iVOD / 164040

Field Value
IVOD_ID 164040
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/164040
日期 2025-10-13
會議資料.會議代碼 委員會-11-4-15-3
會議資料.會議代碼:str 第11屆第4會期內政委員會第3次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 3
會議資料.種類 委員會
會議資料.委員會代碼[0] 15
會議資料.委員會代碼:str[0] 內政委員會
會議資料.標題 第11屆第4會期內政委員會第3次全體委員會議
影片種類 Clip
開始時間 2025-10-13T10:40:13+08:00
結束時間 2025-10-13T10:56:14+08:00
影片長度 00:16:01
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/5d6d14916e595edc38e68aed46b3295d179f4a20aeac8eaf54e55ddf1b168a31288fdc86b9d8d4b55ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 高金素梅
委員發言時間 10:40:13 - 10:56:14
會議時間 2025-10-13T09:00:00+08:00
會議名稱 立法院第11屆第4會期內政委員會第3次全體委員會議(事由:邀請內政部部長、原住民族委員會主任委員、農業部部長率所屬單位就「堰塞湖監測、災害預警通報、疏散機制及災後復原重建」進行專題報告,並備質詢,另請經濟部、環境部、衛生福利部、行政院公共工程委員會派員列席備詢。)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 0.03096875
transcript.pyannote[0].end 6.24096875
transcript.pyannote[1].speaker SPEAKER_03
transcript.pyannote[1].start 10.78034375
transcript.pyannote[1].end 11.70846875
transcript.pyannote[2].speaker SPEAKER_03
transcript.pyannote[2].start 12.38346875
transcript.pyannote[2].end 20.39909375
transcript.pyannote[3].speaker SPEAKER_03
transcript.pyannote[3].start 20.97284375
transcript.pyannote[3].end 22.86284375
transcript.pyannote[4].speaker SPEAKER_03
transcript.pyannote[4].start 23.70659375
transcript.pyannote[4].end 30.72659375
transcript.pyannote[5].speaker SPEAKER_03
transcript.pyannote[5].start 31.08096875
transcript.pyannote[5].end 35.50221875
transcript.pyannote[6].speaker SPEAKER_03
transcript.pyannote[6].start 35.82284375
transcript.pyannote[6].end 37.30784375
transcript.pyannote[7].speaker SPEAKER_03
transcript.pyannote[7].start 37.83096875
transcript.pyannote[7].end 38.60721875
transcript.pyannote[8].speaker SPEAKER_03
transcript.pyannote[8].start 38.87721875
transcript.pyannote[8].end 40.78409375
transcript.pyannote[9].speaker SPEAKER_03
transcript.pyannote[9].start 41.23971875
transcript.pyannote[9].end 45.25596875
transcript.pyannote[10].speaker SPEAKER_03
transcript.pyannote[10].start 45.77909375
transcript.pyannote[10].end 52.29284375
transcript.pyannote[11].speaker SPEAKER_03
transcript.pyannote[11].start 52.71471875
transcript.pyannote[11].end 57.92909375
transcript.pyannote[12].speaker SPEAKER_03
transcript.pyannote[12].start 58.62096875
transcript.pyannote[12].end 61.72596875
transcript.pyannote[13].speaker SPEAKER_03
transcript.pyannote[13].start 62.04659375
transcript.pyannote[13].end 64.84784375
transcript.pyannote[14].speaker SPEAKER_03
transcript.pyannote[14].start 65.08409375
transcript.pyannote[14].end 68.57721875
transcript.pyannote[15].speaker SPEAKER_03
transcript.pyannote[15].start 68.89784375
transcript.pyannote[15].end 71.17596875
transcript.pyannote[16].speaker SPEAKER_03
transcript.pyannote[16].start 71.53034375
transcript.pyannote[16].end 72.88034375
transcript.pyannote[17].speaker SPEAKER_03
transcript.pyannote[17].start 73.30221875
transcript.pyannote[17].end 74.66909375
transcript.pyannote[18].speaker SPEAKER_03
transcript.pyannote[18].start 75.47909375
transcript.pyannote[18].end 82.16159375
transcript.pyannote[19].speaker SPEAKER_03
transcript.pyannote[19].start 82.54971875
transcript.pyannote[19].end 98.46284375
transcript.pyannote[20].speaker SPEAKER_03
transcript.pyannote[20].start 99.10409375
transcript.pyannote[20].end 101.63534375
transcript.pyannote[21].speaker SPEAKER_03
transcript.pyannote[21].start 102.12471875
transcript.pyannote[21].end 104.23409375
transcript.pyannote[22].speaker SPEAKER_03
transcript.pyannote[22].start 104.58846875
transcript.pyannote[22].end 105.66846875
transcript.pyannote[23].speaker SPEAKER_03
transcript.pyannote[23].start 106.12409375
transcript.pyannote[23].end 107.96346875
transcript.pyannote[24].speaker SPEAKER_03
transcript.pyannote[24].start 108.94221875
transcript.pyannote[24].end 115.65846875
transcript.pyannote[25].speaker SPEAKER_03
transcript.pyannote[25].start 116.14784375
transcript.pyannote[25].end 117.32909375
transcript.pyannote[26].speaker SPEAKER_03
transcript.pyannote[26].start 117.98721875
transcript.pyannote[26].end 120.82221875
transcript.pyannote[27].speaker SPEAKER_03
transcript.pyannote[27].start 121.05846875
transcript.pyannote[27].end 124.14659375
transcript.pyannote[28].speaker SPEAKER_03
transcript.pyannote[28].start 124.34909375
transcript.pyannote[28].end 127.03221875
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 128.12909375
transcript.pyannote[29].end 133.05659375
transcript.pyannote[30].speaker SPEAKER_03
transcript.pyannote[30].start 132.73596875
transcript.pyannote[30].end 146.57346875
transcript.pyannote[31].speaker SPEAKER_03
transcript.pyannote[31].start 147.23159375
transcript.pyannote[31].end 151.97346875
transcript.pyannote[32].speaker SPEAKER_03
transcript.pyannote[32].start 152.51346875
transcript.pyannote[32].end 156.95159375
transcript.pyannote[33].speaker SPEAKER_03
transcript.pyannote[33].start 157.33971875
transcript.pyannote[33].end 165.79409375
transcript.pyannote[34].speaker SPEAKER_03
transcript.pyannote[34].start 166.89096875
transcript.pyannote[34].end 168.62909375
transcript.pyannote[35].speaker SPEAKER_03
transcript.pyannote[35].start 168.84846875
transcript.pyannote[35].end 177.82596875
transcript.pyannote[36].speaker SPEAKER_03
transcript.pyannote[36].start 178.11284375
transcript.pyannote[36].end 184.01909375
transcript.pyannote[37].speaker SPEAKER_03
transcript.pyannote[37].start 184.50846875
transcript.pyannote[37].end 188.35596875
transcript.pyannote[38].speaker SPEAKER_03
transcript.pyannote[38].start 188.65971875
transcript.pyannote[38].end 201.88971875
transcript.pyannote[39].speaker SPEAKER_03
transcript.pyannote[39].start 202.56471875
transcript.pyannote[39].end 208.52159375
transcript.pyannote[40].speaker SPEAKER_03
transcript.pyannote[40].start 208.89284375
transcript.pyannote[40].end 215.15346875
transcript.pyannote[41].speaker SPEAKER_03
transcript.pyannote[41].start 215.52471875
transcript.pyannote[41].end 229.51409375
transcript.pyannote[42].speaker SPEAKER_03
transcript.pyannote[42].start 229.91909375
transcript.pyannote[42].end 251.19846875
transcript.pyannote[43].speaker SPEAKER_03
transcript.pyannote[43].start 251.83971875
transcript.pyannote[43].end 283.44659375
transcript.pyannote[44].speaker SPEAKER_03
transcript.pyannote[44].start 284.15534375
transcript.pyannote[44].end 292.54221875
transcript.pyannote[45].speaker SPEAKER_03
transcript.pyannote[45].start 293.26784375
transcript.pyannote[45].end 299.39346875
transcript.pyannote[46].speaker SPEAKER_03
transcript.pyannote[46].start 299.56221875
transcript.pyannote[46].end 312.50534375
transcript.pyannote[47].speaker SPEAKER_03
transcript.pyannote[47].start 313.29846875
transcript.pyannote[47].end 330.91596875
transcript.pyannote[48].speaker SPEAKER_03
transcript.pyannote[48].start 331.43909375
transcript.pyannote[48].end 349.34346875
transcript.pyannote[49].speaker SPEAKER_03
transcript.pyannote[49].start 349.66409375
transcript.pyannote[49].end 362.03346875
transcript.pyannote[50].speaker SPEAKER_03
transcript.pyannote[50].start 363.02909375
transcript.pyannote[50].end 367.80471875
transcript.pyannote[51].speaker SPEAKER_03
transcript.pyannote[51].start 368.41221875
transcript.pyannote[51].end 368.93534375
transcript.pyannote[52].speaker SPEAKER_03
transcript.pyannote[52].start 369.69471875
transcript.pyannote[52].end 378.75659375
transcript.pyannote[53].speaker SPEAKER_03
transcript.pyannote[53].start 378.97596875
transcript.pyannote[53].end 398.70284375
transcript.pyannote[54].speaker SPEAKER_03
transcript.pyannote[54].start 398.73659375
transcript.pyannote[54].end 403.84971875
transcript.pyannote[55].speaker SPEAKER_03
transcript.pyannote[55].start 404.96346875
transcript.pyannote[55].end 407.32596875
transcript.pyannote[56].speaker SPEAKER_03
transcript.pyannote[56].start 407.81534375
transcript.pyannote[56].end 408.87846875
transcript.pyannote[57].speaker SPEAKER_03
transcript.pyannote[57].start 408.91221875
transcript.pyannote[57].end 408.92909375
transcript.pyannote[58].speaker SPEAKER_03
transcript.pyannote[58].start 409.90784375
transcript.pyannote[58].end 415.44284375
transcript.pyannote[59].speaker SPEAKER_03
transcript.pyannote[59].start 416.08409375
transcript.pyannote[59].end 431.76096875
transcript.pyannote[60].speaker SPEAKER_03
transcript.pyannote[60].start 432.43596875
transcript.pyannote[60].end 446.76284375
transcript.pyannote[61].speaker SPEAKER_03
transcript.pyannote[61].start 447.50534375
transcript.pyannote[61].end 449.44596875
transcript.pyannote[62].speaker SPEAKER_03
transcript.pyannote[62].start 450.67784375
transcript.pyannote[62].end 453.20909375
transcript.pyannote[63].speaker SPEAKER_02
transcript.pyannote[63].start 453.39471875
transcript.pyannote[63].end 475.56846875
transcript.pyannote[64].speaker SPEAKER_03
transcript.pyannote[64].start 474.77534375
transcript.pyannote[64].end 480.61409375
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 480.61409375
transcript.pyannote[65].end 480.90096875
transcript.pyannote[66].speaker SPEAKER_03
transcript.pyannote[66].start 480.90096875
transcript.pyannote[66].end 482.65596875
transcript.pyannote[67].speaker SPEAKER_02
transcript.pyannote[67].start 480.96846875
transcript.pyannote[67].end 481.00221875
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 485.03534375
transcript.pyannote[68].end 486.26721875
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 486.55409375
transcript.pyannote[69].end 490.04721875
transcript.pyannote[70].speaker SPEAKER_03
transcript.pyannote[70].start 490.04721875
transcript.pyannote[70].end 494.65409375
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 494.65409375
transcript.pyannote[71].end 496.32471875
transcript.pyannote[72].speaker SPEAKER_03
transcript.pyannote[72].start 495.37971875
transcript.pyannote[72].end 498.94034375
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 496.86471875
transcript.pyannote[73].end 499.96971875
transcript.pyannote[74].speaker SPEAKER_03
transcript.pyannote[74].start 499.96971875
transcript.pyannote[74].end 513.89159375
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 501.57284375
transcript.pyannote[75].end 501.70784375
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 514.68471875
transcript.pyannote[76].end 515.76471875
transcript.pyannote[77].speaker SPEAKER_03
transcript.pyannote[77].start 515.07284375
transcript.pyannote[77].end 515.83221875
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 515.83221875
transcript.pyannote[78].end 519.19034375
transcript.pyannote[79].speaker SPEAKER_03
transcript.pyannote[79].start 518.51534375
transcript.pyannote[79].end 519.44346875
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 519.44346875
transcript.pyannote[80].end 519.49409375
transcript.pyannote[81].speaker SPEAKER_03
transcript.pyannote[81].start 519.49409375
transcript.pyannote[81].end 519.51096875
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 521.18159375
transcript.pyannote[82].end 525.82221875
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 525.87284375
transcript.pyannote[83].end 526.02471875
transcript.pyannote[84].speaker SPEAKER_03
transcript.pyannote[84].start 526.02471875
transcript.pyannote[84].end 562.40721875
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 562.91346875
transcript.pyannote[85].end 569.29221875
transcript.pyannote[86].speaker SPEAKER_03
transcript.pyannote[86].start 569.62971875
transcript.pyannote[86].end 571.23284375
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 570.94596875
transcript.pyannote[87].end 574.11846875
transcript.pyannote[88].speaker SPEAKER_03
transcript.pyannote[88].start 572.36346875
transcript.pyannote[88].end 572.85284375
transcript.pyannote[89].speaker SPEAKER_03
transcript.pyannote[89].start 574.01721875
transcript.pyannote[89].end 576.70034375
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 575.38409375
transcript.pyannote[90].end 578.42159375
transcript.pyannote[91].speaker SPEAKER_03
transcript.pyannote[91].start 576.83534375
transcript.pyannote[91].end 577.32471875
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 578.74221875
transcript.pyannote[92].end 579.41721875
transcript.pyannote[93].speaker SPEAKER_03
transcript.pyannote[93].start 578.86034375
transcript.pyannote[93].end 582.25221875
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 581.15534375
transcript.pyannote[94].end 582.33659375
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 582.75846875
transcript.pyannote[95].end 584.76659375
transcript.pyannote[96].speaker SPEAKER_03
transcript.pyannote[96].start 584.74971875
transcript.pyannote[96].end 592.56284375
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 588.52971875
transcript.pyannote[97].end 589.45784375
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 590.16659375
transcript.pyannote[98].end 590.40284375
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 592.68096875
transcript.pyannote[99].end 597.27096875
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 597.27096875
transcript.pyannote[100].end 597.94596875
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 597.94596875
transcript.pyannote[101].end 606.06284375
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 597.97971875
transcript.pyannote[102].end 597.99659375
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 600.67971875
transcript.pyannote[103].end 600.73034375
transcript.pyannote[104].speaker SPEAKER_03
transcript.pyannote[104].start 600.73034375
transcript.pyannote[104].end 601.28721875
transcript.pyannote[105].speaker SPEAKER_03
transcript.pyannote[105].start 604.59471875
transcript.pyannote[105].end 619.69784375
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 606.43409375
transcript.pyannote[106].end 606.78846875
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 615.52971875
transcript.pyannote[107].end 615.81659375
transcript.pyannote[108].speaker SPEAKER_03
transcript.pyannote[108].start 620.38971875
transcript.pyannote[108].end 620.92971875
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 620.45721875
transcript.pyannote[109].end 620.91284375
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 620.92971875
transcript.pyannote[110].end 620.98034375
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 621.13221875
transcript.pyannote[111].end 623.73096875
transcript.pyannote[112].speaker SPEAKER_03
transcript.pyannote[112].start 623.00534375
transcript.pyannote[112].end 631.07159375
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 625.11471875
transcript.pyannote[113].end 625.40159375
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 630.83534375
transcript.pyannote[114].end 630.95346875
transcript.pyannote[115].speaker SPEAKER_03
transcript.pyannote[115].start 631.12221875
transcript.pyannote[115].end 638.29409375
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 636.43784375
transcript.pyannote[116].end 636.92721875
transcript.pyannote[117].speaker SPEAKER_03
transcript.pyannote[117].start 639.05346875
transcript.pyannote[117].end 640.21784375
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 639.62721875
transcript.pyannote[118].end 641.97284375
transcript.pyannote[119].speaker SPEAKER_03
transcript.pyannote[119].start 641.95596875
transcript.pyannote[119].end 643.18784375
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 644.48721875
transcript.pyannote[120].end 646.51221875
transcript.pyannote[121].speaker SPEAKER_03
transcript.pyannote[121].start 645.76971875
transcript.pyannote[121].end 648.28409375
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 647.20409375
transcript.pyannote[122].end 650.29221875
transcript.pyannote[123].speaker SPEAKER_03
transcript.pyannote[123].start 649.02659375
transcript.pyannote[123].end 651.81096875
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 652.84034375
transcript.pyannote[124].end 653.81909375
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 653.95409375
transcript.pyannote[125].end 655.65846875
transcript.pyannote[126].speaker SPEAKER_03
transcript.pyannote[126].start 655.62471875
transcript.pyannote[126].end 665.36159375
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 657.14346875
transcript.pyannote[127].end 657.39659375
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 665.12534375
transcript.pyannote[128].end 665.54721875
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 665.96909375
transcript.pyannote[129].end 666.07034375
transcript.pyannote[130].speaker SPEAKER_03
transcript.pyannote[130].start 666.07034375
transcript.pyannote[130].end 666.20534375
transcript.pyannote[131].speaker SPEAKER_01
transcript.pyannote[131].start 666.20534375
transcript.pyannote[131].end 671.97659375
transcript.pyannote[132].speaker SPEAKER_03
transcript.pyannote[132].start 670.35659375
transcript.pyannote[132].end 673.17471875
transcript.pyannote[133].speaker SPEAKER_03
transcript.pyannote[133].start 673.84971875
transcript.pyannote[133].end 683.02971875
transcript.pyannote[134].speaker SPEAKER_03
transcript.pyannote[134].start 684.09284375
transcript.pyannote[134].end 700.96784375
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 698.26784375
transcript.pyannote[135].end 699.68534375
transcript.pyannote[136].speaker SPEAKER_03
transcript.pyannote[136].start 701.27159375
transcript.pyannote[136].end 712.57784375
transcript.pyannote[137].speaker SPEAKER_03
transcript.pyannote[137].start 713.06721875
transcript.pyannote[137].end 720.18846875
transcript.pyannote[138].speaker SPEAKER_02
transcript.pyannote[138].start 718.43346875
transcript.pyannote[138].end 718.56846875
transcript.pyannote[139].speaker SPEAKER_03
transcript.pyannote[139].start 720.79596875
transcript.pyannote[139].end 722.11221875
transcript.pyannote[140].speaker SPEAKER_02
transcript.pyannote[140].start 722.11221875
transcript.pyannote[140].end 728.65971875
transcript.pyannote[141].speaker SPEAKER_02
transcript.pyannote[141].start 728.77784375
transcript.pyannote[141].end 736.65846875
transcript.pyannote[142].speaker SPEAKER_02
transcript.pyannote[142].start 736.75971875
transcript.pyannote[142].end 747.86346875
transcript.pyannote[143].speaker SPEAKER_03
transcript.pyannote[143].start 746.41221875
transcript.pyannote[143].end 748.97721875
transcript.pyannote[144].speaker SPEAKER_03
transcript.pyannote[144].start 749.09534375
transcript.pyannote[144].end 759.91221875
transcript.pyannote[145].speaker SPEAKER_02
transcript.pyannote[145].start 759.05159375
transcript.pyannote[145].end 786.72659375
transcript.pyannote[146].speaker SPEAKER_03
transcript.pyannote[146].start 760.33409375
transcript.pyannote[146].end 761.24534375
transcript.pyannote[147].speaker SPEAKER_03
transcript.pyannote[147].start 761.39721875
transcript.pyannote[147].end 761.81909375
transcript.pyannote[148].speaker SPEAKER_00
transcript.pyannote[148].start 768.53534375
transcript.pyannote[148].end 768.55221875
transcript.pyannote[149].speaker SPEAKER_03
transcript.pyannote[149].start 768.55221875
transcript.pyannote[149].end 768.92346875
transcript.pyannote[150].speaker SPEAKER_03
transcript.pyannote[150].start 769.46346875
transcript.pyannote[150].end 771.64034375
transcript.pyannote[151].speaker SPEAKER_03
transcript.pyannote[151].start 771.75846875
transcript.pyannote[151].end 771.97784375
transcript.pyannote[152].speaker SPEAKER_00
transcript.pyannote[152].start 771.97784375
transcript.pyannote[152].end 772.21409375
transcript.pyannote[153].speaker SPEAKER_03
transcript.pyannote[153].start 779.68971875
transcript.pyannote[153].end 780.22971875
transcript.pyannote[154].speaker SPEAKER_03
transcript.pyannote[154].start 780.90471875
transcript.pyannote[154].end 781.30971875
transcript.pyannote[155].speaker SPEAKER_03
transcript.pyannote[155].start 782.52471875
transcript.pyannote[155].end 784.04346875
transcript.pyannote[156].speaker SPEAKER_03
transcript.pyannote[156].start 785.15721875
transcript.pyannote[156].end 792.41346875
transcript.pyannote[157].speaker SPEAKER_02
transcript.pyannote[157].start 787.06409375
transcript.pyannote[157].end 787.63784375
transcript.pyannote[158].speaker SPEAKER_02
transcript.pyannote[158].start 790.92846875
transcript.pyannote[158].end 791.23221875
transcript.pyannote[159].speaker SPEAKER_02
transcript.pyannote[159].start 792.41346875
transcript.pyannote[159].end 799.39971875
transcript.pyannote[160].speaker SPEAKER_03
transcript.pyannote[160].start 792.46409375
transcript.pyannote[160].end 794.30346875
transcript.pyannote[161].speaker SPEAKER_03
transcript.pyannote[161].start 796.29471875
transcript.pyannote[161].end 796.96971875
transcript.pyannote[162].speaker SPEAKER_03
transcript.pyannote[162].start 797.93159375
transcript.pyannote[162].end 808.63034375
transcript.pyannote[163].speaker SPEAKER_02
transcript.pyannote[163].start 802.18409375
transcript.pyannote[163].end 802.94346875
transcript.pyannote[164].speaker SPEAKER_02
transcript.pyannote[164].start 803.34846875
transcript.pyannote[164].end 804.07409375
transcript.pyannote[165].speaker SPEAKER_03
transcript.pyannote[165].start 808.71471875
transcript.pyannote[165].end 811.04346875
transcript.pyannote[166].speaker SPEAKER_03
transcript.pyannote[166].start 811.27971875
transcript.pyannote[166].end 846.80159375
transcript.pyannote[167].speaker SPEAKER_03
transcript.pyannote[167].start 846.95346875
transcript.pyannote[167].end 864.57096875
transcript.pyannote[168].speaker SPEAKER_03
transcript.pyannote[168].start 865.06034375
transcript.pyannote[168].end 912.51284375
transcript.pyannote[169].speaker SPEAKER_03
transcript.pyannote[169].start 913.05284375
transcript.pyannote[169].end 926.94096875
transcript.pyannote[170].speaker SPEAKER_03
transcript.pyannote[170].start 927.21096875
transcript.pyannote[170].end 953.16471875
transcript.pyannote[171].speaker SPEAKER_03
transcript.pyannote[171].start 953.68784375
transcript.pyannote[171].end 957.87284375
transcript.pyannote[172].speaker SPEAKER_00
transcript.pyannote[172].start 960.25221875
transcript.pyannote[172].end 961.29846875
transcript.whisperx[0].start 0.389
transcript.whisperx[0].end 6.056
transcript.whisperx[0].text 高新素美諮詢在這個李博弈委員諮詢之後我們再休息那請高新素美委員謝謝趙偉
transcript.whisperx[1].start 12.443
transcript.whisperx[1].end 36.45
transcript.whisperx[1].text 而召委今天排的是艳色湖的監測災害的預警通報疏散機制還有災害復原的重建今天這個議題非常的沉重我相信不管是任何在這邊立法委員還有在場的官員們我們都不願意發生這樣的情況所以今天我們在討論這件事情的時候我希望大家能夠非常的嚴肅
transcript.whisperx[2].start 37.91
transcript.whisperx[2].end 57.678
transcript.whisperx[2].text 而且要心懷善意而不是站在政黨的立場來看這件事情這是一個中央的機制這是一個政策的問題所以我必須要說今天來了非常多的部會我一一的唱名讓大家知道內政部
transcript.whisperx[3].start 58.818
transcript.whisperx[3].end 72.687
transcript.whisperx[3].text 內政部裡面有消防署災害管理署直通作業中心準備應變署警政署民防指揮管制所國土管理署民政司然後園民會也來了農業部也來了
transcript.whisperx[4].start 75.56
transcript.whisperx[4].end 97.291
transcript.whisperx[4].text 然後今天還有經濟部水利署環境部環境管理署資源巡迴署衛生福利部有社會救助以及社公司心理建設師醫事師疾病管制署以及中央健康保險署醫務管理組行政院公共工程委員會技術處
transcript.whisperx[5].start 99.164
transcript.whisperx[5].end 126.776
transcript.whisperx[5].text 大家可以看到光是一個風災或者是一個艷澀湖的災難中央部會就這麼多部會我今天我很想請問當然今天是內政部有來我們先請部長然後農業部也有來次長常務次長也有來園民會我請你也上台那其他的待會我們再請上台
transcript.whisperx[6].start 129.417
transcript.whisperx[6].end 151.346
transcript.whisperx[6].text 我相信在場的大家我們大家都要向第一線投入搶災搶救的產值超人還有志工以及自發資源的鄉親致上我們最深的記憶他們用他們的雙手撐起了人性的光輝
transcript.whisperx[7].start 152.606
transcript.whisperx[7].end 165.576
transcript.whisperx[7].text 而第一個我想問的是在艷澀湖的監測上面我的結論是我不想講細節的問題但是我的感受是我們中央政府你們掉以輕心了
transcript.whisperx[8].start 166.943
transcript.whisperx[8].end 182.378
transcript.whisperx[8].text 你們的報告上面也說早在7月26號你們已經開始監測並且在8月27號已經成立了專案小組這意味著什麼呢這意味著中央你們有超過一個月的應變的準備時間
transcript.whisperx[9].start 184.6
transcript.whisperx[9].end 197.524
transcript.whisperx[9].text 然而中央低估了災情的嚴重性你們認為它只是一個艷色湖你們認為它的水位沒有到多少所以沒有立即的危險但是你們忘了九月份的時候卻是台灣最多颱風的時候
transcript.whisperx[10].start 202.646
transcript.whisperx[10].end 207.49
transcript.whisperx[10].text 你知道台風現在氣候變遷所有的雨下絕對是急劇的下來所以其實你們我要說你們釣魚清新了大家都不願意這件事情發生所以我覺得就因為你們的釣魚清新讓整個應變的機制從源頭就已經失能了我很覺得奇怪也納悶既然中央已經知道這麼嚴重
transcript.whisperx[11].start 230.289
transcript.whisperx[11].end 250.908
transcript.whisperx[11].text 為什麼不召開一個非常正式的記者會對外來說明有可能這個艷澀湖會造成什麼樣的災難因為你只是在鎖定光復鄉只是鎖定在地方政府但是有非常多的家人已經離開了光復鄉在外面工作了
transcript.whisperx[12].start 251.969
transcript.whisperx[12].end 262.118
transcript.whisperx[12].text 所以呢如果我們的政府可以像一般國外海嘯要來的時候事先先發布一個正式的記者會我相信這樣子的一個記者會會讓當地的鄉親或者是在外的鄉親我們會嚴正以待我們會非常重視這件事情而不是到了
transcript.whisperx[13].start 274.908
transcript.whisperx[13].end 291.791
transcript.whisperx[13].text 緊急的時候部長說一個垂直避難請問一下在那麼短的時間之內你要怎麼疏散八成多人所以我認為真的是掉以輕心了你們可以不用回答然後第二個災害預警通報跟疏散的機制
transcript.whisperx[14].start 293.325
transcript.whisperx[14].end 299.09
transcript.whisperx[14].text 因為掉以輕心所以整個中央單位地方單位大家是驚嚇大家是混亂的所以呢我們的預警階段的輕忽導致第一時間的應對也陷入了混亂第一時間我就打電話請我們
transcript.whisperx[15].start 313.359
transcript.whisperx[15].end 330.247
transcript.whisperx[15].text 部落的有小怪手的然後有這個工作能力的組織了一個小小的團隊進入到了我們的災區一村一村而我自己也進去了已經到了幾天我還看到地方非常的混亂
transcript.whisperx[16].start 331.508
transcript.whisperx[16].end 348.913
transcript.whisperx[16].text 有看到國軍了有看到中央的應對小組了有看到地方的應對小組了可是我發現中央你們的橫向聯繫也非常的混亂甚至於你們跟地方的縱向聯繫也非常的混亂我不知道
transcript.whisperx[17].start 349.753
transcript.whisperx[17].end 358.758
transcript.whisperx[17].text 我不知道是溝通不良呢還是故意的有政治的居心我希望不要有政治的居心而這樣子的混亂導致了指揮鏈的崩潰這是我對這一次的災害所下的兩個結論當然災防法上面要怎麼樣進行更氣質的修法還有分級的規範我在這邊請教委
transcript.whisperx[18].start 379.093
transcript.whisperx[18].end 385.394
transcript.whisperx[18].text 也能夠安排來相關的修法我們討論我們讓一些災防法他能夠更明確的更清楚的來討論來修法好不好我們不希望下次再有這麼樣混亂的局面出現好其實有一些相關的我們請部長留下來農業部你們可以先先休息一下 園民會主委
transcript.whisperx[19].start 407.884
transcript.whisperx[19].end 430.589
transcript.whisperx[19].text 你也可以在場我問一下內政部的部長請問在受災戶的基本數據上面是不是已經掌握到了受災戶的總數因為今天第三個最重要的議題就是災害復原的重建這也是所有民眾最想要知道的所以如果你沒有災戶的總數的話
transcript.whisperx[20].start 432.509
transcript.whisperx[20].end 448.66
transcript.whisperx[20].text 或者是原住民跟漢人家庭的具體住戶的數據然後依據他的損毀的程度來劃分重中輕的級別還有中低收入戶的識別的統計我們如果沒有這些數據
transcript.whisperx[21].start 450.694
transcript.whisperx[21].end 456.757
transcript.whisperx[21].text 繼續要混亂下去嗎請問部長報告委員我們在第一時間內行政院已經通知也是受到這樣子的影響我們公布了這次花蓮縣這三個鄉鎮那同時我們以這個9月21當時公布的1837戶為原則來處理後面的包括很多這個不管修繕也好或是家園復原的部分所以1837戶是非常明確的數字所以所有光復鄉這次燕射湖的災民總共1837戶
transcript.whisperx[22].start 481.559
transcript.whisperx[22].end 482.044
transcript.whisperx[22].text 原名有幾戶
transcript.whisperx[23].start 485.543
transcript.whisperx[23].end 499.914
transcript.whisperx[23].text 謝謝 我們這裡看原住民的戶數大概是有1772戶所以1837戶原住民就占了1700多戶就是原住民的戶數請你講正確的戶數大概是1772戶1772所以剛剛部長說所有的災民是1837戶原住民就占了1772戶是這樣子嗎 沒有錯嗎這樣子的數據 請問主委
transcript.whisperx[24].start 515.428
transcript.whisperx[24].end 516.409
transcript.whisperx[24].text 請問部長原住民的戶數是1772戶請問部長
transcript.whisperx[25].start 521.314
transcript.whisperx[25].end 546.831
transcript.whisperx[25].text 我們是協助為主所以原住民他的認定就是以原住民認定為主好所以1837戶原住民就佔了1772所以是原住民的族人是受災最多的那我要再繼續問一下主委在1772戶裡面有多少是中低收入戶有多少戶是重度的他可能要遷村的
transcript.whisperx[26].start 547.972
transcript.whisperx[26].end 555.517
transcript.whisperx[26].text 有多少戶他是中度的也就是說他的家園他可能損壞他還可以進去住那有一些可能只是他的電器設備裝潢受災損這些數據你有嗎我跟委員報告這個低收入戶還有中低收入戶我們都有大概是232加212
transcript.whisperx[27].start 569.71
transcript.whisperx[27].end 573.911
transcript.whisperx[27].text 232加什麼232的低收入戶然後212是中低收入戶232戶是低收入戶那我剛剛說的有沒有分我剛剛說的就是重度災難中度跟輕度這樣子的數據是多少這個我們要先做安全的評估啦安全評估要先做出來
transcript.whisperx[28].start 598.018
transcript.whisperx[28].end 619.423
transcript.whisperx[28].text 房屋的結構安全的這個評估要先做出來還沒有做但是重點是現在是這樣那各位報告沒有沒有沒有主委主委主委你先停一下安全評估報告是後續那你現在應該這些戶數都出來了應該很清楚知道有哪些是不能回家的嘛
transcript.whisperx[29].start 620.424
transcript.whisperx[29].end 635.972
transcript.whisperx[29].text 有沒有有我們跟他們在做部落會議不能回家你不要講部落會議我先問你不能回家的有幾戶那不能回家的我們才會有後續啊要怎麼樣安置他們啊能夠回家的我們要怎麼樣協助他們啊對不對來麻煩比較確定是49戶了49戶怎麼樣
transcript.whisperx[30].start 644.497
transcript.whisperx[30].end 648.08
transcript.whisperx[30].text 現在是安置在民宿現在不能夠回家的4449戶沒有辦法回家沒有辦法回家然後中渡呢
transcript.whisperx[31].start 652.878
transcript.whisperx[31].end 681.344
transcript.whisperx[31].text 我們就是中度的部分我們還要再查他可以回去啦因為現在不是都清的差不多了嗎他應該都知道他能夠回去因為我們鄉親很不喜歡離開家鄉嘛那有多少戶中度有的是一清啦有的是回去我知道你不要浪費時間好沒關係這些確定的數據麻煩您在我的辦公室再告訴我你們要怎麼後續做好不好
transcript.whisperx[32].start 681.789
transcript.whisperx[32].end 700.237
transcript.whisperx[32].text 另外我要請部長部長你身為警消人員的大家長在這裡我有一個請求就是要幫忙辛苦的警消人員因為有許多警察的私家車他在執勤的時候也是泡水受損了但是依照現行的規定
transcript.whisperx[33].start 701.337
transcript.whisperx[33].end 719.905
transcript.whisperx[33].text 他們只是修復或轉售他們連一毛補助都拿不到而這些為民擋災的基層人員他今天要自己承受損失我請問一下部長你有沒有聽過這第一線的警消人員他的心聲他們可以納入被
transcript.whisperx[34].start 720.825
transcript.whisperx[34].end 748.419
transcript.whisperx[34].text 排場的範圍嗎報告委員我們在第一時間內有有到三四個這個我們的第一線的這個派出所裡面去慰請那這道狀況如果是公務車的話呢我們按照公務車的修復或者公務車的補償這個我們警消自己會用預算來處理那如果是私家的部分假設他也是屬於1837戶的受災範圍內的話現在我們這個行政院的一站式服務有針對報廢車也有做提供這樣子的補償的機制不好意思部長你可能還
transcript.whisperx[35].start 749.359
transcript.whisperx[35].end 757.301
transcript.whisperx[35].text 不夠精準因為他如果他不是這個1837戶的人但是事實上他是在那邊工作他沒有戶籍在那裡那他怎麼處理因為您所提到的1837戶我們確定譬如說有8000多的人口但是他是在那個地方等於是他是不在籍但是不在那邊執勤
transcript.whisperx[36].start 772.446
transcript.whisperx[36].end 780.472
transcript.whisperx[36].text 那執勤的部分的話我們會來做部分的補償我知道您的意思是他去那邊上班然後他是私家車他不是公務車這個我們來處理請部長我短暫時間內會去了解一下其實這些在第一線擋災的警消人員他們負擔也很重的我知道他們非常的辛苦
transcript.whisperx[37].start 793.923
transcript.whisperx[37].end 806.829
transcript.whisperx[37].text 所以我們有保警來做替代一個禮拜以後有八十一個人在替代我希望部長也能夠清楚知道他們的困境不好意思 稍微我再花一點時間我要要求一下請園民會請你們
transcript.whisperx[38].start 809.442
transcript.whisperx[38].end 834.159
transcript.whisperx[38].text 一週之內提交幾個報告給我第一個是臨時工作人員的名冊當然在保護個資之下他的薪資、他的保險、經費明細還有受災戶的細部統計第二個就是青年參與重建決策的會議記錄還有後續執行成果第三個原民服務台每天受理案件跟主要需求的分析報告
transcript.whisperx[39].start 835.26
transcript.whisperx[39].end 838.341
transcript.whisperx[39].text 第四個災後無法營業的原住民商家的清澈當然這是有營業登記的還有整體扶植的計畫因為這些商家也很辛苦第五個災後就職的轉嫌還有部落的再生計畫說明如何從上工來銜接到產業賠利還有長期的就業這五個麻煩提出來給我然後在這裡我要請相關部會
transcript.whisperx[40].start 865.727
transcript.whisperx[40].end 870.29
transcript.whisperx[40].text 只要是今天有來的 麻煩你一下你們也在兩週內提供 第一個近五年的堰塞湖的災情的通報撤離啟動還有實際人數的統計並且要檢討制度的落差第二個要研議災防法第24條以及執法的修正草案 第三個
transcript.whisperx[41].start 889.765
transcript.whisperx[41].end 909.676
transcript.whisperx[41].text 重整災害緊急通報的格式要明確的標示警戒的分級執行責任跟法律的效力這個可能要請部長辛苦一下本席也要求按照災防法第37條災後復原重建的程序請在場的各部會
transcript.whisperx[42].start 913.398
transcript.whisperx[42].end 920.081
transcript.whisperx[42].text 給本席一份完整的規劃報告最後我要講的是重建不該只於補貼還有清瑜更應該要補起制度的漏洞要重建人民的信任如果制度依舊是冷漠的下一次的災難不僅僅是摧毀我們的道路還有家園更會摧毀我們人民對國家的信任希望今天在場的所有官員公務人員們
transcript.whisperx[43].start 943.171
transcript.whisperx[43].end 957.08
transcript.whisperx[43].text 緊記的這件我最後所說的話災害如果不好好的做他不是摧毀家園而是摧毀我們人民對國家的信任這是非常重要的以上謝謝