[25].end 546.866
transcript.whisperx[25].text 就是說他跟用地的那個長址的身份是無關只要他有這個行為我們就是一律在為不讓 還有其他的質詢我想部長我還是拉回來就是說今天國人都很關心食品安全那我們也希望食品安全真的是良好把關但是食安如果說有跨兩個部會然後還有這個一個辦公室在中間我們期待的是辦公室要嘛就整合兩個部會要嘛就一個部會來做主責來去處理而不是
transcript.whisperx[26].start 547.486
transcript.whisperx[26].end 565.843
transcript.whisperx[26].text 食安歸我但是工廠歸他工廠歸他食安歸你就到最後就是互推皮球了部長能不能針對這部分來跟經濟部來做進一步的溝通看怎麼樣能夠讓這樣子運作上來講更加順暢我們會來努力把這兩邊都無縫接軌起來謝謝謝謝委員好謝謝