iVOD / 163993

Field Value
IVOD_ID 163993
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/163993
日期 2025-10-09
會議資料.會議代碼 委員會-11-4-26-2
會議資料.會議代碼:str 第11屆第4會期社會福利及衛生環境委員會第2次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 2
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.標題 第11屆第4會期社會福利及衛生環境委員會第2次全體委員會議
影片種類 Clip
開始時間 2025-10-09T12:12:21+08:00
結束時間 2025-10-09T12:31:19+08:00
影片長度 00:18:58
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/0913948005eacb625c173a61662c33a5819c05f3ca7f3b915dd0128aa318ab8e632dec9194285a125ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 陳菁徽
委員發言時間 12:12:21 - 12:31:19
會議時間 2025-10-09T09:00:00+08:00
會議名稱 立法院第11屆第4會期社會福利及衛生環境委員會第2次全體委員會議(事由:邀請勞動部部長針對「因關稅造成我國市場就業及勞動環境衝擊之影響及因應對策」進行專題報告,並備質詢。【10月8日及9日二天一次會】)
transcript.pyannote[0].speaker SPEAKER_03
transcript.pyannote[0].start 6.89909375
transcript.pyannote[0].end 9.71721875
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 9.71721875
transcript.pyannote[1].end 11.26971875
transcript.pyannote[2].speaker SPEAKER_03
transcript.pyannote[2].start 17.71596875
transcript.pyannote[2].end 18.47534375
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 17.83409375
transcript.pyannote[3].end 18.39096875
transcript.pyannote[4].speaker SPEAKER_03
transcript.pyannote[4].start 18.76221875
transcript.pyannote[4].end 30.42284375
transcript.pyannote[5].speaker SPEAKER_03
transcript.pyannote[5].start 30.74346875
transcript.pyannote[5].end 70.53471875
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 72.86346875
transcript.pyannote[6].end 74.93909375
transcript.pyannote[7].speaker SPEAKER_03
transcript.pyannote[7].start 73.35284375
transcript.pyannote[7].end 74.09534375
transcript.pyannote[8].speaker SPEAKER_03
transcript.pyannote[8].start 75.19221875
transcript.pyannote[8].end 80.13659375
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 80.08596875
transcript.pyannote[9].end 110.62971875
transcript.pyannote[10].speaker SPEAKER_03
transcript.pyannote[10].start 81.18284375
transcript.pyannote[10].end 81.52034375
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 92.91096875
transcript.pyannote[11].end 93.45096875
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 97.24784375
transcript.pyannote[12].end 97.66971875
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 101.66909375
transcript.pyannote[13].end 101.98971875
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 110.89971875
transcript.pyannote[14].end 123.23534375
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 113.32971875
transcript.pyannote[15].end 113.73471875
transcript.pyannote[16].speaker SPEAKER_03
transcript.pyannote[16].start 123.11721875
transcript.pyannote[16].end 126.76221875
transcript.pyannote[17].speaker SPEAKER_03
transcript.pyannote[17].start 128.04471875
transcript.pyannote[17].end 129.83346875
transcript.pyannote[18].speaker SPEAKER_03
transcript.pyannote[18].start 130.17096875
transcript.pyannote[18].end 136.76909375
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 132.78659375
transcript.pyannote[19].end 133.52909375
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 136.76909375
transcript.pyannote[20].end 145.39221875
transcript.pyannote[21].speaker SPEAKER_03
transcript.pyannote[21].start 141.64596875
transcript.pyannote[21].end 142.10159375
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 142.10159375
transcript.pyannote[22].end 142.11846875
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 145.86471875
transcript.pyannote[23].end 147.92346875
transcript.pyannote[24].speaker SPEAKER_03
transcript.pyannote[24].start 147.55221875
transcript.pyannote[24].end 147.61971875
transcript.pyannote[25].speaker SPEAKER_03
transcript.pyannote[25].start 147.92346875
transcript.pyannote[25].end 147.94034375
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 147.94034375
transcript.pyannote[26].end 147.95721875
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 148.05846875
transcript.pyannote[27].end 152.09159375
transcript.pyannote[28].speaker SPEAKER_03
transcript.pyannote[28].start 152.37846875
transcript.pyannote[28].end 152.78346875
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 153.08721875
transcript.pyannote[29].end 153.37409375
transcript.pyannote[30].speaker SPEAKER_03
transcript.pyannote[30].start 153.37409375
transcript.pyannote[30].end 153.40784375
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 153.40784375
transcript.pyannote[31].end 153.47534375
transcript.pyannote[32].speaker SPEAKER_03
transcript.pyannote[32].start 153.47534375
transcript.pyannote[32].end 167.68409375
transcript.pyannote[33].speaker SPEAKER_03
transcript.pyannote[33].start 168.27471875
transcript.pyannote[33].end 191.64659375
transcript.pyannote[34].speaker SPEAKER_03
transcript.pyannote[34].start 192.03471875
transcript.pyannote[34].end 214.86659375
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 211.49159375
transcript.pyannote[35].end 211.50846875
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 211.50846875
transcript.pyannote[36].end 212.06534375
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 215.81159375
transcript.pyannote[37].end 216.14909375
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 216.16596875
transcript.pyannote[38].end 222.37596875
transcript.pyannote[39].speaker SPEAKER_03
transcript.pyannote[39].start 222.37596875
transcript.pyannote[39].end 222.66284375
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 222.61221875
transcript.pyannote[40].end 228.92346875
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 229.10909375
transcript.pyannote[41].end 231.52221875
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 232.02846875
transcript.pyannote[42].end 236.90534375
transcript.pyannote[43].speaker SPEAKER_03
transcript.pyannote[43].start 236.66909375
transcript.pyannote[43].end 243.84096875
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 244.06034375
transcript.pyannote[44].end 244.53284375
transcript.pyannote[45].speaker SPEAKER_03
transcript.pyannote[45].start 244.09409375
transcript.pyannote[45].end 248.31284375
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 246.60846875
transcript.pyannote[46].end 247.16534375
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 248.00909375
transcript.pyannote[47].end 248.81909375
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 249.35909375
transcript.pyannote[48].end 250.65846875
transcript.pyannote[49].speaker SPEAKER_03
transcript.pyannote[49].start 250.65846875
transcript.pyannote[49].end 253.08846875
transcript.pyannote[50].speaker SPEAKER_03
transcript.pyannote[50].start 254.10096875
transcript.pyannote[50].end 261.57659375
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 262.16721875
transcript.pyannote[51].end 267.28034375
transcript.pyannote[52].speaker SPEAKER_03
transcript.pyannote[52].start 267.44909375
transcript.pyannote[52].end 268.17471875
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 267.87096875
transcript.pyannote[53].end 279.83534375
transcript.pyannote[54].speaker SPEAKER_03
transcript.pyannote[54].start 280.45971875
transcript.pyannote[54].end 281.18534375
transcript.pyannote[55].speaker SPEAKER_03
transcript.pyannote[55].start 281.75909375
transcript.pyannote[55].end 283.53096875
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 282.94034375
transcript.pyannote[56].end 291.12471875
transcript.pyannote[57].speaker SPEAKER_03
transcript.pyannote[57].start 292.71096875
transcript.pyannote[57].end 295.29284375
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 294.53346875
transcript.pyannote[58].end 297.97596875
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 298.07721875
transcript.pyannote[59].end 298.09409375
transcript.pyannote[60].speaker SPEAKER_03
transcript.pyannote[60].start 298.09409375
transcript.pyannote[60].end 298.48221875
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 298.43159375
transcript.pyannote[61].end 307.20659375
transcript.pyannote[62].speaker SPEAKER_03
transcript.pyannote[62].start 306.95346875
transcript.pyannote[62].end 311.40846875
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 309.53534375
transcript.pyannote[63].end 310.02471875
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 311.66159375
transcript.pyannote[64].end 311.91471875
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 311.91471875
transcript.pyannote[65].end 327.42284375
transcript.pyannote[66].speaker SPEAKER_03
transcript.pyannote[66].start 321.83721875
transcript.pyannote[66].end 321.97221875
transcript.pyannote[67].speaker SPEAKER_03
transcript.pyannote[67].start 327.08534375
transcript.pyannote[67].end 331.60784375
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 328.51971875
transcript.pyannote[68].end 329.29596875
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 330.61221875
transcript.pyannote[69].end 333.64971875
transcript.pyannote[70].speaker SPEAKER_03
transcript.pyannote[70].start 332.58659375
transcript.pyannote[70].end 335.79284375
transcript.pyannote[71].speaker SPEAKER_02
transcript.pyannote[71].start 335.79284375
transcript.pyannote[71].end 345.02346875
transcript.pyannote[72].speaker SPEAKER_03
transcript.pyannote[72].start 336.01221875
transcript.pyannote[72].end 336.24846875
transcript.pyannote[73].speaker SPEAKER_03
transcript.pyannote[73].start 342.44159375
transcript.pyannote[73].end 342.69471875
transcript.pyannote[74].speaker SPEAKER_03
transcript.pyannote[74].start 344.63534375
transcript.pyannote[74].end 357.94971875
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 345.14159375
transcript.pyannote[75].end 345.15846875
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 346.06971875
transcript.pyannote[76].end 346.17096875
transcript.pyannote[77].speaker SPEAKER_03
transcript.pyannote[77].start 358.35471875
transcript.pyannote[77].end 358.70909375
transcript.pyannote[78].speaker SPEAKER_03
transcript.pyannote[78].start 359.13096875
transcript.pyannote[78].end 364.22721875
transcript.pyannote[79].speaker SPEAKER_03
transcript.pyannote[79].start 364.32846875
transcript.pyannote[79].end 367.90596875
transcript.pyannote[80].speaker SPEAKER_03
transcript.pyannote[80].start 368.36159375
transcript.pyannote[80].end 383.92034375
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 383.92034375
transcript.pyannote[81].end 415.54409375
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 393.77534375
transcript.pyannote[82].end 394.24784375
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 397.15034375
transcript.pyannote[83].end 397.79159375
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 400.01909375
transcript.pyannote[84].end 400.40721875
transcript.pyannote[85].speaker SPEAKER_03
transcript.pyannote[85].start 415.32471875
transcript.pyannote[85].end 420.03284375
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 420.10034375
transcript.pyannote[86].end 422.61471875
transcript.pyannote[87].speaker SPEAKER_03
transcript.pyannote[87].start 420.42096875
transcript.pyannote[87].end 422.05784375
transcript.pyannote[88].speaker SPEAKER_03
transcript.pyannote[88].start 423.01971875
transcript.pyannote[88].end 423.03659375
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 423.03659375
transcript.pyannote[89].end 434.00534375
transcript.pyannote[90].speaker SPEAKER_03
transcript.pyannote[90].start 423.05346875
transcript.pyannote[90].end 423.12096875
transcript.pyannote[91].speaker SPEAKER_03
transcript.pyannote[91].start 423.25596875
transcript.pyannote[91].end 423.32346875
transcript.pyannote[92].speaker SPEAKER_03
transcript.pyannote[92].start 426.12471875
transcript.pyannote[92].end 426.46221875
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 426.46221875
transcript.pyannote[93].end 426.49596875
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 430.88346875
transcript.pyannote[94].end 431.33909375
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 431.98034375
transcript.pyannote[95].end 432.03096875
transcript.pyannote[96].speaker SPEAKER_03
transcript.pyannote[96].start 432.03096875
transcript.pyannote[96].end 432.26721875
transcript.pyannote[97].speaker SPEAKER_03
transcript.pyannote[97].start 432.28409375
transcript.pyannote[97].end 432.31784375
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 434.66346875
transcript.pyannote[98].end 441.61596875
transcript.pyannote[99].speaker SPEAKER_03
transcript.pyannote[99].start 438.54471875
transcript.pyannote[99].end 438.96659375
transcript.pyannote[100].speaker SPEAKER_03
transcript.pyannote[100].start 440.58659375
transcript.pyannote[100].end 442.47659375
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 442.18971875
transcript.pyannote[101].end 442.57784375
transcript.pyannote[102].speaker SPEAKER_03
transcript.pyannote[102].start 442.56096875
transcript.pyannote[102].end 448.45034375
transcript.pyannote[103].speaker SPEAKER_03
transcript.pyannote[103].start 448.60221875
transcript.pyannote[103].end 471.77159375
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 473.64471875
transcript.pyannote[104].end 496.34159375
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 484.39409375
transcript.pyannote[105].end 484.74846875
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 496.74659375
transcript.pyannote[106].end 497.55659375
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 497.79284375
transcript.pyannote[107].end 499.80096875
transcript.pyannote[108].speaker SPEAKER_03
transcript.pyannote[108].start 499.39596875
transcript.pyannote[108].end 502.34909375
transcript.pyannote[109].speaker SPEAKER_03
transcript.pyannote[109].start 502.85534375
transcript.pyannote[109].end 505.16721875
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 505.72409375
transcript.pyannote[110].end 511.20846875
transcript.pyannote[111].speaker SPEAKER_03
transcript.pyannote[111].start 511.66409375
transcript.pyannote[111].end 513.89159375
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 513.85784375
transcript.pyannote[112].end 513.95909375
transcript.pyannote[113].speaker SPEAKER_03
transcript.pyannote[113].start 513.95909375
transcript.pyannote[113].end 515.69721875
transcript.pyannote[114].speaker SPEAKER_03
transcript.pyannote[114].start 516.25409375
transcript.pyannote[114].end 544.23284375
transcript.pyannote[115].speaker SPEAKER_03
transcript.pyannote[115].start 544.77284375
transcript.pyannote[115].end 555.96096875
transcript.pyannote[116].speaker SPEAKER_03
transcript.pyannote[116].start 556.41659375
transcript.pyannote[116].end 568.92096875
transcript.pyannote[117].speaker SPEAKER_03
transcript.pyannote[117].start 569.62971875
transcript.pyannote[117].end 580.49721875
transcript.pyannote[118].speaker SPEAKER_03
transcript.pyannote[118].start 580.78409375
transcript.pyannote[118].end 581.35784375
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 582.11721875
transcript.pyannote[119].end 585.49221875
transcript.pyannote[120].speaker SPEAKER_03
transcript.pyannote[120].start 585.49221875
transcript.pyannote[120].end 588.25971875
transcript.pyannote[121].speaker SPEAKER_03
transcript.pyannote[121].start 588.81659375
transcript.pyannote[121].end 592.52909375
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 593.40659375
transcript.pyannote[122].end 594.08159375
transcript.pyannote[123].speaker SPEAKER_03
transcript.pyannote[123].start 593.45721875
transcript.pyannote[123].end 594.04784375
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 594.25034375
transcript.pyannote[124].end 596.96721875
transcript.pyannote[125].speaker SPEAKER_03
transcript.pyannote[125].start 595.38096875
transcript.pyannote[125].end 595.61721875
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 597.55784375
transcript.pyannote[126].end 599.63346875
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 599.83596875
transcript.pyannote[127].end 604.83096875
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 603.64971875
transcript.pyannote[128].end 603.98721875
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 605.21909375
transcript.pyannote[129].end 605.87721875
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 606.16409375
transcript.pyannote[130].end 611.74971875
transcript.pyannote[131].speaker SPEAKER_01
transcript.pyannote[131].start 609.31971875
transcript.pyannote[131].end 609.79221875
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 611.42909375
transcript.pyannote[132].end 611.51346875
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 612.15471875
transcript.pyannote[133].end 627.98346875
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 623.27534375
transcript.pyannote[134].end 623.52846875
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 628.65846875
transcript.pyannote[135].end 650.88284375
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 641.60159375
transcript.pyannote[136].end 641.98971875
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 646.07346875
transcript.pyannote[137].end 646.09034375
transcript.pyannote[138].speaker SPEAKER_03
transcript.pyannote[138].start 646.09034375
transcript.pyannote[138].end 646.51221875
transcript.pyannote[139].speaker SPEAKER_03
transcript.pyannote[139].start 647.81159375
transcript.pyannote[139].end 649.36409375
transcript.pyannote[140].speaker SPEAKER_03
transcript.pyannote[140].start 650.93346875
transcript.pyannote[140].end 664.60221875
transcript.pyannote[141].speaker SPEAKER_00
transcript.pyannote[141].start 664.55159375
transcript.pyannote[141].end 707.46471875
transcript.pyannote[142].speaker SPEAKER_03
transcript.pyannote[142].start 669.90096875
transcript.pyannote[142].end 670.03596875
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 678.43971875
transcript.pyannote[143].end 678.84471875
transcript.pyannote[144].speaker SPEAKER_01
transcript.pyannote[144].start 687.48471875
transcript.pyannote[144].end 687.80534375
transcript.pyannote[145].speaker SPEAKER_01
transcript.pyannote[145].start 694.04909375
transcript.pyannote[145].end 694.43721875
transcript.pyannote[146].speaker SPEAKER_01
transcript.pyannote[146].start 698.25096875
transcript.pyannote[146].end 698.60534375
transcript.pyannote[147].speaker SPEAKER_03
transcript.pyannote[147].start 705.65909375
transcript.pyannote[147].end 705.97971875
transcript.pyannote[148].speaker SPEAKER_03
transcript.pyannote[148].start 707.70096875
transcript.pyannote[148].end 708.00471875
transcript.pyannote[149].speaker SPEAKER_03
transcript.pyannote[149].start 708.13971875
transcript.pyannote[149].end 719.83409375
transcript.pyannote[150].speaker SPEAKER_00
transcript.pyannote[150].start 719.90159375
transcript.pyannote[150].end 721.79159375
transcript.pyannote[151].speaker SPEAKER_03
transcript.pyannote[151].start 721.79159375
transcript.pyannote[151].end 722.51721875
transcript.pyannote[152].speaker SPEAKER_03
transcript.pyannote[152].start 722.85471875
transcript.pyannote[152].end 737.02971875
transcript.pyannote[153].speaker SPEAKER_03
transcript.pyannote[153].start 738.12659375
transcript.pyannote[153].end 785.37659375
transcript.pyannote[154].speaker SPEAKER_00
transcript.pyannote[154].start 785.39346875
transcript.pyannote[154].end 787.26659375
transcript.pyannote[155].speaker SPEAKER_00
transcript.pyannote[155].start 787.55346875
transcript.pyannote[155].end 801.27284375
transcript.pyannote[156].speaker SPEAKER_00
transcript.pyannote[156].start 801.52596875
transcript.pyannote[156].end 821.11784375
transcript.pyannote[157].speaker SPEAKER_03
transcript.pyannote[157].start 820.35846875
transcript.pyannote[157].end 821.99534375
transcript.pyannote[158].speaker SPEAKER_00
transcript.pyannote[158].start 822.70409375
transcript.pyannote[158].end 823.27784375
transcript.pyannote[159].speaker SPEAKER_03
transcript.pyannote[159].start 822.97409375
transcript.pyannote[159].end 823.46346875
transcript.pyannote[160].speaker SPEAKER_00
transcript.pyannote[160].start 823.46346875
transcript.pyannote[160].end 825.97784375
transcript.pyannote[161].speaker SPEAKER_00
transcript.pyannote[161].start 826.65284375
transcript.pyannote[161].end 834.65159375
transcript.pyannote[162].speaker SPEAKER_03
transcript.pyannote[162].start 835.47846875
transcript.pyannote[162].end 844.03409375
transcript.pyannote[163].speaker SPEAKER_00
transcript.pyannote[163].start 843.57846875
transcript.pyannote[163].end 845.11409375
transcript.pyannote[164].speaker SPEAKER_03
transcript.pyannote[164].start 844.57409375
transcript.pyannote[164].end 847.72971875
transcript.pyannote[165].speaker SPEAKER_00
transcript.pyannote[165].start 847.78034375
transcript.pyannote[165].end 848.70846875
transcript.pyannote[166].speaker SPEAKER_03
transcript.pyannote[166].start 848.70846875
transcript.pyannote[166].end 851.76284375
transcript.pyannote[167].speaker SPEAKER_00
transcript.pyannote[167].start 852.03284375
transcript.pyannote[167].end 864.90846875
transcript.pyannote[168].speaker SPEAKER_03
transcript.pyannote[168].start 864.65534375
transcript.pyannote[168].end 866.93346875
transcript.pyannote[169].speaker SPEAKER_00
transcript.pyannote[169].start 867.28784375
transcript.pyannote[169].end 867.49034375
transcript.pyannote[170].speaker SPEAKER_00
transcript.pyannote[170].start 872.40096875
transcript.pyannote[170].end 874.02096875
transcript.pyannote[171].speaker SPEAKER_00
transcript.pyannote[171].start 874.99971875
transcript.pyannote[171].end 875.38784375
transcript.pyannote[172].speaker SPEAKER_03
transcript.pyannote[172].start 875.10096875
transcript.pyannote[172].end 878.27346875
transcript.pyannote[173].speaker SPEAKER_00
transcript.pyannote[173].start 878.77971875
transcript.pyannote[173].end 879.82596875
transcript.pyannote[174].speaker SPEAKER_00
transcript.pyannote[174].start 880.18034375
transcript.pyannote[174].end 883.60596875
transcript.pyannote[175].speaker SPEAKER_03
transcript.pyannote[175].start 883.43721875
transcript.pyannote[175].end 884.43284375
transcript.pyannote[176].speaker SPEAKER_00
transcript.pyannote[176].start 884.51721875
transcript.pyannote[176].end 884.87159375
transcript.pyannote[177].speaker SPEAKER_03
transcript.pyannote[177].start 884.95596875
transcript.pyannote[177].end 885.24284375
transcript.pyannote[178].speaker SPEAKER_00
transcript.pyannote[178].start 885.39471875
transcript.pyannote[178].end 886.74471875
transcript.pyannote[179].speaker SPEAKER_03
transcript.pyannote[179].start 886.47471875
transcript.pyannote[179].end 887.38596875
transcript.pyannote[180].speaker SPEAKER_03
transcript.pyannote[180].start 887.75721875
transcript.pyannote[180].end 887.79096875
transcript.pyannote[181].speaker SPEAKER_03
transcript.pyannote[181].start 887.80784375
transcript.pyannote[181].end 887.89221875
transcript.pyannote[182].speaker SPEAKER_00
transcript.pyannote[182].start 888.19596875
transcript.pyannote[182].end 890.01846875
transcript.pyannote[183].speaker SPEAKER_03
transcript.pyannote[183].start 890.32221875
transcript.pyannote[183].end 890.72721875
transcript.pyannote[184].speaker SPEAKER_03
transcript.pyannote[184].start 890.87909375
transcript.pyannote[184].end 896.75159375
transcript.pyannote[185].speaker SPEAKER_03
transcript.pyannote[185].start 898.50659375
transcript.pyannote[185].end 901.30784375
transcript.pyannote[186].speaker SPEAKER_03
transcript.pyannote[186].start 902.15159375
transcript.pyannote[186].end 922.06409375
transcript.pyannote[187].speaker SPEAKER_03
transcript.pyannote[187].start 923.11034375
transcript.pyannote[187].end 936.82971875
transcript.pyannote[188].speaker SPEAKER_03
transcript.pyannote[188].start 937.52159375
transcript.pyannote[188].end 959.10471875
transcript.pyannote[189].speaker SPEAKER_03
transcript.pyannote[189].start 959.54346875
transcript.pyannote[189].end 966.95159375
transcript.pyannote[190].speaker SPEAKER_00
transcript.pyannote[190].start 966.95159375
transcript.pyannote[190].end 972.40221875
transcript.pyannote[191].speaker SPEAKER_00
transcript.pyannote[191].start 972.85784375
transcript.pyannote[191].end 979.05096875
transcript.pyannote[192].speaker SPEAKER_03
transcript.pyannote[192].start 978.86534375
transcript.pyannote[192].end 980.65409375
transcript.pyannote[193].speaker SPEAKER_00
transcript.pyannote[193].start 979.18596875
transcript.pyannote[193].end 979.20284375
transcript.pyannote[194].speaker SPEAKER_00
transcript.pyannote[194].start 979.35471875
transcript.pyannote[194].end 979.45596875
transcript.pyannote[195].speaker SPEAKER_00
transcript.pyannote[195].start 979.99596875
transcript.pyannote[195].end 987.18471875
transcript.pyannote[196].speaker SPEAKER_03
transcript.pyannote[196].start 986.13846875
transcript.pyannote[196].end 987.06659375
transcript.pyannote[197].speaker SPEAKER_01
transcript.pyannote[197].start 987.06659375
transcript.pyannote[197].end 987.08346875
transcript.pyannote[198].speaker SPEAKER_00
transcript.pyannote[198].start 987.89346875
transcript.pyannote[198].end 1021.94721875
transcript.pyannote[199].speaker SPEAKER_01
transcript.pyannote[199].start 991.21784375
transcript.pyannote[199].end 991.67346875
transcript.pyannote[200].speaker SPEAKER_01
transcript.pyannote[200].start 991.82534375
transcript.pyannote[200].end 992.23034375
transcript.pyannote[201].speaker SPEAKER_01
transcript.pyannote[201].start 1005.00471875
transcript.pyannote[201].end 1005.57846875
transcript.pyannote[202].speaker SPEAKER_01
transcript.pyannote[202].start 1009.54409375
transcript.pyannote[202].end 1009.99971875
transcript.pyannote[203].speaker SPEAKER_03
transcript.pyannote[203].start 1016.07471875
transcript.pyannote[203].end 1016.37846875
transcript.pyannote[204].speaker SPEAKER_03
transcript.pyannote[204].start 1016.39534375
transcript.pyannote[204].end 1016.41221875
transcript.pyannote[205].speaker SPEAKER_03
transcript.pyannote[205].start 1022.30159375
transcript.pyannote[205].end 1030.73909375
transcript.pyannote[206].speaker SPEAKER_00
transcript.pyannote[206].start 1024.02284375
transcript.pyannote[206].end 1025.57534375
transcript.pyannote[207].speaker SPEAKER_00
transcript.pyannote[207].start 1025.98034375
transcript.pyannote[207].end 1026.95909375
transcript.pyannote[208].speaker SPEAKER_00
transcript.pyannote[208].start 1031.07659375
transcript.pyannote[208].end 1033.38846875
transcript.pyannote[209].speaker SPEAKER_03
transcript.pyannote[209].start 1031.26221875
transcript.pyannote[209].end 1031.44784375
transcript.pyannote[210].speaker SPEAKER_03
transcript.pyannote[210].start 1033.57409375
transcript.pyannote[210].end 1036.84784375
transcript.pyannote[211].speaker SPEAKER_00
transcript.pyannote[211].start 1034.92409375
transcript.pyannote[211].end 1035.36284375
transcript.pyannote[212].speaker SPEAKER_00
transcript.pyannote[212].start 1036.84784375
transcript.pyannote[212].end 1039.95284375
transcript.pyannote[213].speaker SPEAKER_03
transcript.pyannote[213].start 1040.22284375
transcript.pyannote[213].end 1063.88159375
transcript.pyannote[214].speaker SPEAKER_03
transcript.pyannote[214].start 1064.16846875
transcript.pyannote[214].end 1072.55534375
transcript.pyannote[215].speaker SPEAKER_03
transcript.pyannote[215].start 1073.44971875
transcript.pyannote[215].end 1073.90534375
transcript.pyannote[216].speaker SPEAKER_00
transcript.pyannote[216].start 1074.07409375
transcript.pyannote[216].end 1079.65971875
transcript.pyannote[217].speaker SPEAKER_03
transcript.pyannote[217].start 1078.19159375
transcript.pyannote[217].end 1078.42784375
transcript.pyannote[218].speaker SPEAKER_03
transcript.pyannote[218].start 1079.17034375
transcript.pyannote[218].end 1081.19534375
transcript.pyannote[219].speaker SPEAKER_01
transcript.pyannote[219].start 1082.96721875
transcript.pyannote[219].end 1093.54784375
transcript.pyannote[220].speaker SPEAKER_03
transcript.pyannote[220].start 1086.51096875
transcript.pyannote[220].end 1086.83159375
transcript.pyannote[221].speaker SPEAKER_03
transcript.pyannote[221].start 1088.31659375
transcript.pyannote[221].end 1088.68784375
transcript.pyannote[222].speaker SPEAKER_03
transcript.pyannote[222].start 1089.93659375
transcript.pyannote[222].end 1090.44284375
transcript.pyannote[223].speaker SPEAKER_03
transcript.pyannote[223].start 1091.08409375
transcript.pyannote[223].end 1091.15159375
transcript.pyannote[224].speaker SPEAKER_03
transcript.pyannote[224].start 1092.77159375
transcript.pyannote[224].end 1096.50096875
transcript.pyannote[225].speaker SPEAKER_01
transcript.pyannote[225].start 1096.70346875
transcript.pyannote[225].end 1100.48346875
transcript.pyannote[226].speaker SPEAKER_01
transcript.pyannote[226].start 1100.61846875
transcript.pyannote[226].end 1103.53784375
transcript.pyannote[227].speaker SPEAKER_03
transcript.pyannote[227].start 1103.60534375
transcript.pyannote[227].end 1103.62221875
transcript.pyannote[228].speaker SPEAKER_03
transcript.pyannote[228].start 1103.63909375
transcript.pyannote[228].end 1114.11846875
transcript.pyannote[229].speaker SPEAKER_01
transcript.pyannote[229].start 1103.68971875
transcript.pyannote[229].end 1103.72346875
transcript.pyannote[230].speaker SPEAKER_01
transcript.pyannote[230].start 1104.17909375
transcript.pyannote[230].end 1104.87096875
transcript.pyannote[231].speaker SPEAKER_00
transcript.pyannote[231].start 1114.21971875
transcript.pyannote[231].end 1135.11096875
transcript.pyannote[232].speaker SPEAKER_03
transcript.pyannote[232].start 1121.74596875
transcript.pyannote[232].end 1122.11721875
transcript.pyannote[233].speaker SPEAKER_03
transcript.pyannote[233].start 1134.26721875
transcript.pyannote[233].end 1137.52409375
transcript.pyannote[234].speaker SPEAKER_00
transcript.pyannote[234].start 1136.35971875
transcript.pyannote[234].end 1137.27096875
transcript.whisperx[0].start 7.251
transcript.whisperx[0].end 8.92
transcript.whisperx[0].text 謝謝主席 那我想請洪部長 謝謝請洪聖漢部長
transcript.whisperx[1].start 17.776
transcript.whisperx[1].end 32.06
transcript.whisperx[1].text 部長我先用講的就好但您一定很熟悉因為我們勞動力發展署的訓練發展組他有統計發現呢您做的這個充電再出發計畫只有86家企業515人僅佔受影響人數的6.05%
transcript.whisperx[2].start 38.121
transcript.whisperx[2].end 65.607
transcript.whisperx[2].text 企業辦訊更是僅有三家其實這個成效是不好的那因為成效不佳其實你是有放寬規定比如說不用限制最低的開班人數啊你回溯到8月1號還有上課時間也比較有彈性人數放寬但是合撥的金額如果是從7月開始申請應該還沒有執行數我們還看不到你放寬之後的執行數不知道你這邊有沒有
transcript.whisperx[3].start 66.327
transcript.whisperx[3].end 88.49
transcript.whisperx[3].text 已經有的相關數據可以提供還是你要在一個月後才可以提供現在還沒有數據還沒出來所以你們檢討了過去成效不上的原因大概是哪幾個面向跟穩說明其實過去在減班休息的狀況其實主要在致應的就是我們這個充電再出發的計畫
transcript.whisperx[4].start 89.531
transcript.whisperx[4].end 110.169
transcript.whisperx[4].text 但是因為這確實他會需要企業來辦訓那很多企業會說他其實現在是他很辛苦的時間那他還要特別來辦訓他可能不一定有能力或他不一定有這個意願來辦訓所以就會讓這個成效受影響這也是為什麼我們其實現在把對於減班休息勞工的經濟支持我們認為更應該更著重在
transcript.whisperx[5].start 111.17
transcript.whisperx[5].end 126.212
transcript.whisperx[5].text 另外一個強化版的規劃定義措施上面那個是直接的可以給予薪資的差額補貼就是對於勞工的經濟支持我們是更大程度的是放在直接的薪資差額補貼所以你的意思是說這個也許你會考慮
transcript.whisperx[6].start 128.106
transcript.whisperx[6].end 151.382
transcript.whisperx[6].text 放寬以後加時還是不好你就是移轉這可能不能移轉不是移轉但是你們會加強另外的直接補貼啦我們其實是直接的差補貼所以我們從五成拉到七成行業別也放寬其實我們現在是就是說我如果更直接講就是以強化版公安令措施為主那這個充電站出發對於經濟支持的效果為輔
transcript.whisperx[7].start 153.303
transcript.whisperx[7].end 167.291
transcript.whisperx[7].text 好那下一個我想問這個減班休息就勢必要調整投保的薪資所以投保薪資一定會有所調降這是非常多這個人士就做HR的人他們反應的因為
transcript.whisperx[8].start 168.451
transcript.whisperx[8].end 191.359
transcript.whisperx[8].text 其中包括申請勞保生育 老年給付 商帳給付等等都是去根據你領錢數個月的平均投保薪資來看但是減班休息是變相的影響到勞工的權益這個不在話下可是投保的薪資變相也懲罰到他們應有的這些給付的權益
transcript.whisperx[9].start 192.119
transcript.whisperx[9].end 214.097
transcript.whisperx[9].text 那你有沒有辦法用最快的速度來試算因為現在剛很多委員都問了嘛大概是8500人目前是8500人所以這個試算起來應該不會很困難但對他們而言這些生育啊傷臟啊老年的給付也是很重要是不是也應該用特別預算來補足這部分金額
transcript.whisperx[10].start 216.314
transcript.whisperx[10].end 231.107
transcript.whisperx[10].text 跟委員報告就是勞保的投保薪資他的內涵是勞基法的工資所以依照規定當然雇主要何時申報但是對於考量這一段期間的特殊的一個狀況勞資送讓他可以預定
transcript.whisperx[11].start 232.287
transcript.whisperx[11].end 252.098
transcript.whisperx[11].text 就是原來的投保薪資申報不要調整勞保局不會去處罰他但是你有去統計嗎你有去統計有多少人他的薪資投保薪資可能會調降了受影響了因為這個必須你剛講的很清楚啊必須雙方是講好的是勞僱雙方一定對啊洪部長剛也說了
transcript.whisperx[12].start 254.181
transcript.whisperx[12].end 279.614
transcript.whisperx[12].text 老闆這邊資方這邊也是覺得辛苦嗎所以他不一定會兩邊都講好按照原本的投保薪資啊其實就我們目前看到其實蠻多其實他基本上並沒有調降投保薪資因為這是一個比較短期的狀況那投保薪資大概是三個月其實做一次更新那所以其實目前看到是他其實並沒有很多要去反而在這段時間裡面去調降
transcript.whisperx[13].start 280.509
transcript.whisperx[13].end 291.163
transcript.whisperx[13].text 那之後你會去追嗎我們不會特別去追這件事情但是我們基本上會希望雙方就議定不調降投保薪資就好了
transcript.whisperx[14].start 292.779
transcript.whisperx[14].end 318.858
transcript.whisperx[14].text 那你們應該會去統計一下比例吧我們可以統計一下比例但是我說在做法上在做法上面其實就是雙方一定那我們不會特別要去在這個特別的時間還去做查然後說我們其實不會但你之後會不會有一個數據可以給我們有哪些人有受到影響我們可以去就是去比對那個減班休息的人數看看能不能比對的出來不然勞保局在
transcript.whisperx[15].start 319.538
transcript.whisperx[15].end 333.772
transcript.whisperx[15].text 薪資調整這部分其實他是沒有原因的他沒有寫說他是因為減班休息或者是因為沒有加班等等的因素我知道你很難把它比對他下降的原因是不是因為減班休息這個我之後會再發文詢問你們
transcript.whisperx[16].start 335.874
transcript.whisperx[16].end 357.683
transcript.whisperx[16].text 是再跟委員報告我們頭髮薪水調降或者是調整其實一年兩次就是2月跟8月我們不是每個月都讓雇主來調整好但剛剛有很多委員也是擔心這個會延長到很久嗎可能到第三季第四季甚至明年所以你本來就要有這個心理準備會遇到這件事情對好嗎好
transcript.whisperx[17].start 359.484
transcript.whisperx[17].end 383.656
transcript.whisperx[17].text 再來就是洪部長也非常關心的彈性育嬰留庭照顧方案這個我跟你都是很贊同的啦可是呢現在因為勞健保的問題你必須要停保你必須要加保反反覆覆所以企業的人事行政申請或是公務員這都是一個挑戰那我知道你會出懶人包請問你這個懶人包的進度如何
transcript.whisperx[18].start 384.316
transcript.whisperx[18].end 403.706
transcript.whisperx[18].text 我跟陳委員說明其實這個方案我們在9月提出其實這一段時間我們一直在跟包括我們的勞保局跟調評師包括保險師我們在盡力的把所有申請的程序給簡化甚至有些部分我們可以用自動的方式來處理那相關的書表能夠盡量簡化到最簡就最簡
transcript.whisperx[19].start 404.306
transcript.whisperx[19].end 433.405
transcript.whisperx[19].text 那就是希望让比方说企业的HR他如果要来申请的时候其实可以在最简单的方式里面甚至我们会用可以手机线上就能够申请但是你的意思是说如果他请一天就是还是要一次吗我们可以让他累也就是你不用每一天就要来申请一次你甚至可以累计假设比方说因为我们现在是开放30天让大家一日来请我们其实是可以让大家
transcript.whisperx[20].start 435.126
transcript.whisperx[20].end 454.951
transcript.whisperx[20].text 30天你請完30天再來跟我們申請一次都可以你不用每一次就要來就不用重複一樣的動作但現在有個比較特別的行業是女醫師跟我申請的女醫師這個您知道嗎因為對於女醫師來說她留庭就必須要辦理庭業的登記然後再去復職
transcript.whisperx[21].start 455.911
transcript.whisperx[21].end 471.552
transcript.whisperx[21].text 因為他是特殊的有醫師執照的所以他在辦理流停的時候還要再跑醫師公會還要再跑地方衛生局那他如果做這種彈性暈暈流停的話他必須比一般的勞工還要再多跑兩個地方
transcript.whisperx[22].start 473.751
transcript.whisperx[22].end 497.353
transcript.whisperx[22].text 因為職業登記應該是在衛福部嘛那我們來跟衛福部討論一下可是可是基本上我們會在我們目前可以就是我們勞動部全責的範圍內盡量把所有流程都最簡單我們最近也在跟人資在做相關的討論就是讓因為讓人資能夠用的盡量上手我覺得是我們在操作面上面我們讓大家用的
transcript.whisperx[23].start 497.913
transcript.whisperx[23].end 499.377
transcript.whisperx[23].text 最簡單的方式那針對這個比較高規管的行業請問你們可以跟衛福部討論嗎
transcript.whisperx[24].start 505.988
transcript.whisperx[24].end 527.348
transcript.whisperx[24].text 我們可以來跟衛福部討論啦對但是就看衛福部有沒有哪些部分可以再互相協調一下那就會後會再詢問您那關於這個這是很多很多很多網友他們的心得那如果說你們同仁有空的話也可以到這些群組啊或者是社團去看大家其實對於您的這個
transcript.whisperx[25].start 528.129
transcript.whisperx[25].end 543.775
transcript.whisperx[25].text 育嬰 留職 停薪然後在規範子女三年前得請然後六個月可以領八成薪金都是正面看待非常正面看待可是你看一下所有實際上大家遇到問題是什麼遇到問題是三歲以前
transcript.whisperx[26].start 544.835
transcript.whisperx[26].end 568.44
transcript.whisperx[26].text 大部分的人可能是在比較封閉或是在家或者是長輩照顧等等的他沒有那麼容易生病但是3歲反而是3歲到小學之間他只要班上有人腸病毒等等就一次會停課到5天反而大家會覺得這個利益非常的良好但如果你可以把這個歲數稍微往長一點
transcript.whisperx[27].start 569.82
transcript.whisperx[27].end 581.085
transcript.whisperx[27].text 應用起來會更好那我也想問勞動部有沒有去調查生育後的雙親尤其是女性有多少比例是申請完育嬰留職停薪比例
transcript.whisperx[28].start 582.588
transcript.whisperx[28].end 604.13
transcript.whisperx[28].text 我們應該是有數據但是現在可能數據沒有在手邊但是數據是不是你覺得不夠好所以你才會想要做彈性或者是說其實我們看到的情況是的確不一定很多的女性的勞動其實暈流田不是有女性可以申請男性也可以申請
transcript.whisperx[29].start 605.29
transcript.whisperx[29].end 627.273
transcript.whisperx[29].text 那其實蠻多都跟我們反映希望能夠更彈性他不一定一定要請這麼長那剛剛委員其實提到這個三歲以上的部分因為我們其實在這一次的計劃的推出其實是在目前是因為是不用修法不用修法是三歲以下因為育嬰留庭基本上是在三歲以下才可以請
transcript.whisperx[30].start 628.7
transcript.whisperx[30].end 650.416
transcript.whisperx[30].text 那我們是認為先讓我們先三歲以下先往前走那我覺得是狀況也包括很多的企業因為台灣中小企業真的蠻多的那調適到一個程度我們也不是不能考慮是不是要透過修法的方式那再把稅數再提高這個部分我們也持開放的態度因為我們是希望三歲以下能夠先行這樣子
transcript.whisperx[31].start 651.656
transcript.whisperx[31].end 673.823
transcript.whisperx[31].text 因為我自己有提出我自己的版本我是希望這個可以拉到8歲但假使您願意的話當然只要是往後拉所有的家長都是正面的絕對大家一定會全力支持您其實在現在因為台灣正好小微企業比較多所以我們現在也在規劃一些讓企業可以協助他調適的做法
transcript.whisperx[32].start 674.983
transcript.whisperx[32].end 698.909
transcript.whisperx[32].text 因為他的確需要調整尤其是一些排班性的企業那這是為什麼我們要盡量簡化他們的程序也包括他可能會在排班上可能他也需要一些新的排班的人資的制度來去做相關的因應可是有的社會社會企業他不一定都有很完整的HR的制度所以其實對於這些企業我們要給他協助是真的後面還有很多的工作要放在這個地方
transcript.whisperx[33].start 699.409
transcript.whisperx[33].end 719.188
transcript.whisperx[33].text 那我們覺得說如果其實企業調適到一個程度後面假如要用修法的方式把稅數給拉高當然我們覺得這部分是可以討論的其實對企業而言他反而不會這麼短在這麼密集的時間接到就是一樣有生育的這個族群可能密集的請假你把他拉長反而大家會比較分散一點點
transcript.whisperx[34].start 720.149
transcript.whisperx[34].end 734.978
transcript.whisperx[34].text 也有這樣子的看法好這邊大家不分朝野對於沒宣廢啊現在是蠻敏感的所以這個昨天在九樓是非常多委員質詢那我先跟部長報告2023年普發現金6000元這個東西你也有參與
transcript.whisperx[35].start 738.177
transcript.whisperx[35].end 755.084
transcript.whisperx[35].text 政府是編列了1150的預算沒宣費最後只用了819但是達到了非常好的成效不管是偏鄉的啊境外返國的同胞啊各個族群都在多元的領取管道中有序的完成領取
transcript.whisperx[36].start 756.064
transcript.whisperx[36].end 785.084
transcript.whisperx[36].text 那這次普發現金一萬這個特別預算沒宣費是高達1350元大家已經覺得很離譜囉但是我們來跟你剛你有講到這九大行業受衝擊的老公跟你比一下普發現金要執行的經費規模是你的337倍之多結果你的沒宣費是普發現金的1.4倍請問你這個是貴在什麼道理你可以跟我們講一下嗎
transcript.whisperx[37].start 785.784
transcript.whisperx[37].end 800.298
transcript.whisperx[37].text 跟陳委員報告其實我們在下鄉包括跟很多勞工跟工會在座談的時候勞工工會都請我們一定要加強宣傳而且需要我們用更希望用更多資源包括今天我們的
transcript.whisperx[38].start 801.779
transcript.whisperx[38].end 821.919
transcript.whisperx[38].text 这个寻答朝野委员也都跟我们说很多劳工还不知道一定要加强而且希望要不同方式来宣传因为很多劳工不一定他都会看新闻就是新闻上不一定都能够透过新闻上来得到这些讯息他们都跟我说希望我们宣传的方法要更多元因为劳工可能更多元不一定要更贵啊
transcript.whisperx[39].start 823.074
transcript.whisperx[39].end 851.495
transcript.whisperx[39].text 是吧所以我們基本上我們是在希望說讓我們這個政策的成效因為就像剛剛前面幾位委員不管是執行黨的委員或在黨委員都希望我們加強宣傳加強宣傳不代表需要1900萬我不知道我方不方便跟你要你這1900萬的項目跟他的量可以可以我們想要看你的項目跟量還有你最後執行率可以當然你也不一定你也不一定會把它花完對吧
transcript.whisperx[40].start 852.385
transcript.whisperx[40].end 881.603
transcript.whisperx[40].text 我們不是說一定要把它花完但是我們希望說這個宣傳的效果能夠更到位讓更多勞工知道他們可以來申請相關津貼也好補貼也好的權利我覺得這是最重要的目的那你大概多久可以給我們這個報告現在其實還在招標中但是你應該會有初步的項目跟費用啊會吧我們招標文件是公開的
transcript.whisperx[41].start 882.27
transcript.whisperx[41].end 901.113
transcript.whisperx[41].text 其實招標文件是公開 項目跟費用 對招標文件應該是公開 最後一個問題我們可以再整理給委員的 對好 再啟動了天災臨時工的措施 我要問一下因為我們可以提高當地的經濟還有就業率 讓當地失業就啟動了天災臨時工的措施 這個非常好
transcript.whisperx[42].start 902.525
transcript.whisperx[42].end 921.755
transcript.whisperx[42].text 這個是你9月25號開始啟動的當然就是災區花蓮自從0403地震很多這個天然的景觀啊太魯閣等等都還沒有修復所以觀光客當然到現在都還沒有復甦好現在又遇到了洪災所以他這個修復之路是慢慢
transcript.whisperx[43].start 923.651
transcript.whisperx[43].end 938.158
transcript.whisperx[43].text 就是非常非常的久啦我們也不知道他們到什麼時候才可以重新恢復他的經濟那9月25號事辦到現在我想知道你們這個臨時工的媒合的計畫到底有多少人來申請
transcript.whisperx[44].start 938.898
transcript.whisperx[44].end 966.554
transcript.whisperx[44].text 因為上次0403當時你也是委員許明春是部長大概才過了五天他就告訴我說有15個人來申請可是這次呢我發文給你們你們是回應我說試射資料都不可以說要跑完公文才可以我就覺得很奇怪為什麼許明春部長很快就在這樣子的場合回答我然後你們一定要跑完公文才可以告訴我你們的這個臨時公計畫到底有多少人申請
transcript.whisperx[45].start 967.154
transcript.whisperx[45].end 986.621
transcript.whisperx[45].text 我跟委員說其實我昨天有說其實這一次的這個華家莎颱風目前應該是50人那已經上工是40幾人那其實這個數字我認為是比較少是不滿意吧當然是少的那我們其實有我們是主動的跟包括地方政府包括鄉鎮公所主動跟他說
transcript.whisperx[46].start 987.941
transcript.whisperx[46].end 1015.783
transcript.whisperx[46].text 你可以來申請那只要你提出甚至我幫你寫你的提案計劃我都幫你寫我幫你服務到底那可是因為這一波確實現在比較多他們都還是比較多是因為有大量的志工所以對於這些需要勞動力來協助清理的他們目前其實比較多還是請志工在協助但是我們認為到接下面一個階段比方說開始重建的階段如果志工的數字在災區可能會下降的狀況下面可能會有更多虛工的單位他們會來跟我們申請
transcript.whisperx[47].start 1016.563
transcript.whisperx[47].end 1039.431
transcript.whisperx[47].text 那這是針對華家莎那其實前一波包括在七月的時候台南的風災風災申請的不錯這個我知道大概是兩千多就五十這麼簡單的數字五十你沒有辦法回覆我你還要等公文跑我昨天其實就有說五十了那沒有告訴我們辦公室我們辦公室已經詢問了很久啦我昨天其實我們在詢答的時候就有說是五十
transcript.whisperx[48].start 1040.285
transcript.whisperx[48].end 1062.225
transcript.whisperx[48].text 好那你有沒有考慮比如說再放寬他的身份我知道你現在已經把程序的繁瑣度降到最低了那你有沒有考慮再把基本工資稍微往上提然後或者是身份的限制他可能有一些雖然戶籍不是在災區但是他的工作是跟災區的上下有產業鏈有相關的他也受到了波及
transcript.whisperx[49].start 1062.765
transcript.whisperx[49].end 1080.9
transcript.whisperx[49].text 他是不是也可以來這邊既然你都已經編了這也是我們編的公務預算其實我們就是想要幫助這些因為災害失業的人嘛對不對其實我們其實近期已經把他的適用範圍盡量擴大了然後當然比如怎麼擴大你可以告訴我嗎
transcript.whisperx[50].start 1083.635
transcript.whisperx[50].end 1099.964
transcript.whisperx[50].text 報委員基本上如果他不是涉及在災區但是他是外地到災區工作是工作者也是可以對好不是不是只有那你覺得公司的這個天花板有辦法再往上提嗎我那時候其實我們是已經訂在要點裡面他就是
transcript.whisperx[51].start 1100.99
transcript.whisperx[51].end 1129.539
transcript.whisperx[51].text 以這個最低工資為上限好那我會再固定好我會再固定跟你們追每個月你們的執行成效如何好嗎我們希望這筆公務預算已經編了就要幫助到最多人我們跟文說我們其實在零工這部分我們都是主動的我們不是被動等待人家申請而是主動告訴他說你可以來申請我甚至可以幫你然後甚至我們一直去問他有沒有這個需求可是確實現在災區的目前幾個部呃尤其地方政府狀況有點混亂他說
transcript.whisperx[52].start 1130.859
transcript.whisperx[52].end 1135.743
transcript.whisperx[52].text 我現在在救災我現在可能沒有辦法一下去做這些事情我們期待你未來幾個月謝謝