iVOD / 164038

Field Value
IVOD_ID 164038
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/164038
日期 2025-10-13
會議資料.會議代碼 委員會-11-4-20-2
會議資料.會議代碼:str 第11屆第4會期財政委員會第2次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 2
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第4會期財政委員會第2次全體委員會議
影片種類 Clip
開始時間 2025-10-13T11:52:21+08:00
結束時間 2025-10-13T12:00:52+08:00
影片長度 00:08:31
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/5d6d14916e595edc0d62245497591db4524a4fcb09fe332054e55ddf1b168a315483ce43c3d65a485ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 黃國昌
委員發言時間 11:52:21 - 12:00:52
會議時間 2025-10-13T09:00:00+08:00
會議名稱 立法院第11屆第4會期財政委員會第2次全體委員會議(事由:邀請金融監督管理委員會彭主任委員金隆率所屬機關首長暨中央存款保險股份有限公司、監管相關機構有關之財團法人、臺灣證券交易所股份有限公司、臺灣期貨交易所股份有限公司、臺灣集中保管結算所股份有限公司等董事長、總經理列席業務報告,並備質詢。 【10月13日、15日及16日三天一次會】)
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 1.38096875
transcript.pyannote[0].end 3.08534375
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 3.60846875
transcript.pyannote[1].end 3.62534375
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 3.62534375
transcript.pyannote[2].end 4.03034375
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 4.03034375
transcript.pyannote[3].end 4.45221875
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 8.51909375
transcript.pyannote[4].end 8.53596875
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 8.53596875
transcript.pyannote[5].end 8.94096875
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 9.26159375
transcript.pyannote[6].end 10.40909375
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 10.81409375
transcript.pyannote[7].end 12.38346875
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 12.92346875
transcript.pyannote[8].end 15.43784375
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 15.97784375
transcript.pyannote[9].end 20.21346875
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 20.53409375
transcript.pyannote[10].end 20.55096875
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 20.55096875
transcript.pyannote[11].end 20.83784375
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 20.83784375
transcript.pyannote[12].end 28.97159375
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 25.27596875
transcript.pyannote[13].end 25.54596875
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 31.67159375
transcript.pyannote[14].end 34.52346875
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 35.67096875
transcript.pyannote[15].end 38.57346875
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 39.29909375
transcript.pyannote[16].end 43.53471875
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 44.86784375
transcript.pyannote[17].end 56.91659375
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 57.70971875
transcript.pyannote[18].end 58.63784375
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 59.29596875
transcript.pyannote[19].end 65.74221875
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 66.33284375
transcript.pyannote[20].end 68.99909375
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 69.65721875
transcript.pyannote[21].end 73.26846875
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 75.74909375
transcript.pyannote[22].end 78.93846875
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 80.00159375
transcript.pyannote[23].end 81.52034375
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 82.19534375
transcript.pyannote[24].end 84.30471875
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 84.65909375
transcript.pyannote[25].end 86.46471875
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 87.05534375
transcript.pyannote[26].end 97.93971875
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 98.81721875
transcript.pyannote[27].end 104.08221875
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 104.80784375
transcript.pyannote[28].end 122.18909375
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 115.30409375
transcript.pyannote[29].end 115.32096875
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 123.08346875
transcript.pyannote[30].end 129.98534375
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 130.03596875
transcript.pyannote[31].end 140.68409375
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 140.83596875
transcript.pyannote[32].end 149.91471875
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 150.53909375
transcript.pyannote[33].end 160.84971875
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 150.99471875
transcript.pyannote[34].end 152.61471875
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 155.51721875
transcript.pyannote[35].end 155.82096875
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 160.88346875
transcript.pyannote[36].end 169.03409375
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 160.98471875
transcript.pyannote[37].end 161.40659375
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 169.03409375
transcript.pyannote[38].end 169.21971875
transcript.pyannote[39].speaker SPEAKER_01
transcript.pyannote[39].start 169.21971875
transcript.pyannote[39].end 172.52721875
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 169.23659375
transcript.pyannote[40].end 169.65846875
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 172.52721875
transcript.pyannote[41].end 173.40471875
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 173.47221875
transcript.pyannote[42].end 174.70409375
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 173.91096875
transcript.pyannote[43].end 179.15909375
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 179.68221875
transcript.pyannote[44].end 181.94346875
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 179.93534375
transcript.pyannote[45].end 182.06159375
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 182.31471875
transcript.pyannote[46].end 186.44909375
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 186.44909375
transcript.pyannote[47].end 189.16596875
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 189.31784375
transcript.pyannote[48].end 190.46534375
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 190.95471875
transcript.pyannote[49].end 191.93346875
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 192.00096875
transcript.pyannote[50].end 193.09784375
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 192.52409375
transcript.pyannote[51].end 193.57034375
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 193.87409375
transcript.pyannote[52].end 194.80221875
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 194.90346875
transcript.pyannote[53].end 197.33346875
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 198.02534375
transcript.pyannote[54].end 199.10534375
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 198.10971875
transcript.pyannote[55].end 201.48471875
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 201.95721875
transcript.pyannote[56].end 207.05346875
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 202.95284375
transcript.pyannote[57].end 203.15534375
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 207.10409375
transcript.pyannote[58].end 207.57659375
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 207.62721875
transcript.pyannote[59].end 208.77471875
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 208.99409375
transcript.pyannote[60].end 215.20409375
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 215.49096875
transcript.pyannote[61].end 219.25409375
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 219.69284375
transcript.pyannote[62].end 220.67159375
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 221.21159375
transcript.pyannote[63].end 222.22409375
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 222.22409375
transcript.pyannote[64].end 257.67846875
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 223.21971875
transcript.pyannote[65].end 223.97909375
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 237.69846875
transcript.pyannote[66].end 238.01909375
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 257.67846875
transcript.pyannote[67].end 263.19659375
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 257.96534375
transcript.pyannote[68].end 258.40409375
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 263.90534375
transcript.pyannote[69].end 265.10346875
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 265.54221875
transcript.pyannote[70].end 269.17034375
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 266.89221875
transcript.pyannote[71].end 267.21284375
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 269.42346875
transcript.pyannote[72].end 271.49909375
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 272.07284375
transcript.pyannote[73].end 274.30034375
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 274.62096875
transcript.pyannote[74].end 276.35909375
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 277.00034375
transcript.pyannote[75].end 278.55284375
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 279.10971875
transcript.pyannote[76].end 285.21846875
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 285.62346875
transcript.pyannote[77].end 293.85846875
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 294.71909375
transcript.pyannote[78].end 295.46159375
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 296.05221875
transcript.pyannote[79].end 297.94221875
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 298.56659375
transcript.pyannote[80].end 312.30284375
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 306.98721875
transcript.pyannote[81].end 307.00409375
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 307.34159375
transcript.pyannote[82].end 307.44284375
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 312.80909375
transcript.pyannote[83].end 316.35284375
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 316.43721875
transcript.pyannote[84].end 335.08409375
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 335.52284375
transcript.pyannote[85].end 343.40346875
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 338.29034375
transcript.pyannote[86].end 339.43784375
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 343.09971875
transcript.pyannote[87].end 347.30159375
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 347.26784375
transcript.pyannote[88].end 348.87096875
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 350.72721875
transcript.pyannote[89].end 353.02221875
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 353.20784375
transcript.pyannote[90].end 355.55346875
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 354.37221875
transcript.pyannote[91].end 357.91596875
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 357.71346875
transcript.pyannote[92].end 358.45596875
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 358.37159375
transcript.pyannote[93].end 365.23971875
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 365.20596875
transcript.pyannote[94].end 365.99909375
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 365.66159375
transcript.pyannote[95].end 370.99409375
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 371.34846875
transcript.pyannote[96].end 373.69409375
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 374.33534375
transcript.pyannote[97].end 374.41971875
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 374.41971875
transcript.pyannote[98].end 375.82034375
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 376.56284375
transcript.pyannote[99].end 377.35596875
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 377.91284375
transcript.pyannote[100].end 381.50721875
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 382.18221875
transcript.pyannote[101].end 382.82346875
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 383.65034375
transcript.pyannote[102].end 384.84846875
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 385.18596875
transcript.pyannote[103].end 386.26596875
transcript.pyannote[104].speaker SPEAKER_01
transcript.pyannote[104].start 386.75534375
transcript.pyannote[104].end 387.80159375
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 387.66659375
transcript.pyannote[105].end 388.45971875
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 388.52721875
transcript.pyannote[106].end 389.38784375
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 390.36659375
transcript.pyannote[107].end 392.94846875
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 393.37034375
transcript.pyannote[108].end 396.37409375
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 397.18409375
transcript.pyannote[109].end 403.30971875
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 403.57971875
transcript.pyannote[110].end 412.84409375
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 413.18159375
transcript.pyannote[111].end 423.42471875
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 413.99159375
transcript.pyannote[112].end 414.04221875
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 423.74534375
transcript.pyannote[113].end 424.80846875
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 424.80846875
transcript.pyannote[114].end 426.17534375
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 425.75346875
transcript.pyannote[115].end 437.56596875
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 437.97096875
transcript.pyannote[116].end 439.03409375
transcript.pyannote[117].speaker SPEAKER_01
transcript.pyannote[117].start 440.53596875
transcript.pyannote[117].end 442.83096875
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 443.45534375
transcript.pyannote[118].end 444.92346875
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 446.02034375
transcript.pyannote[119].end 446.74596875
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 447.28596875
transcript.pyannote[120].end 448.41659375
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 449.20971875
transcript.pyannote[121].end 451.38659375
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 451.87596875
transcript.pyannote[122].end 458.47409375
transcript.pyannote[123].speaker SPEAKER_01
transcript.pyannote[123].start 459.23346875
transcript.pyannote[123].end 461.19096875
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 461.30909375
transcript.pyannote[124].end 465.44346875
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 465.66284375
transcript.pyannote[125].end 470.99534375
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 470.89409375
transcript.pyannote[126].end 475.77096875
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 476.49659375
transcript.pyannote[127].end 484.83284375
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 485.65971875
transcript.pyannote[128].end 500.59409375
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 499.31159375
transcript.pyannote[129].end 504.39096875
transcript.whisperx[0].start 1.417
transcript.whisperx[0].end 28.488
transcript.whisperx[0].text 好 謝謝主席 麻煩有請主委我們請捧主委委員好主委好10月10號國慶致辭的時候賴總統在演講當中又提到亞洲資產管理中心因為這個名詞上次在質詢的時候有請教過主委所以我聽到了以後我就
transcript.whisperx[1].start 31.724
transcript.whisperx[1].end 55.112
transcript.whisperx[1].text 我不曉得該說驚訝還是驚喜顯然是賴總統一個非常重要的政見那這個名詞其實大家都不陌生第一次出現有關於政府要打造台灣成為亞洲資產管理中心大概回溯到2001年的時候阿扁總統其實就有撥話這樣子的願景
transcript.whisperx[2].start 57.759
transcript.whisperx[2].end 73.052
transcript.whisperx[2].text 那到蔡總統的時候他說要成為一個亞洲企業資金調度級高階資產管理中心名稱稍微長一點大概意思差不多到賴總統的時候就是亞洲資產管理中心我上次就請教就是說劃定目標
transcript.whisperx[3].start 82.247
transcript.whisperx[3].end 103.865
transcript.whisperx[3].text 我覺得沒有錯啦有方向是個好事但從2001年口號聽到現在大家可能比較關心的事情是它是繼續淪為口號還是有什麼具體上面的實踐所以我大概去了解了一下你們亞洲資產管理中心到底在做了什麼事情
transcript.whisperx[4].start 104.841
transcript.whisperx[4].end 121.33
transcript.whisperx[4].text 那我看了這張圖我有一點驚訝這個是你們之前應該有開記者會嘛找了很多金融業者亞洲資產管理中心高雄專區大概橫跨鹽埕、乾金、新興、林亞跟前鎮區這樣一個地理區位的畫設
transcript.whisperx[5].start 123.604
transcript.whisperx[5].end 149.838
transcript.whisperx[5].text 讓台灣成為亞洲資產管理中心它有什麼實際的意義我有點看不太懂請教一下主委是 我想跟委員報告這只是我們16項計畫其中一個叫地方資產管理專區我們整個亞洲資產管理中心涵蓋各個行業這個主要的是希望針對我們的銀行業來設計結合了證券投資這只是其中計畫之一這不是亞洲資產管理中心的全部
transcript.whisperx[6].start 150.978
transcript.whisperx[6].end 178.612
transcript.whisperx[6].text 對 我同意這應該不會是亞洲資產管理中心的全部現在我的問題是你在這邊把五個行政區劃進來成為高雄專區成為亞洲資產管理專區也好成為台灣金融業要進一步向上提升的動力也好其中的一個計畫 對到底有什麼實質的意義我到目前為止看不懂好 跟委員我這樣講好了在你現在劃的高雄專區裡面有幾家銀行
transcript.whisperx[7].start 180.174
transcript.whisperx[7].end 201.176
transcript.whisperx[7].text 幾家保險 幾家投信十七家銀行 四家保險 八家投信股你是不是知道在台北市的信義區有幾家銀行這我倒沒有統計幾家保險 幾家投信保險公司 那母公司的話其實我這樣子說好了啦就是說在地理上面
transcript.whisperx[8].start 202.031
transcript.whisperx[8].end 218.513
transcript.whisperx[8].text 去畫一個這樣子的區域出來當然我希望對於高雄的地方經濟的發展有幫忙啦但是把它直接跟亞洲資產管理中心其中的一個目標在高雄設這樣子的專區它具體的實效性在哪裡我真的必須要老實說
transcript.whisperx[9].start 219.733
transcript.whisperx[9].end 236.37
transcript.whisperx[9].text 我完全看不懂我完全看不懂我可以跟委員解釋一分鐘嗎可以 請第一個就是因為我們在做資產管理假設你針對高資產客戶的時候你必須要有很多新辦的業務是所以我們在高雄專區很重要就是我們一個大型的試辦計畫在那邊
transcript.whisperx[10].start 237.931
transcript.whisperx[10].end 262.928
transcript.whisperx[10].text 所以我們必須要先有個區域的部分做示範當然原來高雄市政府提供兩棟大樓給他們選擇但是基於他們實務的考量我們後來改成劃定跟指定就先以這個區域裡面你來指定重點是那個人事棟的我們整個怎麼在一個有限的範圍之內來申請核准以後我這樣說好了啦以市場管理中心來講跟金融業的本質一樣第一個是信任
transcript.whisperx[11].start 263.976
transcript.whisperx[11].end 275.928
transcript.whisperx[11].text 第二個是專業第三個能力全部都是看你服務的品質而這些服務都是沒有型的這些服務都是沒有型的今天我要不要信任某一家銀行
transcript.whisperx[12].start 277.068
transcript.whisperx[12].end 297.136
transcript.whisperx[12].text 或者是某一個金融機構對於所謂高端的客戶也好對於特定的族群也好他所推出來的資產管理服務他們所提供的商品提供服務或是兩者之間的結合其實我看了就是三家事情第一個這個金融機構值不值得信任那第二個他的績效到底是怎麼樣
transcript.whisperx[13].start 298.635
transcript.whisperx[13].end 312.001
transcript.whisperx[13].text 第三個他的專業跟他的能力所以我才會說在地理的區劃上面畫了一個五個行政區到底是什麼意思我有點看不懂今天我在台北市的信義區我在信義區可以看到很多銀行的金融總部
transcript.whisperx[14].start 312.87
transcript.whisperx[14].end 334.885
transcript.whisperx[14].text 我到底要進入F銀行我還是要進入B銀行其實我不會看哪一棟外觀比較漂亮其實我看的是它的reputation跟它實際上面執行的績效時間的關係我們直接來看績效你們在今天的書面報告裡面賴總統在演說的時候似乎也有提到說增加2.83兆我們的母數是多少
transcript.whisperx[15].start 335.578
transcript.whisperx[15].end 348.716
transcript.whisperx[15].text 我們現在在29 30兆去年的時候29 30兆嗎我們去年推出的時候大概是29 30兆左右你知不知道現在新加坡的資產管理的規模多少大概5兆到6兆美元
transcript.whisperx[16].start 351.028
transcript.whisperx[16].end 375.404
transcript.whisperx[16].text 我們的單位是新台幣他們的單位是美元所以如果新加坡換算成所謂的新台幣當作單位這樣你才有比較的基準要不然如果以台灣來講跟新加坡來講看起來數字差不多 幣別差很多所以我們是希望現在是一兆我現在給你看
transcript.whisperx[17].start 376.878
transcript.whisperx[17].end 382.545
transcript.whisperx[17].text 這個是新加坡花五年超越香港資產管理的規模四兆
transcript.whisperx[18].start 383.7
transcript.whisperx[18].end 410.63
transcript.whisperx[18].text 但是單位是美元換算成台幣大概120兆以台灣的狀況來講台灣過去我們的國營佔的規模跟比重比較重那相關的法規也比較緊美國商會 歐洲商會其實歷年的報告我相信主委都有看這個方向的邁進我不反對但什麼實際上面我覺得怎麼按部就班的下去執行
transcript.whisperx[19].start 413.26
transcript.whisperx[19].end 437.514
transcript.whisperx[19].text 比較重要是以新加坡來講的話他整整花了五年超越香港資產管理的規模他們做了很多事情其實人家怎麼成功的我們可以借鏡我們通通都有在演當然我不是說說什麼亞洲資產管理中心長他人之氣滅自己威風台灣怎麼跟人家比等等等等這都不是我要講的話我要我希望說的話是2001年
transcript.whisperx[20].start 440.578
transcript.whisperx[20].end 457.643
transcript.whisperx[20].text 我們的政府第一次打出了這個口號現在是2025年我們一樣在喊這個口號那現實上面過去五年新加坡怎麼建籍履籍的人家怎麼做的超越了香港人家現在的規模是120兆
transcript.whisperx[21].start 459.295
transcript.whisperx[21].end 484.637
transcript.whisperx[21].text 台灣未來五年要怎麼做能夠達到什麼樣子的規模我相信這個才是全體國人期待看到的東西主委你應該懂我的意思吧理解我覺得說對的事情我們就會去做這部分我想今天能夠做多少我們一定全力來做因為台灣未來發展的方向金融業不應該是只有這樣我希望透過這個計畫全面的提升
transcript.whisperx[22].start 485.917
transcript.whisperx[22].end 491.519
transcript.whisperx[22].text 我希望你可以成功啦但具體的成效如何我們會隨著時間的進展一步一步來看今天因為時間的關係我後面其他的國際評比的部分我下一次再來請教主委謝謝黃委員接下來我們請楊瓊英委員