IVOD_ID |
163993 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/163993 |
日期 |
2025-10-09 |
會議資料.會議代碼 |
委員會-11-4-26-2 |
會議資料.會議代碼:str |
第11屆第4會期社會福利及衛生環境委員會第2次全體委員會議 |
會議資料.屆 |
11 |
會議資料.會期 |
4 |
會議資料.會次 |
2 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
26 |
會議資料.委員會代碼:str[0] |
社會福利及衛生環境委員會 |
會議資料.標題 |
第11屆第4會期社會福利及衛生環境委員會第2次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2025-10-09T12:12:21+08:00 |
結束時間 |
2025-10-09T12:31:19+08:00 |
影片長度 |
00:18:58 |
支援功能[0] |
ai-transcript |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/0913948005eacb625c173a61662c33a5819c05f3ca7f3b915dd0128aa318ab8e632dec9194285a125ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
陳菁徽 |
委員發言時間 |
12:12:21 - 12:31:19 |
會議時間 |
2025-10-09T09:00:00+08:00 |
會議名稱 |
立法院第11屆第4會期社會福利及衛生環境委員會第2次全體委員會議(事由:邀請勞動部部長針對「因關稅造成我國市場就業及勞動環境衝擊之影響及因應對策」進行專題報告,並備質詢。【10月8日及9日二天一次會】) |
transcript.pyannote[0].speaker |
SPEAKER_03 |
transcript.pyannote[0].start |
6.89909375 |
transcript.pyannote[0].end |
9.71721875 |
transcript.pyannote[1].speaker |
SPEAKER_00 |
transcript.pyannote[1].start |
9.71721875 |
transcript.pyannote[1].end |
11.26971875 |
transcript.pyannote[2].speaker |
SPEAKER_03 |
transcript.pyannote[2].start |
17.71596875 |
transcript.pyannote[2].end |
18.47534375 |
transcript.pyannote[3].speaker |
SPEAKER_00 |
transcript.pyannote[3].start |
17.83409375 |
transcript.pyannote[3].end |
18.39096875 |
transcript.pyannote[4].speaker |
SPEAKER_03 |
transcript.pyannote[4].start |
18.76221875 |
transcript.pyannote[4].end |
30.42284375 |
transcript.pyannote[5].speaker |
SPEAKER_03 |
transcript.pyannote[5].start |
30.74346875 |
transcript.pyannote[5].end |
70.53471875 |
transcript.pyannote[6].speaker |
SPEAKER_00 |
transcript.pyannote[6].start |
72.86346875 |
transcript.pyannote[6].end |
74.93909375 |
transcript.pyannote[7].speaker |
SPEAKER_03 |
transcript.pyannote[7].start |
73.35284375 |
transcript.pyannote[7].end |
74.09534375 |
transcript.pyannote[8].speaker |
SPEAKER_03 |
transcript.pyannote[8].start |
75.19221875 |
transcript.pyannote[8].end |
80.13659375 |
transcript.pyannote[9].speaker |
SPEAKER_00 |
transcript.pyannote[9].start |
80.08596875 |
transcript.pyannote[9].end |
110.62971875 |
transcript.pyannote[10].speaker |
SPEAKER_03 |
transcript.pyannote[10].start |
81.18284375 |
transcript.pyannote[10].end |
81.52034375 |
transcript.pyannote[11].speaker |
SPEAKER_01 |
transcript.pyannote[11].start |
92.91096875 |
transcript.pyannote[11].end |
93.45096875 |
transcript.pyannote[12].speaker |
SPEAKER_01 |
transcript.pyannote[12].start |
97.24784375 |
transcript.pyannote[12].end |
97.66971875 |
transcript.pyannote[13].speaker |
SPEAKER_01 |
transcript.pyannote[13].start |
101.66909375 |
transcript.pyannote[13].end |
101.98971875 |
transcript.pyannote[14].speaker |
SPEAKER_00 |
transcript.pyannote[14].start |
110.89971875 |
transcript.pyannote[14].end |
123.23534375 |
transcript.pyannote[15].speaker |
SPEAKER_01 |
transcript.pyannote[15].start |
113.32971875 |
transcript.pyannote[15].end |
113.73471875 |
transcript.pyannote[16].speaker |
SPEAKER_03 |
transcript.pyannote[16].start |
123.11721875 |
transcript.pyannote[16].end |
126.76221875 |
transcript.pyannote[17].speaker |
SPEAKER_03 |
transcript.pyannote[17].start |
128.04471875 |
transcript.pyannote[17].end |
129.83346875 |
transcript.pyannote[18].speaker |
SPEAKER_03 |
transcript.pyannote[18].start |
130.17096875 |
transcript.pyannote[18].end |
136.76909375 |
transcript.pyannote[19].speaker |
SPEAKER_00 |
transcript.pyannote[19].start |
132.78659375 |
transcript.pyannote[19].end |
133.52909375 |
transcript.pyannote[20].speaker |
SPEAKER_00 |
transcript.pyannote[20].start |
136.76909375 |
transcript.pyannote[20].end |
145.39221875 |
transcript.pyannote[21].speaker |
SPEAKER_03 |
transcript.pyannote[21].start |
141.64596875 |
transcript.pyannote[21].end |
142.10159375 |
transcript.pyannote[22].speaker |
SPEAKER_01 |
transcript.pyannote[22].start |
142.10159375 |
transcript.pyannote[22].end |
142.11846875 |
transcript.pyannote[23].speaker |
SPEAKER_00 |
transcript.pyannote[23].start |
145.86471875 |
transcript.pyannote[23].end |
147.92346875 |
transcript.pyannote[24].speaker |
SPEAKER_03 |
transcript.pyannote[24].start |
147.55221875 |
transcript.pyannote[24].end |
147.61971875 |
transcript.pyannote[25].speaker |
SPEAKER_03 |
transcript.pyannote[25].start |
147.92346875 |
transcript.pyannote[25].end |
147.94034375 |
transcript.pyannote[26].speaker |
SPEAKER_00 |
transcript.pyannote[26].start |
147.94034375 |
transcript.pyannote[26].end |
147.95721875 |
transcript.pyannote[27].speaker |
SPEAKER_00 |
transcript.pyannote[27].start |
148.05846875 |
transcript.pyannote[27].end |
152.09159375 |
transcript.pyannote[28].speaker |
SPEAKER_03 |
transcript.pyannote[28].start |
152.37846875 |
transcript.pyannote[28].end |
152.78346875 |
transcript.pyannote[29].speaker |
SPEAKER_00 |
transcript.pyannote[29].start |
153.08721875 |
transcript.pyannote[29].end |
153.37409375 |
transcript.pyannote[30].speaker |
SPEAKER_03 |
transcript.pyannote[30].start |
153.37409375 |
transcript.pyannote[30].end |
153.40784375 |
transcript.pyannote[31].speaker |
SPEAKER_00 |
transcript.pyannote[31].start |
153.40784375 |
transcript.pyannote[31].end |
153.47534375 |
transcript.pyannote[32].speaker |
SPEAKER_03 |
transcript.pyannote[32].start |
153.47534375 |
transcript.pyannote[32].end |
167.68409375 |
transcript.pyannote[33].speaker |
SPEAKER_03 |
transcript.pyannote[33].start |
168.27471875 |
transcript.pyannote[33].end |
191.64659375 |
transcript.pyannote[34].speaker |
SPEAKER_03 |
transcript.pyannote[34].start |
192.03471875 |
transcript.pyannote[34].end |
214.86659375 |
transcript.pyannote[35].speaker |
SPEAKER_00 |
transcript.pyannote[35].start |
211.49159375 |
transcript.pyannote[35].end |
211.50846875 |
transcript.pyannote[36].speaker |
SPEAKER_02 |
transcript.pyannote[36].start |
211.50846875 |
transcript.pyannote[36].end |
212.06534375 |
transcript.pyannote[37].speaker |
SPEAKER_02 |
transcript.pyannote[37].start |
215.81159375 |
transcript.pyannote[37].end |
216.14909375 |
transcript.pyannote[38].speaker |
SPEAKER_02 |
transcript.pyannote[38].start |
216.16596875 |
transcript.pyannote[38].end |
222.37596875 |
transcript.pyannote[39].speaker |
SPEAKER_03 |
transcript.pyannote[39].start |
222.37596875 |
transcript.pyannote[39].end |
222.66284375 |
transcript.pyannote[40].speaker |
SPEAKER_02 |
transcript.pyannote[40].start |
222.61221875 |
transcript.pyannote[40].end |
228.92346875 |
transcript.pyannote[41].speaker |
SPEAKER_02 |
transcript.pyannote[41].start |
229.10909375 |
transcript.pyannote[41].end |
231.52221875 |
transcript.pyannote[42].speaker |
SPEAKER_02 |
transcript.pyannote[42].start |
232.02846875 |
transcript.pyannote[42].end |
236.90534375 |
transcript.pyannote[43].speaker |
SPEAKER_03 |
transcript.pyannote[43].start |
236.66909375 |
transcript.pyannote[43].end |
243.84096875 |
transcript.pyannote[44].speaker |
SPEAKER_02 |
transcript.pyannote[44].start |
244.06034375 |
transcript.pyannote[44].end |
244.53284375 |
transcript.pyannote[45].speaker |
SPEAKER_03 |
transcript.pyannote[45].start |
244.09409375 |
transcript.pyannote[45].end |
248.31284375 |
transcript.pyannote[46].speaker |
SPEAKER_02 |
transcript.pyannote[46].start |
246.60846875 |
transcript.pyannote[46].end |
247.16534375 |
transcript.pyannote[47].speaker |
SPEAKER_02 |
transcript.pyannote[47].start |
248.00909375 |
transcript.pyannote[47].end |
248.81909375 |
transcript.pyannote[48].speaker |
SPEAKER_02 |
transcript.pyannote[48].start |
249.35909375 |
transcript.pyannote[48].end |
250.65846875 |
transcript.pyannote[49].speaker |
SPEAKER_03 |
transcript.pyannote[49].start |
250.65846875 |
transcript.pyannote[49].end |
253.08846875 |
transcript.pyannote[50].speaker |
SPEAKER_03 |
transcript.pyannote[50].start |
254.10096875 |
transcript.pyannote[50].end |
261.57659375 |
transcript.pyannote[51].speaker |
SPEAKER_00 |
transcript.pyannote[51].start |
262.16721875 |
transcript.pyannote[51].end |
267.28034375 |
transcript.pyannote[52].speaker |
SPEAKER_03 |
transcript.pyannote[52].start |
267.44909375 |
transcript.pyannote[52].end |
268.17471875 |
transcript.pyannote[53].speaker |
SPEAKER_00 |
transcript.pyannote[53].start |
267.87096875 |
transcript.pyannote[53].end |
279.83534375 |
transcript.pyannote[54].speaker |
SPEAKER_03 |
transcript.pyannote[54].start |
280.45971875 |
transcript.pyannote[54].end |
281.18534375 |
transcript.pyannote[55].speaker |
SPEAKER_03 |
transcript.pyannote[55].start |
281.75909375 |
transcript.pyannote[55].end |
283.53096875 |
transcript.pyannote[56].speaker |
SPEAKER_00 |
transcript.pyannote[56].start |
282.94034375 |
transcript.pyannote[56].end |
291.12471875 |
transcript.pyannote[57].speaker |
SPEAKER_03 |
transcript.pyannote[57].start |
292.71096875 |
transcript.pyannote[57].end |
295.29284375 |
transcript.pyannote[58].speaker |
SPEAKER_00 |
transcript.pyannote[58].start |
294.53346875 |
transcript.pyannote[58].end |
297.97596875 |
transcript.pyannote[59].speaker |
SPEAKER_00 |
transcript.pyannote[59].start |
298.07721875 |
transcript.pyannote[59].end |
298.09409375 |
transcript.pyannote[60].speaker |
SPEAKER_03 |
transcript.pyannote[60].start |
298.09409375 |
transcript.pyannote[60].end |
298.48221875 |
transcript.pyannote[61].speaker |
SPEAKER_00 |
transcript.pyannote[61].start |
298.43159375 |
transcript.pyannote[61].end |
307.20659375 |
transcript.pyannote[62].speaker |
SPEAKER_03 |
transcript.pyannote[62].start |
306.95346875 |
transcript.pyannote[62].end |
311.40846875 |
transcript.pyannote[63].speaker |
SPEAKER_00 |
transcript.pyannote[63].start |
309.53534375 |
transcript.pyannote[63].end |
310.02471875 |
transcript.pyannote[64].speaker |
SPEAKER_00 |
transcript.pyannote[64].start |
311.66159375 |
transcript.pyannote[64].end |
311.91471875 |
transcript.pyannote[65].speaker |
SPEAKER_02 |
transcript.pyannote[65].start |
311.91471875 |
transcript.pyannote[65].end |
327.42284375 |
transcript.pyannote[66].speaker |
SPEAKER_03 |
transcript.pyannote[66].start |
321.83721875 |
transcript.pyannote[66].end |
321.97221875 |
transcript.pyannote[67].speaker |
SPEAKER_03 |
transcript.pyannote[67].start |
327.08534375 |
transcript.pyannote[67].end |
331.60784375 |
transcript.pyannote[68].speaker |
SPEAKER_02 |
transcript.pyannote[68].start |
328.51971875 |
transcript.pyannote[68].end |
329.29596875 |
transcript.pyannote[69].speaker |
SPEAKER_02 |
transcript.pyannote[69].start |
330.61221875 |
transcript.pyannote[69].end |
333.64971875 |
transcript.pyannote[70].speaker |
SPEAKER_03 |
transcript.pyannote[70].start |
332.58659375 |
transcript.pyannote[70].end |
335.79284375 |
transcript.pyannote[71].speaker |
SPEAKER_02 |
transcript.pyannote[71].start |
335.79284375 |
transcript.pyannote[71].end |
345.02346875 |
transcript.pyannote[72].speaker |
SPEAKER_03 |
transcript.pyannote[72].start |
336.01221875 |
transcript.pyannote[72].end |
336.24846875 |
transcript.pyannote[73].speaker |
SPEAKER_03 |
transcript.pyannote[73].start |
342.44159375 |
transcript.pyannote[73].end |
342.69471875 |
transcript.pyannote[74].speaker |
SPEAKER_03 |
transcript.pyannote[74].start |
344.63534375 |
transcript.pyannote[74].end |
357.94971875 |
transcript.pyannote[75].speaker |
SPEAKER_02 |
transcript.pyannote[75].start |
345.14159375 |
transcript.pyannote[75].end |
345.15846875 |
transcript.pyannote[76].speaker |
SPEAKER_02 |
transcript.pyannote[76].start |
346.06971875 |
transcript.pyannote[76].end |
346.17096875 |
transcript.pyannote[77].speaker |
SPEAKER_03 |
transcript.pyannote[77].start |
358.35471875 |
transcript.pyannote[77].end |
358.70909375 |
transcript.pyannote[78].speaker |
SPEAKER_03 |
transcript.pyannote[78].start |
359.13096875 |
transcript.pyannote[78].end |
364.22721875 |
transcript.pyannote[79].speaker |
SPEAKER_03 |
transcript.pyannote[79].start |
364.32846875 |
transcript.pyannote[79].end |
367.90596875 |
transcript.pyannote[80].speaker |
SPEAKER_03 |
transcript.pyannote[80].start |
368.36159375 |
transcript.pyannote[80].end |
383.92034375 |
transcript.pyannote[81].speaker |
SPEAKER_00 |
transcript.pyannote[81].start |
383.92034375 |
transcript.pyannote[81].end |
415.54409375 |
transcript.pyannote[82].speaker |
SPEAKER_01 |
transcript.pyannote[82].start |
393.77534375 |
transcript.pyannote[82].end |
394.24784375 |
transcript.pyannote[83].speaker |
SPEAKER_01 |
transcript.pyannote[83].start |
397.15034375 |
transcript.pyannote[83].end |
397.79159375 |
transcript.pyannote[84].speaker |
SPEAKER_01 |
transcript.pyannote[84].start |
400.01909375 |
transcript.pyannote[84].end |
400.40721875 |
transcript.pyannote[85].speaker |
SPEAKER_03 |
transcript.pyannote[85].start |
415.32471875 |
transcript.pyannote[85].end |
420.03284375 |
transcript.pyannote[86].speaker |
SPEAKER_00 |
transcript.pyannote[86].start |
420.10034375 |
transcript.pyannote[86].end |
422.61471875 |
transcript.pyannote[87].speaker |
SPEAKER_03 |
transcript.pyannote[87].start |
420.42096875 |
transcript.pyannote[87].end |
422.05784375 |
transcript.pyannote[88].speaker |
SPEAKER_03 |
transcript.pyannote[88].start |
423.01971875 |
transcript.pyannote[88].end |
423.03659375 |
transcript.pyannote[89].speaker |
SPEAKER_00 |
transcript.pyannote[89].start |
423.03659375 |
transcript.pyannote[89].end |
434.00534375 |
transcript.pyannote[90].speaker |
SPEAKER_03 |
transcript.pyannote[90].start |
423.05346875 |
transcript.pyannote[90].end |
423.12096875 |
transcript.pyannote[91].speaker |
SPEAKER_03 |
transcript.pyannote[91].start |
423.25596875 |
transcript.pyannote[91].end |
423.32346875 |
transcript.pyannote[92].speaker |
SPEAKER_03 |
transcript.pyannote[92].start |
426.12471875 |
transcript.pyannote[92].end |
426.46221875 |
transcript.pyannote[93].speaker |
SPEAKER_01 |
transcript.pyannote[93].start |
426.46221875 |
transcript.pyannote[93].end |
426.49596875 |
transcript.pyannote[94].speaker |
SPEAKER_01 |
transcript.pyannote[94].start |
430.88346875 |
transcript.pyannote[94].end |
431.33909375 |
transcript.pyannote[95].speaker |
SPEAKER_01 |
transcript.pyannote[95].start |
431.98034375 |
transcript.pyannote[95].end |
432.03096875 |
transcript.pyannote[96].speaker |
SPEAKER_03 |
transcript.pyannote[96].start |
432.03096875 |
transcript.pyannote[96].end |
432.26721875 |
transcript.pyannote[97].speaker |
SPEAKER_03 |
transcript.pyannote[97].start |
432.28409375 |
transcript.pyannote[97].end |
432.31784375 |
transcript.pyannote[98].speaker |
SPEAKER_00 |
transcript.pyannote[98].start |
434.66346875 |
transcript.pyannote[98].end |
441.61596875 |
transcript.pyannote[99].speaker |
SPEAKER_03 |
transcript.pyannote[99].start |
438.54471875 |
transcript.pyannote[99].end |
438.96659375 |
transcript.pyannote[100].speaker |
SPEAKER_03 |
transcript.pyannote[100].start |
440.58659375 |
transcript.pyannote[100].end |
442.47659375 |
transcript.pyannote[101].speaker |
SPEAKER_00 |
transcript.pyannote[101].start |
442.18971875 |
transcript.pyannote[101].end |
442.57784375 |
transcript.pyannote[102].speaker |
SPEAKER_03 |
transcript.pyannote[102].start |
442.56096875 |
transcript.pyannote[102].end |
448.45034375 |
transcript.pyannote[103].speaker |
SPEAKER_03 |
transcript.pyannote[103].start |
448.60221875 |
transcript.pyannote[103].end |
471.77159375 |
transcript.pyannote[104].speaker |
SPEAKER_00 |
transcript.pyannote[104].start |
473.64471875 |
transcript.pyannote[104].end |
496.34159375 |
transcript.pyannote[105].speaker |
SPEAKER_01 |
transcript.pyannote[105].start |
484.39409375 |
transcript.pyannote[105].end |
484.74846875 |
transcript.pyannote[106].speaker |
SPEAKER_00 |
transcript.pyannote[106].start |
496.74659375 |
transcript.pyannote[106].end |
497.55659375 |
transcript.pyannote[107].speaker |
SPEAKER_00 |
transcript.pyannote[107].start |
497.79284375 |
transcript.pyannote[107].end |
499.80096875 |
transcript.pyannote[108].speaker |
SPEAKER_03 |
transcript.pyannote[108].start |
499.39596875 |
transcript.pyannote[108].end |
502.34909375 |
transcript.pyannote[109].speaker |
SPEAKER_03 |
transcript.pyannote[109].start |
502.85534375 |
transcript.pyannote[109].end |
505.16721875 |
transcript.pyannote[110].speaker |
SPEAKER_00 |
transcript.pyannote[110].start |
505.72409375 |
transcript.pyannote[110].end |
511.20846875 |
transcript.pyannote[111].speaker |
SPEAKER_03 |
transcript.pyannote[111].start |
511.66409375 |
transcript.pyannote[111].end |
513.89159375 |
transcript.pyannote[112].speaker |
SPEAKER_00 |
transcript.pyannote[112].start |
513.85784375 |
transcript.pyannote[112].end |
513.95909375 |
transcript.pyannote[113].speaker |
SPEAKER_03 |
transcript.pyannote[113].start |
513.95909375 |
transcript.pyannote[113].end |
515.69721875 |
transcript.pyannote[114].speaker |
SPEAKER_03 |
transcript.pyannote[114].start |
516.25409375 |
transcript.pyannote[114].end |
544.23284375 |
transcript.pyannote[115].speaker |
SPEAKER_03 |
transcript.pyannote[115].start |
544.77284375 |
transcript.pyannote[115].end |
555.96096875 |
transcript.pyannote[116].speaker |
SPEAKER_03 |
transcript.pyannote[116].start |
556.41659375 |
transcript.pyannote[116].end |
568.92096875 |
transcript.pyannote[117].speaker |
SPEAKER_03 |
transcript.pyannote[117].start |
569.62971875 |
transcript.pyannote[117].end |
580.49721875 |
transcript.pyannote[118].speaker |
SPEAKER_03 |
transcript.pyannote[118].start |
580.78409375 |
transcript.pyannote[118].end |
581.35784375 |
transcript.pyannote[119].speaker |
SPEAKER_00 |
transcript.pyannote[119].start |
582.11721875 |
transcript.pyannote[119].end |
585.49221875 |
transcript.pyannote[120].speaker |
SPEAKER_03 |
transcript.pyannote[120].start |
585.49221875 |
transcript.pyannote[120].end |
588.25971875 |
transcript.pyannote[121].speaker |
SPEAKER_03 |
transcript.pyannote[121].start |
588.81659375 |
transcript.pyannote[121].end |
592.52909375 |
transcript.pyannote[122].speaker |
SPEAKER_00 |
transcript.pyannote[122].start |
593.40659375 |
transcript.pyannote[122].end |
594.08159375 |
transcript.pyannote[123].speaker |
SPEAKER_03 |
transcript.pyannote[123].start |
593.45721875 |
transcript.pyannote[123].end |
594.04784375 |
transcript.pyannote[124].speaker |
SPEAKER_00 |
transcript.pyannote[124].start |
594.25034375 |
transcript.pyannote[124].end |
596.96721875 |
transcript.pyannote[125].speaker |
SPEAKER_03 |
transcript.pyannote[125].start |
595.38096875 |
transcript.pyannote[125].end |
595.61721875 |
transcript.pyannote[126].speaker |
SPEAKER_00 |
transcript.pyannote[126].start |
597.55784375 |
transcript.pyannote[126].end |
599.63346875 |
transcript.pyannote[127].speaker |
SPEAKER_00 |
transcript.pyannote[127].start |
599.83596875 |
transcript.pyannote[127].end |
604.83096875 |
transcript.pyannote[128].speaker |
SPEAKER_01 |
transcript.pyannote[128].start |
603.64971875 |
transcript.pyannote[128].end |
603.98721875 |
transcript.pyannote[129].speaker |
SPEAKER_00 |
transcript.pyannote[129].start |
605.21909375 |
transcript.pyannote[129].end |
605.87721875 |
transcript.pyannote[130].speaker |
SPEAKER_00 |
transcript.pyannote[130].start |
606.16409375 |
transcript.pyannote[130].end |
611.74971875 |
transcript.pyannote[131].speaker |
SPEAKER_01 |
transcript.pyannote[131].start |
609.31971875 |
transcript.pyannote[131].end |
609.79221875 |
transcript.pyannote[132].speaker |
SPEAKER_01 |
transcript.pyannote[132].start |
611.42909375 |
transcript.pyannote[132].end |
611.51346875 |
transcript.pyannote[133].speaker |
SPEAKER_00 |
transcript.pyannote[133].start |
612.15471875 |
transcript.pyannote[133].end |
627.98346875 |
transcript.pyannote[134].speaker |
SPEAKER_01 |
transcript.pyannote[134].start |
623.27534375 |
transcript.pyannote[134].end |
623.52846875 |
transcript.pyannote[135].speaker |
SPEAKER_00 |
transcript.pyannote[135].start |
628.65846875 |
transcript.pyannote[135].end |
650.88284375 |
transcript.pyannote[136].speaker |
SPEAKER_01 |
transcript.pyannote[136].start |
641.60159375 |
transcript.pyannote[136].end |
641.98971875 |
transcript.pyannote[137].speaker |
SPEAKER_01 |
transcript.pyannote[137].start |
646.07346875 |
transcript.pyannote[137].end |
646.09034375 |
transcript.pyannote[138].speaker |
SPEAKER_03 |
transcript.pyannote[138].start |
646.09034375 |
transcript.pyannote[138].end |
646.51221875 |
transcript.pyannote[139].speaker |
SPEAKER_03 |
transcript.pyannote[139].start |
647.81159375 |
transcript.pyannote[139].end |
649.36409375 |
transcript.pyannote[140].speaker |
SPEAKER_03 |
transcript.pyannote[140].start |
650.93346875 |
transcript.pyannote[140].end |
664.60221875 |
transcript.pyannote[141].speaker |
SPEAKER_00 |
transcript.pyannote[141].start |
664.55159375 |
transcript.pyannote[141].end |
707.46471875 |
transcript.pyannote[142].speaker |
SPEAKER_03 |
transcript.pyannote[142].start |
669.90096875 |
transcript.pyannote[142].end |
670.03596875 |
transcript.pyannote[143].speaker |
SPEAKER_01 |
transcript.pyannote[143].start |
678.43971875 |
transcript.pyannote[143].end |
678.84471875 |
transcript.pyannote[144].speaker |
SPEAKER_01 |
transcript.pyannote[144].start |
687.48471875 |
transcript.pyannote[144].end |
687.80534375 |
transcript.pyannote[145].speaker |
SPEAKER_01 |
transcript.pyannote[145].start |
694.04909375 |
transcript.pyannote[145].end |
694.43721875 |
transcript.pyannote[146].speaker |
SPEAKER_01 |
transcript.pyannote[146].start |
698.25096875 |
transcript.pyannote[146].end |
698.60534375 |
transcript.pyannote[147].speaker |
SPEAKER_03 |
transcript.pyannote[147].start |
705.65909375 |
transcript.pyannote[147].end |
705.97971875 |
transcript.pyannote[148].speaker |
SPEAKER_03 |
transcript.pyannote[148].start |
707.70096875 |
transcript.pyannote[148].end |
708.00471875 |
transcript.pyannote[149].speaker |
SPEAKER_03 |
transcript.pyannote[149].start |
708.13971875 |
transcript.pyannote[149].end |
719.83409375 |
transcript.pyannote[150].speaker |
SPEAKER_00 |
transcript.pyannote[150].start |
719.90159375 |
transcript.pyannote[150].end |
721.79159375 |
transcript.pyannote[151].speaker |
SPEAKER_03 |
transcript.pyannote[151].start |
721.79159375 |
transcript.pyannote[151].end |
722.51721875 |
transcript.pyannote[152].speaker |
SPEAKER_03 |
transcript.pyannote[152].start |
722.85471875 |
transcript.pyannote[152].end |
737.02971875 |
transcript.pyannote[153].speaker |
SPEAKER_03 |
transcript.pyannote[153].start |
738.12659375 |
transcript.pyannote[153].end |
785.37659375 |
transcript.pyannote[154].speaker |
SPEAKER_00 |
transcript.pyannote[154].start |
785.39346875 |
transcript.pyannote[154].end |
787.26659375 |
transcript.pyannote[155].speaker |
SPEAKER_00 |
transcript.pyannote[155].start |
787.55346875 |
transcript.pyannote[155].end |
801.27284375 |
transcript.pyannote[156].speaker |
SPEAKER_00 |
transcript.pyannote[156].start |
801.52596875 |
transcript.pyannote[156].end |
821.11784375 |
transcript.pyannote[157].speaker |
SPEAKER_03 |
transcript.pyannote[157].start |
820.35846875 |
transcript.pyannote[157].end |
821.99534375 |
transcript.pyannote[158].speaker |
SPEAKER_00 |
transcript.pyannote[158].start |
822.70409375 |
transcript.pyannote[158].end |
823.27784375 |
transcript.pyannote[159].speaker |
SPEAKER_03 |
transcript.pyannote[159].start |
822.97409375 |
transcript.pyannote[159].end |
823.46346875 |
transcript.pyannote[160].speaker |
SPEAKER_00 |
transcript.pyannote[160].start |
823.46346875 |
transcript.pyannote[160].end |
825.97784375 |
transcript.pyannote[161].speaker |
SPEAKER_00 |
transcript.pyannote[161].start |
826.65284375 |
transcript.pyannote[161].end |
834.65159375 |
transcript.pyannote[162].speaker |
SPEAKER_03 |
transcript.pyannote[162].start |
835.47846875 |
transcript.pyannote[162].end |
844.03409375 |
transcript.pyannote[163].speaker |
SPEAKER_00 |
transcript.pyannote[163].start |
843.57846875 |
transcript.pyannote[163].end |
845.11409375 |
transcript.pyannote[164].speaker |
SPEAKER_03 |
transcript.pyannote[164].start |
844.57409375 |
transcript.pyannote[164].end |
847.72971875 |
transcript.pyannote[165].speaker |
SPEAKER_00 |
transcript.pyannote[165].start |
847.78034375 |
transcript.pyannote[165].end |
848.70846875 |
transcript.pyannote[166].speaker |
SPEAKER_03 |
transcript.pyannote[166].start |
848.70846875 |
transcript.pyannote[166].end |
851.76284375 |
transcript.pyannote[167].speaker |
SPEAKER_00 |
transcript.pyannote[167].start |
852.03284375 |
transcript.pyannote[167].end |
864.90846875 |
transcript.pyannote[168].speaker |
SPEAKER_03 |
transcript.pyannote[168].start |
864.65534375 |
transcript.pyannote[168].end |
866.93346875 |
transcript.pyannote[169].speaker |
SPEAKER_00 |
transcript.pyannote[169].start |
867.28784375 |
transcript.pyannote[169].end |
867.49034375 |
transcript.pyannote[170].speaker |
SPEAKER_00 |
transcript.pyannote[170].start |
872.40096875 |
transcript.pyannote[170].end |
874.02096875 |
transcript.pyannote[171].speaker |
SPEAKER_00 |
transcript.pyannote[171].start |
874.99971875 |
transcript.pyannote[171].end |
875.38784375 |
transcript.pyannote[172].speaker |
SPEAKER_03 |
transcript.pyannote[172].start |
875.10096875 |
transcript.pyannote[172].end |
878.27346875 |
transcript.pyannote[173].speaker |
SPEAKER_00 |
transcript.pyannote[173].start |
878.77971875 |
transcript.pyannote[173].end |
879.82596875 |
transcript.pyannote[174].speaker |
SPEAKER_00 |
transcript.pyannote[174].start |
880.18034375 |
transcript.pyannote[174].end |
883.60596875 |
transcript.pyannote[175].speaker |
SPEAKER_03 |
transcript.pyannote[175].start |
883.43721875 |
transcript.pyannote[175].end |
884.43284375 |
transcript.pyannote[176].speaker |
SPEAKER_00 |
transcript.pyannote[176].start |
884.51721875 |
transcript.pyannote[176].end |
884.87159375 |
transcript.pyannote[177].speaker |
SPEAKER_03 |
transcript.pyannote[177].start |
884.95596875 |
transcript.pyannote[177].end |
885.24284375 |
transcript.pyannote[178].speaker |
SPEAKER_00 |
transcript.pyannote[178].start |
885.39471875 |
transcript.pyannote[178].end |
886.74471875 |
transcript.pyannote[179].speaker |
SPEAKER_03 |
transcript.pyannote[179].start |
886.47471875 |
transcript.pyannote[179].end |
887.38596875 |
transcript.pyannote[180].speaker |
SPEAKER_03 |
transcript.pyannote[180].start |
887.75721875 |
transcript.pyannote[180].end |
887.79096875 |
transcript.pyannote[181].speaker |
SPEAKER_03 |
transcript.pyannote[181].start |
887.80784375 |
transcript.pyannote[181].end |
887.89221875 |
transcript.pyannote[182].speaker |
SPEAKER_00 |
transcript.pyannote[182].start |
888.19596875 |
transcript.pyannote[182].end |
890.01846875 |
transcript.pyannote[183].speaker |
SPEAKER_03 |
transcript.pyannote[183].start |
890.32221875 |
transcript.pyannote[183].end |
890.72721875 |
transcript.pyannote[184].speaker |
SPEAKER_03 |
transcript.pyannote[184].start |
890.87909375 |
transcript.pyannote[184].end |
896.75159375 |
transcript.pyannote[185].speaker |
SPEAKER_03 |
transcript.pyannote[185].start |
898.50659375 |
transcript.pyannote[185].end |
901.30784375 |
transcript.pyannote[186].speaker |
SPEAKER_03 |
transcript.pyannote[186].start |
902.15159375 |
transcript.pyannote[186].end |
922.06409375 |
transcript.pyannote[187].speaker |
SPEAKER_03 |
transcript.pyannote[187].start |
923.11034375 |
transcript.pyannote[187].end |
936.82971875 |
transcript.pyannote[188].speaker |
SPEAKER_03 |
transcript.pyannote[188].start |
937.52159375 |
transcript.pyannote[188].end |
959.10471875 |
transcript.pyannote[189].speaker |
SPEAKER_03 |
transcript.pyannote[189].start |
959.54346875 |
transcript.pyannote[189].end |
966.95159375 |
transcript.pyannote[190].speaker |
SPEAKER_00 |
transcript.pyannote[190].start |
966.95159375 |
transcript.pyannote[190].end |
972.40221875 |
transcript.pyannote[191].speaker |
SPEAKER_00 |
transcript.pyannote[191].start |
972.85784375 |
transcript.pyannote[191].end |
979.05096875 |
transcript.pyannote[192].speaker |
SPEAKER_03 |
transcript.pyannote[192].start |
978.86534375 |
transcript.pyannote[192].end |
980.65409375 |
transcript.pyannote[193].speaker |
SPEAKER_00 |
transcript.pyannote[193].start |
979.18596875 |
transcript.pyannote[193].end |
979.20284375 |
transcript.pyannote[194].speaker |
SPEAKER_00 |
transcript.pyannote[194].start |
979.35471875 |
transcript.pyannote[194].end |
979.45596875 |
transcript.pyannote[195].speaker |
SPEAKER_00 |
transcript.pyannote[195].start |
979.99596875 |
transcript.pyannote[195].end |
987.18471875 |
transcript.pyannote[196].speaker |
SPEAKER_03 |
transcript.pyannote[196].start |
986.13846875 |
transcript.pyannote[196].end |
987.06659375 |
transcript.pyannote[197].speaker |
SPEAKER_01 |
transcript.pyannote[197].start |
987.06659375 |
transcript.pyannote[197].end |
987.08346875 |
transcript.pyannote[198].speaker |
SPEAKER_00 |
transcript.pyannote[198].start |
987.89346875 |
transcript.pyannote[198].end |
1021.94721875 |
transcript.pyannote[199].speaker |
SPEAKER_01 |
transcript.pyannote[199].start |
991.21784375 |
transcript.pyannote[199].end |
991.67346875 |
transcript.pyannote[200].speaker |
SPEAKER_01 |
transcript.pyannote[200].start |
991.82534375 |
transcript.pyannote[200].end |
992.23034375 |
transcript.pyannote[201].speaker |
SPEAKER_01 |
transcript.pyannote[201].start |
1005.00471875 |
transcript.pyannote[201].end |
1005.57846875 |
transcript.pyannote[202].speaker |
SPEAKER_01 |
transcript.pyannote[202].start |
1009.54409375 |
transcript.pyannote[202].end |
1009.99971875 |
transcript.pyannote[203].speaker |
SPEAKER_03 |
transcript.pyannote[203].start |
1016.07471875 |
transcript.pyannote[203].end |
1016.37846875 |
transcript.pyannote[204].speaker |
SPEAKER_03 |
transcript.pyannote[204].start |
1016.39534375 |
transcript.pyannote[204].end |
1016.41221875 |
transcript.pyannote[205].speaker |
SPEAKER_03 |
transcript.pyannote[205].start |
1022.30159375 |
transcript.pyannote[205].end |
1030.73909375 |
transcript.pyannote[206].speaker |
SPEAKER_00 |
transcript.pyannote[206].start |
1024.02284375 |
transcript.pyannote[206].end |
1025.57534375 |
transcript.pyannote[207].speaker |
SPEAKER_00 |
transcript.pyannote[207].start |
1025.98034375 |
transcript.pyannote[207].end |
1026.95909375 |
transcript.pyannote[208].speaker |
SPEAKER_00 |
transcript.pyannote[208].start |
1031.07659375 |
transcript.pyannote[208].end |
1033.38846875 |
transcript.pyannote[209].speaker |
SPEAKER_03 |
transcript.pyannote[209].start |
1031.26221875 |
transcript.pyannote[209].end |
1031.44784375 |
transcript.pyannote[210].speaker |
SPEAKER_03 |
transcript.pyannote[210].start |
1033.57409375 |
transcript.pyannote[210].end |
1036.84784375 |
transcript.pyannote[211].speaker |
SPEAKER_00 |
transcript.pyannote[211].start |
1034.92409375 |
transcript.pyannote[211].end |
1035.36284375 |
transcript.pyannote[212].speaker |
SPEAKER_00 |
transcript.pyannote[212].start |
1036.84784375 |
transcript.pyannote[212].end |
1039.95284375 |
transcript.pyannote[213].speaker |
SPEAKER_03 |
transcript.pyannote[213].start |
1040.22284375 |
transcript.pyannote[213].end |
1063.88159375 |
transcript.pyannote[214].speaker |
SPEAKER_03 |
transcript.pyannote[214].start |
1064.16846875 |
transcript.pyannote[214].end |
1072.55534375 |
transcript.pyannote[215].speaker |
SPEAKER_03 |
transcript.pyannote[215].start |
1073.44971875 |
transcript.pyannote[215].end |
1073.90534375 |
transcript.pyannote[216].speaker |
SPEAKER_00 |
transcript.pyannote[216].start |
1074.07409375 |
transcript.pyannote[216].end |
1079.65971875 |
transcript.pyannote[217].speaker |
SPEAKER_03 |
transcript.pyannote[217].start |
1078.19159375 |
transcript.pyannote[217].end |
1078.42784375 |
transcript.pyannote[218].speaker |
SPEAKER_03 |
transcript.pyannote[218].start |
1079.17034375 |
transcript.pyannote[218].end |
1081.19534375 |
transcript.pyannote[219].speaker |
SPEAKER_01 |
transcript.pyannote[219].start |
1082.96721875 |
transcript.pyannote[219].end |
1093.54784375 |
transcript.pyannote[220].speaker |
SPEAKER_03 |
transcript.pyannote[220].start |
1086.51096875 |
transcript.pyannote[220].end |
1086.83159375 |
transcript.pyannote[221].speaker |
SPEAKER_03 |
transcript.pyannote[221].start |
1088.31659375 |
transcript.pyannote[221].end |
1088.68784375 |
transcript.pyannote[222].speaker |
SPEAKER_03 |
transcript.pyannote[222].start |
1089.93659375 |
transcript.pyannote[222].end |
1090.44284375 |
transcript.pyannote[223].speaker |
SPEAKER_03 |
transcript.pyannote[223].start |
1091.08409375 |
transcript.pyannote[223].end |
1091.15159375 |
transcript.pyannote[224].speaker |
SPEAKER_03 |
transcript.pyannote[224].start |
1092.77159375 |
transcript.pyannote[224].end |
1096.50096875 |
transcript.pyannote[225].speaker |
SPEAKER_01 |
transcript.pyannote[225].start |
1096.70346875 |
transcript.pyannote[225].end |
1100.48346875 |
transcript.pyannote[226].speaker |
SPEAKER_01 |
transcript.pyannote[226].start |
1100.61846875 |
transcript.pyannote[226].end |
1103.53784375 |
transcript.pyannote[227].speaker |
SPEAKER_03 |
transcript.pyannote[227].start |
1103.60534375 |
transcript.pyannote[227].end |
1103.62221875 |
transcript.pyannote[228].speaker |
SPEAKER_03 |
transcript.pyannote[228].start |
1103.63909375 |
transcript.pyannote[228].end |
1114.11846875 |
transcript.pyannote[229].speaker |
SPEAKER_01 |
transcript.pyannote[229].start |
1103.68971875 |
transcript.pyannote[229].end |
1103.72346875 |
transcript.pyannote[230].speaker |
SPEAKER_01 |
transcript.pyannote[230].start |
1104.17909375 |
transcript.pyannote[230].end |
1104.87096875 |
transcript.pyannote[231].speaker |
SPEAKER_00 |
transcript.pyannote[231].start |
1114.21971875 |
transcript.pyannote[231].end |
1135.11096875 |
transcript.pyannote[232].speaker |
SPEAKER_03 |
transcript.pyannote[232].start |
1121.74596875 |
transcript.pyannote[232].end |
1122.11721875 |
transcript.pyannote[233].speaker |
SPEAKER_03 |
transcript.pyannote[233].start |
1134.26721875 |
transcript.pyannote[233].end |
1137.52409375 |
transcript.pyannote[234].speaker |
SPEAKER_00 |
transcript.pyannote[234].start |
1136.35971875 |
transcript.pyannote[234].end |
1137.27096875 |
transcript.whisperx[0].start |
7.251 |
transcript.whisperx[0].end |
8.92 |
transcript.whisperx[0].text |
謝謝主席 那我想請洪部長 謝謝請洪聖漢部長 |
transcript.whisperx[1].start |
17.776 |
transcript.whisperx[1].end |
32.06 |
transcript.whisperx[1].text |
部長我先用講的就好但您一定很熟悉因為我們勞動力發展署的訓練發展組他有統計發現呢您做的這個充電再出發計畫只有86家企業515人僅佔受影響人數的6.05% |
transcript.whisperx[2].start |
38.121 |
transcript.whisperx[2].end |
65.607 |
transcript.whisperx[2].text |
企業辦訊更是僅有三家其實這個成效是不好的那因為成效不佳其實你是有放寬規定比如說不用限制最低的開班人數啊你回溯到8月1號還有上課時間也比較有彈性人數放寬但是合撥的金額如果是從7月開始申請應該還沒有執行數我們還看不到你放寬之後的執行數不知道你這邊有沒有 |
transcript.whisperx[3].start |
66.327 |
transcript.whisperx[3].end |
88.49 |
transcript.whisperx[3].text |
已經有的相關數據可以提供還是你要在一個月後才可以提供現在還沒有數據還沒出來所以你們檢討了過去成效不上的原因大概是哪幾個面向跟穩說明其實過去在減班休息的狀況其實主要在致應的就是我們這個充電再出發的計畫 |
transcript.whisperx[4].start |
89.531 |
transcript.whisperx[4].end |
110.169 |
transcript.whisperx[4].text |
但是因為這確實他會需要企業來辦訓那很多企業會說他其實現在是他很辛苦的時間那他還要特別來辦訓他可能不一定有能力或他不一定有這個意願來辦訓所以就會讓這個成效受影響這也是為什麼我們其實現在把對於減班休息勞工的經濟支持我們認為更應該更著重在 |
transcript.whisperx[5].start |
111.17 |
transcript.whisperx[5].end |
126.212 |
transcript.whisperx[5].text |
另外一個強化版的規劃定義措施上面那個是直接的可以給予薪資的差額補貼就是對於勞工的經濟支持我們是更大程度的是放在直接的薪資差額補貼所以你的意思是說這個也許你會考慮 |
transcript.whisperx[6].start |
128.106 |
transcript.whisperx[6].end |
151.382 |
transcript.whisperx[6].text |
放寬以後加時還是不好你就是移轉這可能不能移轉不是移轉但是你們會加強另外的直接補貼啦我們其實是直接的差補貼所以我們從五成拉到七成行業別也放寬其實我們現在是就是說我如果更直接講就是以強化版公安令措施為主那這個充電站出發對於經濟支持的效果為輔 |
transcript.whisperx[7].start |
153.303 |
transcript.whisperx[7].end |
167.291 |
transcript.whisperx[7].text |
好那下一個我想問這個減班休息就勢必要調整投保的薪資所以投保薪資一定會有所調降這是非常多這個人士就做HR的人他們反應的因為 |
transcript.whisperx[8].start |
168.451 |
transcript.whisperx[8].end |
191.359 |
transcript.whisperx[8].text |
其中包括申請勞保生育 老年給付 商帳給付等等都是去根據你領錢數個月的平均投保薪資來看但是減班休息是變相的影響到勞工的權益這個不在話下可是投保的薪資變相也懲罰到他們應有的這些給付的權益 |
transcript.whisperx[9].start |
192.119 |
transcript.whisperx[9].end |
214.097 |
transcript.whisperx[9].text |
那你有沒有辦法用最快的速度來試算因為現在剛很多委員都問了嘛大概是8500人目前是8500人所以這個試算起來應該不會很困難但對他們而言這些生育啊傷臟啊老年的給付也是很重要是不是也應該用特別預算來補足這部分金額 |
transcript.whisperx[10].start |
216.314 |
transcript.whisperx[10].end |
231.107 |
transcript.whisperx[10].text |
跟委員報告就是勞保的投保薪資他的內涵是勞基法的工資所以依照規定當然雇主要何時申報但是對於考量這一段期間的特殊的一個狀況勞資送讓他可以預定 |
transcript.whisperx[11].start |
232.287 |
transcript.whisperx[11].end |
252.098 |
transcript.whisperx[11].text |
就是原來的投保薪資申報不要調整勞保局不會去處罰他但是你有去統計嗎你有去統計有多少人他的薪資投保薪資可能會調降了受影響了因為這個必須你剛講的很清楚啊必須雙方是講好的是勞僱雙方一定對啊洪部長剛也說了 |
transcript.whisperx[12].start |
254.181 |
transcript.whisperx[12].end |
279.614 |
transcript.whisperx[12].text |
老闆這邊資方這邊也是覺得辛苦嗎所以他不一定會兩邊都講好按照原本的投保薪資啊其實就我們目前看到其實蠻多其實他基本上並沒有調降投保薪資因為這是一個比較短期的狀況那投保薪資大概是三個月其實做一次更新那所以其實目前看到是他其實並沒有很多要去反而在這段時間裡面去調降 |
transcript.whisperx[13].start |
280.509 |
transcript.whisperx[13].end |
291.163 |
transcript.whisperx[13].text |
那之後你會去追嗎我們不會特別去追這件事情但是我們基本上會希望雙方就議定不調降投保薪資就好了 |
transcript.whisperx[14].start |
292.779 |
transcript.whisperx[14].end |
318.858 |
transcript.whisperx[14].text |
那你們應該會去統計一下比例吧我們可以統計一下比例但是我說在做法上在做法上面其實就是雙方一定那我們不會特別要去在這個特別的時間還去做查然後說我們其實不會但你之後會不會有一個數據可以給我們有哪些人有受到影響我們可以去就是去比對那個減班休息的人數看看能不能比對的出來不然勞保局在 |
transcript.whisperx[15].start |
319.538 |
transcript.whisperx[15].end |
333.772 |
transcript.whisperx[15].text |
薪資調整這部分其實他是沒有原因的他沒有寫說他是因為減班休息或者是因為沒有加班等等的因素我知道你很難把它比對他下降的原因是不是因為減班休息這個我之後會再發文詢問你們 |
transcript.whisperx[16].start |
335.874 |
transcript.whisperx[16].end |
357.683 |
transcript.whisperx[16].text |
是再跟委員報告我們頭髮薪水調降或者是調整其實一年兩次就是2月跟8月我們不是每個月都讓雇主來調整好但剛剛有很多委員也是擔心這個會延長到很久嗎可能到第三季第四季甚至明年所以你本來就要有這個心理準備會遇到這件事情對好嗎好 |
transcript.whisperx[17].start |
359.484 |
transcript.whisperx[17].end |
383.656 |
transcript.whisperx[17].text |
再來就是洪部長也非常關心的彈性育嬰留庭照顧方案這個我跟你都是很贊同的啦可是呢現在因為勞健保的問題你必須要停保你必須要加保反反覆覆所以企業的人事行政申請或是公務員這都是一個挑戰那我知道你會出懶人包請問你這個懶人包的進度如何 |
transcript.whisperx[18].start |
384.316 |
transcript.whisperx[18].end |
403.706 |
transcript.whisperx[18].text |
我跟陳委員說明其實這個方案我們在9月提出其實這一段時間我們一直在跟包括我們的勞保局跟調評師包括保險師我們在盡力的把所有申請的程序給簡化甚至有些部分我們可以用自動的方式來處理那相關的書表能夠盡量簡化到最簡就最簡 |
transcript.whisperx[19].start |
404.306 |
transcript.whisperx[19].end |
433.405 |
transcript.whisperx[19].text |
那就是希望让比方说企业的HR他如果要来申请的时候其实可以在最简单的方式里面甚至我们会用可以手机线上就能够申请但是你的意思是说如果他请一天就是还是要一次吗我们可以让他累也就是你不用每一天就要来申请一次你甚至可以累计假设比方说因为我们现在是开放30天让大家一日来请我们其实是可以让大家 |
transcript.whisperx[20].start |
435.126 |
transcript.whisperx[20].end |
454.951 |
transcript.whisperx[20].text |
30天你請完30天再來跟我們申請一次都可以你不用每一次就要來就不用重複一樣的動作但現在有個比較特別的行業是女醫師跟我申請的女醫師這個您知道嗎因為對於女醫師來說她留庭就必須要辦理庭業的登記然後再去復職 |
transcript.whisperx[21].start |
455.911 |
transcript.whisperx[21].end |
471.552 |
transcript.whisperx[21].text |
因為他是特殊的有醫師執照的所以他在辦理流停的時候還要再跑醫師公會還要再跑地方衛生局那他如果做這種彈性暈暈流停的話他必須比一般的勞工還要再多跑兩個地方 |
transcript.whisperx[22].start |
473.751 |
transcript.whisperx[22].end |
497.353 |
transcript.whisperx[22].text |
因為職業登記應該是在衛福部嘛那我們來跟衛福部討論一下可是可是基本上我們會在我們目前可以就是我們勞動部全責的範圍內盡量把所有流程都最簡單我們最近也在跟人資在做相關的討論就是讓因為讓人資能夠用的盡量上手我覺得是我們在操作面上面我們讓大家用的 |
transcript.whisperx[23].start |
497.913 |
transcript.whisperx[23].end |
499.377 |
transcript.whisperx[23].text |
最簡單的方式那針對這個比較高規管的行業請問你們可以跟衛福部討論嗎 |
transcript.whisperx[24].start |
505.988 |
transcript.whisperx[24].end |
527.348 |
transcript.whisperx[24].text |
我們可以來跟衛福部討論啦對但是就看衛福部有沒有哪些部分可以再互相協調一下那就會後會再詢問您那關於這個這是很多很多很多網友他們的心得那如果說你們同仁有空的話也可以到這些群組啊或者是社團去看大家其實對於您的這個 |
transcript.whisperx[25].start |
528.129 |
transcript.whisperx[25].end |
543.775 |
transcript.whisperx[25].text |
育嬰 留職 停薪然後在規範子女三年前得請然後六個月可以領八成薪金都是正面看待非常正面看待可是你看一下所有實際上大家遇到問題是什麼遇到問題是三歲以前 |
transcript.whisperx[26].start |
544.835 |
transcript.whisperx[26].end |
568.44 |
transcript.whisperx[26].text |
大部分的人可能是在比較封閉或是在家或者是長輩照顧等等的他沒有那麼容易生病但是3歲反而是3歲到小學之間他只要班上有人腸病毒等等就一次會停課到5天反而大家會覺得這個利益非常的良好但如果你可以把這個歲數稍微往長一點 |
transcript.whisperx[27].start |
569.82 |
transcript.whisperx[27].end |
581.085 |
transcript.whisperx[27].text |
應用起來會更好那我也想問勞動部有沒有去調查生育後的雙親尤其是女性有多少比例是申請完育嬰留職停薪比例 |
transcript.whisperx[28].start |
582.588 |
transcript.whisperx[28].end |
604.13 |
transcript.whisperx[28].text |
我們應該是有數據但是現在可能數據沒有在手邊但是數據是不是你覺得不夠好所以你才會想要做彈性或者是說其實我們看到的情況是的確不一定很多的女性的勞動其實暈流田不是有女性可以申請男性也可以申請 |
transcript.whisperx[29].start |
605.29 |
transcript.whisperx[29].end |
627.273 |
transcript.whisperx[29].text |
那其實蠻多都跟我們反映希望能夠更彈性他不一定一定要請這麼長那剛剛委員其實提到這個三歲以上的部分因為我們其實在這一次的計劃的推出其實是在目前是因為是不用修法不用修法是三歲以下因為育嬰留庭基本上是在三歲以下才可以請 |
transcript.whisperx[30].start |
628.7 |
transcript.whisperx[30].end |
650.416 |
transcript.whisperx[30].text |
那我們是認為先讓我們先三歲以下先往前走那我覺得是狀況也包括很多的企業因為台灣中小企業真的蠻多的那調適到一個程度我們也不是不能考慮是不是要透過修法的方式那再把稅數再提高這個部分我們也持開放的態度因為我們是希望三歲以下能夠先行這樣子 |
transcript.whisperx[31].start |
651.656 |
transcript.whisperx[31].end |
673.823 |
transcript.whisperx[31].text |
因為我自己有提出我自己的版本我是希望這個可以拉到8歲但假使您願意的話當然只要是往後拉所有的家長都是正面的絕對大家一定會全力支持您其實在現在因為台灣正好小微企業比較多所以我們現在也在規劃一些讓企業可以協助他調適的做法 |
transcript.whisperx[32].start |
674.983 |
transcript.whisperx[32].end |
698.909 |
transcript.whisperx[32].text |
因為他的確需要調整尤其是一些排班性的企業那這是為什麼我們要盡量簡化他們的程序也包括他可能會在排班上可能他也需要一些新的排班的人資的制度來去做相關的因應可是有的社會社會企業他不一定都有很完整的HR的制度所以其實對於這些企業我們要給他協助是真的後面還有很多的工作要放在這個地方 |
transcript.whisperx[33].start |
699.409 |
transcript.whisperx[33].end |
719.188 |
transcript.whisperx[33].text |
那我們覺得說如果其實企業調適到一個程度後面假如要用修法的方式把稅數給拉高當然我們覺得這部分是可以討論的其實對企業而言他反而不會這麼短在這麼密集的時間接到就是一樣有生育的這個族群可能密集的請假你把他拉長反而大家會比較分散一點點 |
transcript.whisperx[34].start |
720.149 |
transcript.whisperx[34].end |
734.978 |
transcript.whisperx[34].text |
也有這樣子的看法好這邊大家不分朝野對於沒宣廢啊現在是蠻敏感的所以這個昨天在九樓是非常多委員質詢那我先跟部長報告2023年普發現金6000元這個東西你也有參與 |
transcript.whisperx[35].start |
738.177 |
transcript.whisperx[35].end |
755.084 |
transcript.whisperx[35].text |
政府是編列了1150的預算沒宣費最後只用了819但是達到了非常好的成效不管是偏鄉的啊境外返國的同胞啊各個族群都在多元的領取管道中有序的完成領取 |
transcript.whisperx[36].start |
756.064 |
transcript.whisperx[36].end |
785.084 |
transcript.whisperx[36].text |
那這次普發現金一萬這個特別預算沒宣費是高達1350元大家已經覺得很離譜囉但是我們來跟你剛你有講到這九大行業受衝擊的老公跟你比一下普發現金要執行的經費規模是你的337倍之多結果你的沒宣費是普發現金的1.4倍請問你這個是貴在什麼道理你可以跟我們講一下嗎 |
transcript.whisperx[37].start |
785.784 |
transcript.whisperx[37].end |
800.298 |
transcript.whisperx[37].text |
跟陳委員報告其實我們在下鄉包括跟很多勞工跟工會在座談的時候勞工工會都請我們一定要加強宣傳而且需要我們用更希望用更多資源包括今天我們的 |
transcript.whisperx[38].start |
801.779 |
transcript.whisperx[38].end |
821.919 |
transcript.whisperx[38].text |
这个寻答朝野委员也都跟我们说很多劳工还不知道一定要加强而且希望要不同方式来宣传因为很多劳工不一定他都会看新闻就是新闻上不一定都能够透过新闻上来得到这些讯息他们都跟我说希望我们宣传的方法要更多元因为劳工可能更多元不一定要更贵啊 |
transcript.whisperx[39].start |
823.074 |
transcript.whisperx[39].end |
851.495 |
transcript.whisperx[39].text |
是吧所以我們基本上我們是在希望說讓我們這個政策的成效因為就像剛剛前面幾位委員不管是執行黨的委員或在黨委員都希望我們加強宣傳加強宣傳不代表需要1900萬我不知道我方不方便跟你要你這1900萬的項目跟他的量可以可以我們想要看你的項目跟量還有你最後執行率可以當然你也不一定你也不一定會把它花完對吧 |
transcript.whisperx[40].start |
852.385 |
transcript.whisperx[40].end |
881.603 |
transcript.whisperx[40].text |
我們不是說一定要把它花完但是我們希望說這個宣傳的效果能夠更到位讓更多勞工知道他們可以來申請相關津貼也好補貼也好的權利我覺得這是最重要的目的那你大概多久可以給我們這個報告現在其實還在招標中但是你應該會有初步的項目跟費用啊會吧我們招標文件是公開的 |
transcript.whisperx[41].start |
882.27 |
transcript.whisperx[41].end |
901.113 |
transcript.whisperx[41].text |
其實招標文件是公開 項目跟費用 對招標文件應該是公開 最後一個問題我們可以再整理給委員的 對好 再啟動了天災臨時工的措施 我要問一下因為我們可以提高當地的經濟還有就業率 讓當地失業就啟動了天災臨時工的措施 這個非常好 |
transcript.whisperx[42].start |
902.525 |
transcript.whisperx[42].end |
921.755 |
transcript.whisperx[42].text |
這個是你9月25號開始啟動的當然就是災區花蓮自從0403地震很多這個天然的景觀啊太魯閣等等都還沒有修復所以觀光客當然到現在都還沒有復甦好現在又遇到了洪災所以他這個修復之路是慢慢 |
transcript.whisperx[43].start |
923.651 |
transcript.whisperx[43].end |
938.158 |
transcript.whisperx[43].text |
就是非常非常的久啦我們也不知道他們到什麼時候才可以重新恢復他的經濟那9月25號事辦到現在我想知道你們這個臨時工的媒合的計畫到底有多少人來申請 |
transcript.whisperx[44].start |
938.898 |
transcript.whisperx[44].end |
966.554 |
transcript.whisperx[44].text |
因為上次0403當時你也是委員許明春是部長大概才過了五天他就告訴我說有15個人來申請可是這次呢我發文給你們你們是回應我說試射資料都不可以說要跑完公文才可以我就覺得很奇怪為什麼許明春部長很快就在這樣子的場合回答我然後你們一定要跑完公文才可以告訴我你們的這個臨時公計畫到底有多少人申請 |
transcript.whisperx[45].start |
967.154 |
transcript.whisperx[45].end |
986.621 |
transcript.whisperx[45].text |
我跟委員說其實我昨天有說其實這一次的這個華家莎颱風目前應該是50人那已經上工是40幾人那其實這個數字我認為是比較少是不滿意吧當然是少的那我們其實有我們是主動的跟包括地方政府包括鄉鎮公所主動跟他說 |
transcript.whisperx[46].start |
987.941 |
transcript.whisperx[46].end |
1015.783 |
transcript.whisperx[46].text |
你可以來申請那只要你提出甚至我幫你寫你的提案計劃我都幫你寫我幫你服務到底那可是因為這一波確實現在比較多他們都還是比較多是因為有大量的志工所以對於這些需要勞動力來協助清理的他們目前其實比較多還是請志工在協助但是我們認為到接下面一個階段比方說開始重建的階段如果志工的數字在災區可能會下降的狀況下面可能會有更多虛工的單位他們會來跟我們申請 |
transcript.whisperx[47].start |
1016.563 |
transcript.whisperx[47].end |
1039.431 |
transcript.whisperx[47].text |
那這是針對華家莎那其實前一波包括在七月的時候台南的風災風災申請的不錯這個我知道大概是兩千多就五十這麼簡單的數字五十你沒有辦法回覆我你還要等公文跑我昨天其實就有說五十了那沒有告訴我們辦公室我們辦公室已經詢問了很久啦我昨天其實我們在詢答的時候就有說是五十 |
transcript.whisperx[48].start |
1040.285 |
transcript.whisperx[48].end |
1062.225 |
transcript.whisperx[48].text |
好那你有沒有考慮比如說再放寬他的身份我知道你現在已經把程序的繁瑣度降到最低了那你有沒有考慮再把基本工資稍微往上提然後或者是身份的限制他可能有一些雖然戶籍不是在災區但是他的工作是跟災區的上下有產業鏈有相關的他也受到了波及 |
transcript.whisperx[49].start |
1062.765 |
transcript.whisperx[49].end |
1080.9 |
transcript.whisperx[49].text |
他是不是也可以來這邊既然你都已經編了這也是我們編的公務預算其實我們就是想要幫助這些因為災害失業的人嘛對不對其實我們其實近期已經把他的適用範圍盡量擴大了然後當然比如怎麼擴大你可以告訴我嗎 |
transcript.whisperx[50].start |
1083.635 |
transcript.whisperx[50].end |
1099.964 |
transcript.whisperx[50].text |
報委員基本上如果他不是涉及在災區但是他是外地到災區工作是工作者也是可以對好不是不是只有那你覺得公司的這個天花板有辦法再往上提嗎我那時候其實我們是已經訂在要點裡面他就是 |
transcript.whisperx[51].start |
1100.99 |
transcript.whisperx[51].end |
1129.539 |
transcript.whisperx[51].text |
以這個最低工資為上限好那我會再固定好我會再固定跟你們追每個月你們的執行成效如何好嗎我們希望這筆公務預算已經編了就要幫助到最多人我們跟文說我們其實在零工這部分我們都是主動的我們不是被動等待人家申請而是主動告訴他說你可以來申請我甚至可以幫你然後甚至我們一直去問他有沒有這個需求可是確實現在災區的目前幾個部呃尤其地方政府狀況有點混亂他說 |
transcript.whisperx[52].start |
1130.859 |
transcript.whisperx[52].end |
1135.743 |
transcript.whisperx[52].text |
我現在在救災我現在可能沒有辦法一下去做這些事情我們期待你未來幾個月謝謝 |