iVOD / 164030

Field Value
IVOD_ID 164030
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/164030
日期 2025-10-13
會議資料.會議代碼 委員會-11-4-20-2
會議資料.會議代碼:str 第11屆第4會期財政委員會第2次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 2
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第4會期財政委員會第2次全體委員會議
影片種類 Clip
開始時間 2025-10-13T11:31:18+08:00
結束時間 2025-10-13T11:44:26+08:00
影片長度 00:13:08
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/5d6d14916e595edc3b8bdebc55752774524a4fcb09fe3320a407684b3aac8590dcfa479eaf0f6b1a5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 王世堅
委員發言時間 11:31:18 - 11:44:26
會議時間 2025-10-13T09:00:00+08:00
會議名稱 立法院第11屆第4會期財政委員會第2次全體委員會議(事由:邀請金融監督管理委員會彭主任委員金隆率所屬機關首長暨中央存款保險股份有限公司、監管相關機構有關之財團法人、臺灣證券交易所股份有限公司、臺灣期貨交易所股份有限公司、臺灣集中保管結算所股份有限公司等董事長、總經理列席業務報告,並備質詢。 【10月13日、15日及16日三天一次會】)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 1.19534375
transcript.pyannote[0].end 1.34721875
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 1.71846875
transcript.pyannote[1].end 4.28346875
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 8.77221875
transcript.pyannote[2].end 9.26159375
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 21.59721875
transcript.pyannote[3].end 22.50846875
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 22.91346875
transcript.pyannote[4].end 25.12409375
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 25.12409375
transcript.pyannote[5].end 26.74409375
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 26.38971875
transcript.pyannote[6].end 28.12784375
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 29.19096875
transcript.pyannote[7].end 32.09346875
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 35.13096875
transcript.pyannote[8].end 37.94909375
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 38.20221875
transcript.pyannote[9].end 39.33284375
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 41.72909375
transcript.pyannote[10].end 42.08346875
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 42.40409375
transcript.pyannote[11].end 42.64034375
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 43.75409375
transcript.pyannote[12].end 44.00721875
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 44.53034375
transcript.pyannote[13].end 45.40784375
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 46.16721875
transcript.pyannote[14].end 56.96721875
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 57.22034375
transcript.pyannote[15].end 58.63784375
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 59.43096875
transcript.pyannote[16].end 66.46784375
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 66.56909375
transcript.pyannote[17].end 77.03159375
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 77.58846875
transcript.pyannote[18].end 78.07784375
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 78.41534375
transcript.pyannote[19].end 79.69784375
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 79.98471875
transcript.pyannote[20].end 82.04346875
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 82.48221875
transcript.pyannote[21].end 85.28346875
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 85.60409375
transcript.pyannote[22].end 85.95846875
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 86.73471875
transcript.pyannote[23].end 87.15659375
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 88.01721875
transcript.pyannote[24].end 91.94909375
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 92.72534375
transcript.pyannote[25].end 94.31159375
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 94.81784375
transcript.pyannote[26].end 97.87221875
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 99.18846875
transcript.pyannote[27].end 107.59221875
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 104.72346875
transcript.pyannote[28].end 104.77409375
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 104.80784375
transcript.pyannote[29].end 104.87534375
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 107.69346875
transcript.pyannote[30].end 116.92409375
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 117.27846875
transcript.pyannote[31].end 118.71284375
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 119.03346875
transcript.pyannote[32].end 119.84346875
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 120.50159375
transcript.pyannote[33].end 122.15534375
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 122.42534375
transcript.pyannote[34].end 123.18471875
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 124.11284375
transcript.pyannote[35].end 134.15346875
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 134.32221875
transcript.pyannote[36].end 135.62159375
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 136.34721875
transcript.pyannote[37].end 156.34409375
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 156.41159375
transcript.pyannote[38].end 158.14971875
transcript.pyannote[39].speaker SPEAKER_01
transcript.pyannote[39].start 158.60534375
transcript.pyannote[39].end 159.24659375
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 160.07346875
transcript.pyannote[40].end 164.37659375
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 165.01784375
transcript.pyannote[41].end 165.54096875
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 167.83596875
transcript.pyannote[42].end 169.42221875
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 170.33346875
transcript.pyannote[43].end 178.82159375
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 179.36159375
transcript.pyannote[44].end 180.01971875
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 180.28971875
transcript.pyannote[45].end 180.62721875
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 181.48784375
transcript.pyannote[46].end 198.39659375
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 198.83534375
transcript.pyannote[47].end 201.50159375
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 202.02471875
transcript.pyannote[48].end 202.58159375
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 203.34096875
transcript.pyannote[49].end 206.68221875
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 206.98596875
transcript.pyannote[50].end 208.11659375
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 208.38659375
transcript.pyannote[51].end 209.61846875
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 210.71534375
transcript.pyannote[52].end 227.33721875
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 227.87721875
transcript.pyannote[53].end 238.74471875
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 238.89659375
transcript.pyannote[54].end 239.72346875
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 240.44909375
transcript.pyannote[55].end 251.40096875
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 251.40096875
transcript.pyannote[56].end 251.48534375
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 252.04221875
transcript.pyannote[57].end 252.61596875
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 252.83534375
transcript.pyannote[58].end 254.47221875
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 255.11346875
transcript.pyannote[59].end 260.00721875
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 260.71596875
transcript.pyannote[60].end 267.48284375
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 268.07346875
transcript.pyannote[61].end 274.55346875
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 275.07659375
transcript.pyannote[62].end 284.42534375
transcript.pyannote[63].speaker SPEAKER_02
transcript.pyannote[63].start 284.50971875
transcript.pyannote[63].end 284.79659375
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 285.42096875
transcript.pyannote[64].end 290.43284375
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 291.63096875
transcript.pyannote[65].end 297.89159375
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 299.08971875
transcript.pyannote[66].end 299.66346875
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 300.32159375
transcript.pyannote[67].end 300.97971875
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 301.16534375
transcript.pyannote[68].end 306.49784375
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 307.05471875
transcript.pyannote[69].end 308.75909375
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 310.15971875
transcript.pyannote[70].end 310.81784375
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 311.47596875
transcript.pyannote[71].end 320.63909375
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 322.02284375
transcript.pyannote[72].end 338.34096875
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 338.98221875
transcript.pyannote[73].end 352.71846875
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 352.95471875
transcript.pyannote[74].end 363.43409375
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 364.34534375
transcript.pyannote[75].end 364.78409375
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 365.52659375
transcript.pyannote[76].end 366.48846875
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 367.09596875
transcript.pyannote[77].end 368.90159375
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 369.42471875
transcript.pyannote[78].end 373.12034375
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 371.26409375
transcript.pyannote[79].end 371.58471875
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 372.07409375
transcript.pyannote[80].end 373.03596875
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 373.12034375
transcript.pyannote[81].end 381.49034375
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 381.84471875
transcript.pyannote[82].end 384.08909375
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 384.44346875
transcript.pyannote[83].end 386.83971875
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 387.17721875
transcript.pyannote[84].end 389.26971875
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 389.40471875
transcript.pyannote[85].end 407.84909375
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 407.96721875
transcript.pyannote[86].end 418.29471875
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 418.61534375
transcript.pyannote[87].end 425.61846875
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 426.24284375
transcript.pyannote[88].end 438.56159375
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 439.00034375
transcript.pyannote[89].end 447.38721875
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 447.70784375
transcript.pyannote[90].end 452.63534375
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 453.27659375
transcript.pyannote[91].end 464.54909375
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 463.78971875
transcript.pyannote[92].end 469.72971875
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 464.90346875
transcript.pyannote[93].end 465.22409375
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 469.76346875
transcript.pyannote[94].end 469.78034375
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 469.78034375
transcript.pyannote[95].end 475.90596875
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 475.90596875
transcript.pyannote[96].end 478.21784375
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 479.02784375
transcript.pyannote[97].end 480.47909375
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 480.71534375
transcript.pyannote[98].end 482.45346875
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 483.02721875
transcript.pyannote[99].end 485.44034375
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 485.74409375
transcript.pyannote[100].end 488.73096875
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 490.13159375
transcript.pyannote[101].end 494.65409375
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 495.10971875
transcript.pyannote[102].end 495.86909375
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 496.07159375
transcript.pyannote[103].end 521.28284375
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 499.68284375
transcript.pyannote[104].end 499.85159375
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 504.72846875
transcript.pyannote[105].end 504.88034375
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 521.56971875
transcript.pyannote[106].end 527.39159375
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 527.44221875
transcript.pyannote[107].end 531.12096875
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 531.57659375
transcript.pyannote[108].end 532.26846875
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 532.84221875
transcript.pyannote[109].end 539.23784375
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 539.77784375
transcript.pyannote[110].end 540.31784375
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 541.07721875
transcript.pyannote[111].end 544.67159375
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 545.70096875
transcript.pyannote[112].end 547.15221875
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 547.92846875
transcript.pyannote[113].end 549.88596875
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 550.12221875
transcript.pyannote[114].end 554.89784375
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 555.23534375
transcript.pyannote[115].end 561.74909375
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 562.03596875
transcript.pyannote[116].end 572.97096875
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 571.51971875
transcript.pyannote[117].end 573.29159375
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 573.22409375
transcript.pyannote[118].end 577.30784375
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 577.86471875
transcript.pyannote[119].end 591.04409375
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 591.11159375
transcript.pyannote[120].end 592.15784375
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 592.54596875
transcript.pyannote[121].end 593.03534375
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 593.52471875
transcript.pyannote[122].end 596.66346875
transcript.pyannote[123].speaker SPEAKER_01
transcript.pyannote[123].start 597.15284375
transcript.pyannote[123].end 627.56159375
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 607.24409375
transcript.pyannote[124].end 607.49721875
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 620.28846875
transcript.pyannote[125].end 620.45721875
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 627.78096875
transcript.pyannote[126].end 663.52221875
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 663.64034375
transcript.pyannote[127].end 679.85721875
transcript.pyannote[128].speaker SPEAKER_02
transcript.pyannote[128].start 679.85721875
transcript.pyannote[128].end 679.90784375
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 679.90784375
transcript.pyannote[129].end 680.00909375
transcript.pyannote[130].speaker SPEAKER_02
transcript.pyannote[130].start 680.00909375
transcript.pyannote[130].end 680.11034375
transcript.pyannote[131].speaker SPEAKER_01
transcript.pyannote[131].start 680.11034375
transcript.pyannote[131].end 683.29971875
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 683.97471875
transcript.pyannote[132].end 686.67471875
transcript.pyannote[133].speaker SPEAKER_02
transcript.pyannote[133].start 686.69159375
transcript.pyannote[133].end 686.96159375
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 687.01221875
transcript.pyannote[134].end 687.51846875
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 687.88971875
transcript.pyannote[135].end 691.55159375
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 691.92284375
transcript.pyannote[136].end 696.46221875
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 696.46221875
transcript.pyannote[137].end 696.64784375
transcript.pyannote[138].speaker SPEAKER_01
transcript.pyannote[138].start 696.64784375
transcript.pyannote[138].end 715.63221875
transcript.pyannote[139].speaker SPEAKER_01
transcript.pyannote[139].start 716.39159375
transcript.pyannote[139].end 718.34909375
transcript.pyannote[140].speaker SPEAKER_01
transcript.pyannote[140].start 719.05784375
transcript.pyannote[140].end 735.08909375
transcript.pyannote[141].speaker SPEAKER_02
transcript.pyannote[141].start 726.34784375
transcript.pyannote[141].end 727.46159375
transcript.pyannote[142].speaker SPEAKER_01
transcript.pyannote[142].start 735.61221875
transcript.pyannote[142].end 739.30784375
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 739.71284375
transcript.pyannote[143].end 746.93534375
transcript.pyannote[144].speaker SPEAKER_02
transcript.pyannote[144].start 746.93534375
transcript.pyannote[144].end 755.52471875
transcript.pyannote[145].speaker SPEAKER_02
transcript.pyannote[145].start 755.96346875
transcript.pyannote[145].end 760.58721875
transcript.pyannote[146].speaker SPEAKER_02
transcript.pyannote[146].start 760.80659375
transcript.pyannote[146].end 761.51534375
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 761.17784375
transcript.pyannote[147].end 768.70409375
transcript.pyannote[148].speaker SPEAKER_02
transcript.pyannote[148].start 764.77221875
transcript.pyannote[148].end 766.61159375
transcript.pyannote[149].speaker SPEAKER_02
transcript.pyannote[149].start 767.82659375
transcript.pyannote[149].end 772.18034375
transcript.pyannote[150].speaker SPEAKER_02
transcript.pyannote[150].start 772.97346875
transcript.pyannote[150].end 776.24721875
transcript.pyannote[151].speaker SPEAKER_01
transcript.pyannote[151].start 773.71596875
transcript.pyannote[151].end 774.34034375
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 774.94784375
transcript.pyannote[152].end 775.36971875
transcript.pyannote[153].speaker SPEAKER_00
transcript.pyannote[153].start 776.24721875
transcript.pyannote[153].end 781.42784375
transcript.whisperx[0].start 1.758
transcript.whisperx[0].end 4.159
transcript.whisperx[0].text 王委員可以匆匆攏攏沒有關係好 謝謝主席我就照你說的匆匆攏攏對你來講 有刃有餘我先喘口氣
transcript.whisperx[1].start 29.629
transcript.whisperx[1].end 45.16
transcript.whisperx[1].text 金管會不要這個匆匆忙忙就好好 謝謝主席我請金管會彭主委好 我們請彭主委你好彭主委是
transcript.whisperx[2].start 46.243
transcript.whisperx[2].end 66.141
transcript.whisperx[2].text 我們行政院卓院長施政報告開宗明義第一章就是寫要把我們台灣打造成為亞洲資產管理中心這非常的好但是我們有一個大的問題我記得在您一上任那時候我就去年六月我就跟你提
transcript.whisperx[3].start 66.781
transcript.whisperx[3].end 90.937
transcript.whisperx[3].text 就是說我們國內保險業可運用資金的餘額高達35兆之多其中70%有25兆竟然是放在海外購買國外的債券或者基金诶 諸位如果說我們呼籲外國把資產
transcript.whisperx[4].start 92.799
transcript.whisperx[4].end 95.933
transcript.whisperx[4].text 交給我們台灣管理結果我們台灣自己70%
transcript.whisperx[5].start 99.264
transcript.whisperx[5].end 122.927
transcript.whisperx[5].text 的資金是用在國外買債券基金那我們對人家怎麼說服我們自己70%給別人管然後要別人說你的資產給我們台灣管這不是很怪嗎那我們要說服哪些國家說服非洲嗎 肯亞嗎這是很奇怪的事其次
transcript.whisperx[6].start 124.764
transcript.whisperx[6].end 144.298
transcript.whisperx[6].text 這購買海外的債券跟基金當時我們就說到有兩大風險一個戰爭一個匯率嘛結果這兩大就在我們講的去年之後沒幾個月都發生了戰爭俄國大家知道我們國內有三大受險公司五大受險公司
transcript.whisperx[7].start 145.178
transcript.whisperx[7].end 169.258
transcript.whisperx[7].text 買了俄國1380億的債券後來陸續到期到期的部分俄國的答覆很簡單等我戰爭打完了再來算這筆錢戰爭的因素跑出來了匯率在今年的5月我們對美金的匯率那個台幣大幅度的
transcript.whisperx[8].start 170.53
transcript.whisperx[8].end 179.698
transcript.whisperx[8].text 升值的結果光單月將近兩千億兩千億的損失耶天啊所以
transcript.whisperx[9].start 182.371
transcript.whisperx[9].end 207.669
transcript.whisperx[9].text 戰爭跟匯率我們都碰到了所以當時當時我就說我們海外資金上限70%可以到我們的授權資金有70%的上限可以到海外去這個部分我們應該調降我們應該適度的趕快導引這些保險資金讓它回到我們台灣那結果當時
transcript.whisperx[10].start 211.462
transcript.whisperx[10].end 239.411
transcript.whisperx[10].text 貴會的答覆是說有啦找了這些保險公司談這些保險公司說兩個原因第一個原因說我們台灣利率太低第二個台灣市場太小他們意思是說他們也是情不得已出去但是主委你不曉得記不記得當時我就說這兩個原因都不成理由啦第一個你說我們台灣利率低我承認我們台灣利率是低但是
transcript.whisperx[11].start 240.529
transcript.whisperx[11].end 254.045
transcript.whisperx[11].text 你這些受險公司也是以我們台灣這麼低的利率下去當期望值做成產品賣給我們國內的保險的大眾所以利率低你不能講
transcript.whisperx[12].start 256.422
transcript.whisperx[12].end 284.112
transcript.whisperx[12].text 你期望值也低 你的產品也低嗎不是嗎 第二個他們說我們台灣的市場太小所以當時 主委我就拜託貴會後來我也拜託財政部就是說我請貴會跟財政部都要趕快輔導我們國內這些需要建設的部會比方說內政部 比方說交通部比方說衛福部衛福部他們有長照啊
transcript.whisperx[13].start 285.492
transcript.whisperx[13].end 308.491
transcript.whisperx[13].text 交通部有各項的交通建設 鐵路 公路 高速公路各地方的捷運這都是需要資金的啊我們引導他們進來 我們設交通債券 交通公債內政 我們有社會住宅等等嘛那不管設宅
transcript.whisperx[14].start 310.539
transcript.whisperx[14].end 338.055
transcript.whisperx[14].text 長照或者未來開通的捷運自償性都很高也付得起這些利息所以我說要趕快做所以我今天要問你的問題就是說到底這一年來我們輔導了有哪一些部會有沒有去準備好去成立哪一些建設公債建設基金有還是沒有第二點這個讓保險資金去海外
transcript.whisperx[15].start 339.056
transcript.whisperx[15].end 352.446
transcript.whisperx[15].text 的這個比例是不是要從70%下降下調因為在國外看起來這不可思議耶中國啊我們對岸中國跟我們競爭的中國只有2%我們70%韓國8.3%美國12%只有日本高一點日本高一點也不到我們1 3日本21.6天啊
transcript.whisperx[16].start 365.583
transcript.whisperx[16].end 389.034
transcript.whisperx[16].text 只有我們台灣70%這麼高所以這兩個問題我想請教主委有做了嗎謝謝委員給我這個機會來回答這個問題其實我們也很希望我們壽險業長期要降低海外的投資的比重因為我們現在壽險面臨到一個叫做避別的不匹配
transcript.whisperx[17].start 390.114
transcript.whisperx[17].end 417.528
transcript.whisperx[17].text 因為他的負債跟他資產不一致所以會面臨到匯率跟利率的風險這是一個但是因為他已經長期投在海外不可能短期就把它匯回來台灣有剛剛委員提到很重要台灣沒有這麼多的工具像比如說他們投的最重要的投固定收益現在大概已經將近20兆的這樣一個金額在台灣其實我們整年所有的公債跟債券市場沒辦法很快吸納所以我們想法就至少你新錢
transcript.whisperx[18].start 418.709
transcript.whisperx[18].end 446.556
transcript.whisperx[18].text 每年他會收到的薪錢大概是兩兆左右的錢我們盡量找工具剛剛委員提到我們做了什麼比如說我們也希望說能夠有一個比如說第一個我們鬆綁法規讓我們的受請公司的這個資金本來交給國外投資能夠交給自己的投信來投資這是一個再來就是我們的兆元投資計畫裡面我們也提出很多很多方案我們甚至請交易所櫃買成立一個資本服務團去協助這些公司力單位去證券化債券化
transcript.whisperx[19].start 447.976
transcript.whisperx[19].end 469.33
transcript.whisperx[19].text 然後還有像很多地方這種發綠債那我們希望說盡量把這個政府剛剛委員提到比如說假設我們也曾經嘗試過把高速公路的收費能不能把它做個證券化也都在跟各個部會在做協商因為這個部分還要花點時間主委我很感謝貴會你們有做這些努力那成果呢 到現在成果怎麼樣
transcript.whisperx[20].start 470.03
transcript.whisperx[20].end 485.975
transcript.whisperx[20].text 其實我們現在陸陸續續有一些啦但是還沒辦法吸納我們的這麼大的受險資金因為很多部會他的心態他就是變於形式嘛反正要建設的錢很簡單預算編了就有啊
transcript.whisperx[21].start 490.185
transcript.whisperx[21].end 509.621
transcript.whisperx[21].text 大家便於形式嘛就從大筆一揮從預算下去編但是我們不應該只是單向的從預算不是這樣嗎我們應該適度的因為需要有時間嘛慢慢的就像你剛剛講不能一下子回來他也不可能一下子回來但是我們每年導引3% 5%
transcript.whisperx[22].start 512.303
transcript.whisperx[22].end 539.859
transcript.whisperx[22].text 這對我們黨預祝這些資金回來建設我們自己台灣這才是正確的嘛不是嗎所以沒有具體的結果就對了現在等於說因為受選人資金整體是非常龐大國內要找尋這些涉及到公建的案例確實是沒有那麼容易啦過去蔡英文總統的時候我看她過去那八年他們也是到後來才警覺這個事情嚴重他們
transcript.whisperx[23].start 541.144
transcript.whisperx[23].end 546.71
transcript.whisperx[23].text 有去說服交通部有成立了七檔交通建設的
transcript.whisperx[24].start 548.731
transcript.whisperx[24].end 575.128
transcript.whisperx[24].text 資金啦 債券雖然那個金額不算大都大概數十億之多但是聊勝於無這是一個開始嘛他們有七檔八年做了七檔所以我希望在你這麼專業認真之下你帶領的團隊能夠趕快跟我們這些相關部會去做這也是我們努力的方向那其次就是關於這個詐騙的部分這個
transcript.whisperx[25].start 577.95
transcript.whisperx[25].end 586.739
transcript.whisperx[25].text 我們這些逃逸的外勞還有逃逸失聯甚至工作渠道的外勞那他們就把這個戶頭就賣給這些詐騙集團那本來這本來數字不大從2022年的521案
transcript.whisperx[26].start 597.55
transcript.whisperx[26].end 626.585
transcript.whisperx[26].text 逐年增加9211862一直到今年6月統計已經超過2000戶2054戶啦那當然我們也祭出重罰說這個可以把他罰100萬以下這個最高會判3年以下可是可是主委光是重罰甚至關他都沒用他人都出境啦人都出境那難道我們要怎樣
transcript.whisperx[27].start 627.165
transcript.whisperx[27].end 649.946
transcript.whisperx[27].text 要去引渡他來我們台灣嗎這都是不可能的事情所以我認為這些事情知識體大我也詢問了我們相關金管會的同仁們他們是說有找勞動部下去談但是我覺得這個部分可能談得還不夠徹底我覺得當然勞動部他似乎不積極
transcript.whisperx[28].start 651.247
transcript.whisperx[28].end 677.938
transcript.whisperx[28].text 不積極所以我希望跟勞動部談你們跟他們談清楚就是說在這件事情上面開戶所謂的外勞他們的自己財產管理的這一部分的權利人權啊這個應該擺在一邊為什麼因為不管他是期限已經到了要回國或者他都已經失聯了簡單的方式就把這個戶頭切斷就好嘛
transcript.whisperx[29].start 680.259
transcript.whisperx[29].end 706.709
transcript.whisperx[29].text 切斷就好人家失聯逃逸的他失聯逃逸他還不敢用這個戶頭啊那請他的雇主也一定現金給他嘛不是嗎所以這樣子的外勞他剛好順便把這個戶頭賣掉就算了所以這樣子的情況下不要在那邊一直考量說外勞也有他的人權他有他的權利去管理他的資金
transcript.whisperx[30].start 707.849
transcript.whisperx[30].end 734.755
transcript.whisperx[30].text 這個一切都在他失聯之後甚至期滿回國以後就要簡單明瞭把它斷線這個也可以載入到勞動部載入到跟外勞引進的合約裡面就可以寫這麼清楚好不好我希望你們跟勞動部因為我知道現在在阻撓的都勞動部啊不積極的都勞動部你跟勞動部講清楚
transcript.whisperx[31].start 737.184
transcript.whisperx[31].end 760.379
transcript.whisperx[31].text 說這個事情知識體大不要再用那些有的沒有的藉口就是不要把簡單的事情複雜化好不好好 謝謝我們會朝著努力我們也看到我們是從去年我們就開始有對接移民署這些的外籍的那個警示帳戶的比例從高峰已經開始往下走那我們會來持續跟其他部會一起來努力
transcript.whisperx[32].start 761.199
transcript.whisperx[32].end 781.099
transcript.whisperx[32].text 我剛看到的數字我念的數字都是往上爬當然有往下的數字當然是好啦八月已經下降下來的因為我們管控措施也慢慢看到一些成效我們會努力謝謝謝謝王委員 謝謝主委接下來我們請葛如君委員