IVOD_ID |
163989 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/163989 |
日期 |
2025-10-09 |
會議資料.會議代碼 |
委員會-11-4-26-2 |
會議資料.會議代碼:str |
第11屆第4會期社會福利及衛生環境委員會第2次全體委員會議 |
會議資料.屆 |
11 |
會議資料.會期 |
4 |
會議資料.會次 |
2 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
26 |
會議資料.委員會代碼:str[0] |
社會福利及衛生環境委員會 |
會議資料.標題 |
第11屆第4會期社會福利及衛生環境委員會第2次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2025-10-09T11:51:15+08:00 |
結束時間 |
2025-10-09T12:01:23+08:00 |
影片長度 |
00:10:08 |
支援功能[0] |
ai-transcript |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/0913948005eacb6279ef0f2bb752dfe9819c05f3ca7f3b915dd0128aa318ab8e5b5cf774a2689c845ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
葉元之 |
委員發言時間 |
11:51:15 - 12:01:23 |
會議時間 |
2025-10-09T09:00:00+08:00 |
會議名稱 |
立法院第11屆第4會期社會福利及衛生環境委員會第2次全體委員會議(事由:邀請勞動部部長針對「因關稅造成我國市場就業及勞動環境衝擊之影響及因應對策」進行專題報告,並備質詢。【10月8日及9日二天一次會】) |
transcript.pyannote[0].speaker |
SPEAKER_00 |
transcript.pyannote[0].start |
7.64159375 |
transcript.pyannote[0].end |
8.77221875 |
transcript.pyannote[1].speaker |
SPEAKER_01 |
transcript.pyannote[1].start |
9.46409375 |
transcript.pyannote[1].end |
10.03784375 |
transcript.pyannote[2].speaker |
SPEAKER_01 |
transcript.pyannote[2].start |
10.45971875 |
transcript.pyannote[2].end |
10.99971875 |
transcript.pyannote[3].speaker |
SPEAKER_00 |
transcript.pyannote[3].start |
14.61096875 |
transcript.pyannote[3].end |
14.66159375 |
transcript.pyannote[4].speaker |
SPEAKER_01 |
transcript.pyannote[4].start |
14.66159375 |
transcript.pyannote[4].end |
15.42096875 |
transcript.pyannote[5].speaker |
SPEAKER_00 |
transcript.pyannote[5].start |
15.42096875 |
transcript.pyannote[5].end |
24.71909375 |
transcript.pyannote[6].speaker |
SPEAKER_01 |
transcript.pyannote[6].start |
15.48846875 |
transcript.pyannote[6].end |
15.50534375 |
transcript.pyannote[7].speaker |
SPEAKER_01 |
transcript.pyannote[7].start |
23.58846875 |
transcript.pyannote[7].end |
24.16221875 |
transcript.pyannote[8].speaker |
SPEAKER_01 |
transcript.pyannote[8].start |
24.71909375 |
transcript.pyannote[8].end |
26.27159375 |
transcript.pyannote[9].speaker |
SPEAKER_00 |
transcript.pyannote[9].start |
26.27159375 |
transcript.pyannote[9].end |
35.08034375 |
transcript.pyannote[10].speaker |
SPEAKER_01 |
transcript.pyannote[10].start |
35.92409375 |
transcript.pyannote[10].end |
37.93221875 |
transcript.pyannote[11].speaker |
SPEAKER_00 |
transcript.pyannote[11].start |
37.78034375 |
transcript.pyannote[11].end |
43.87221875 |
transcript.pyannote[12].speaker |
SPEAKER_01 |
transcript.pyannote[12].start |
44.59784375 |
transcript.pyannote[12].end |
47.68596875 |
transcript.pyannote[13].speaker |
SPEAKER_00 |
transcript.pyannote[13].start |
46.15034375 |
transcript.pyannote[13].end |
46.82534375 |
transcript.pyannote[14].speaker |
SPEAKER_00 |
transcript.pyannote[14].start |
46.85909375 |
transcript.pyannote[14].end |
46.90971875 |
transcript.pyannote[15].speaker |
SPEAKER_00 |
transcript.pyannote[15].start |
46.92659375 |
transcript.pyannote[15].end |
46.97721875 |
transcript.pyannote[16].speaker |
SPEAKER_00 |
transcript.pyannote[16].start |
46.99409375 |
transcript.pyannote[16].end |
47.80409375 |
transcript.pyannote[17].speaker |
SPEAKER_01 |
transcript.pyannote[17].start |
47.80409375 |
transcript.pyannote[17].end |
53.27159375 |
transcript.pyannote[18].speaker |
SPEAKER_00 |
transcript.pyannote[18].start |
53.30534375 |
transcript.pyannote[18].end |
59.65034375 |
transcript.pyannote[19].speaker |
SPEAKER_01 |
transcript.pyannote[19].start |
57.05159375 |
transcript.pyannote[19].end |
57.50721875 |
transcript.pyannote[20].speaker |
SPEAKER_01 |
transcript.pyannote[20].start |
60.56159375 |
transcript.pyannote[20].end |
67.05846875 |
transcript.pyannote[21].speaker |
SPEAKER_00 |
transcript.pyannote[21].start |
65.47221875 |
transcript.pyannote[21].end |
72.44159375 |
transcript.pyannote[22].speaker |
SPEAKER_00 |
transcript.pyannote[22].start |
72.76221875 |
transcript.pyannote[22].end |
78.11159375 |
transcript.pyannote[23].speaker |
SPEAKER_00 |
transcript.pyannote[23].start |
78.75284375 |
transcript.pyannote[23].end |
78.78659375 |
transcript.pyannote[24].speaker |
SPEAKER_01 |
transcript.pyannote[24].start |
78.78659375 |
transcript.pyannote[24].end |
92.08409375 |
transcript.pyannote[25].speaker |
SPEAKER_00 |
transcript.pyannote[25].start |
92.08409375 |
transcript.pyannote[25].end |
92.11784375 |
transcript.pyannote[26].speaker |
SPEAKER_00 |
transcript.pyannote[26].start |
92.74221875 |
transcript.pyannote[26].end |
105.58409375 |
transcript.pyannote[27].speaker |
SPEAKER_01 |
transcript.pyannote[27].start |
93.97409375 |
transcript.pyannote[27].end |
94.29471875 |
transcript.pyannote[28].speaker |
SPEAKER_01 |
transcript.pyannote[28].start |
104.60534375 |
transcript.pyannote[28].end |
109.02659375 |
transcript.pyannote[29].speaker |
SPEAKER_00 |
transcript.pyannote[29].start |
105.87096875 |
transcript.pyannote[29].end |
106.36034375 |
transcript.pyannote[30].speaker |
SPEAKER_00 |
transcript.pyannote[30].start |
109.02659375 |
transcript.pyannote[30].end |
109.21221875 |
transcript.pyannote[31].speaker |
SPEAKER_01 |
transcript.pyannote[31].start |
109.21221875 |
transcript.pyannote[31].end |
109.34721875 |
transcript.pyannote[32].speaker |
SPEAKER_00 |
transcript.pyannote[32].start |
109.34721875 |
transcript.pyannote[32].end |
109.80284375 |
transcript.pyannote[33].speaker |
SPEAKER_01 |
transcript.pyannote[33].start |
109.80284375 |
transcript.pyannote[33].end |
109.98846875 |
transcript.pyannote[34].speaker |
SPEAKER_00 |
transcript.pyannote[34].start |
109.98846875 |
transcript.pyannote[34].end |
110.68034375 |
transcript.pyannote[35].speaker |
SPEAKER_00 |
transcript.pyannote[35].start |
110.96721875 |
transcript.pyannote[35].end |
136.29659375 |
transcript.pyannote[36].speaker |
SPEAKER_01 |
transcript.pyannote[36].start |
123.58971875 |
transcript.pyannote[36].end |
123.97784375 |
transcript.pyannote[37].speaker |
SPEAKER_01 |
transcript.pyannote[37].start |
136.98846875 |
transcript.pyannote[37].end |
138.72659375 |
transcript.pyannote[38].speaker |
SPEAKER_00 |
transcript.pyannote[38].start |
140.63346875 |
transcript.pyannote[38].end |
141.37596875 |
transcript.pyannote[39].speaker |
SPEAKER_01 |
transcript.pyannote[39].start |
142.37159375 |
transcript.pyannote[39].end |
143.14784375 |
transcript.pyannote[40].speaker |
SPEAKER_01 |
transcript.pyannote[40].start |
143.56971875 |
transcript.pyannote[40].end |
143.58659375 |
transcript.pyannote[41].speaker |
SPEAKER_00 |
transcript.pyannote[41].start |
143.58659375 |
transcript.pyannote[41].end |
161.10284375 |
transcript.pyannote[42].speaker |
SPEAKER_01 |
transcript.pyannote[42].start |
143.70471875 |
transcript.pyannote[42].end |
144.02534375 |
transcript.pyannote[43].speaker |
SPEAKER_00 |
transcript.pyannote[43].start |
162.09846875 |
transcript.pyannote[43].end |
175.93596875 |
transcript.pyannote[44].speaker |
SPEAKER_01 |
transcript.pyannote[44].start |
175.93596875 |
transcript.pyannote[44].end |
184.44096875 |
transcript.pyannote[45].speaker |
SPEAKER_00 |
transcript.pyannote[45].start |
177.15096875 |
transcript.pyannote[45].end |
177.33659375 |
transcript.pyannote[46].speaker |
SPEAKER_00 |
transcript.pyannote[46].start |
183.86721875 |
transcript.pyannote[46].end |
189.52034375 |
transcript.pyannote[47].speaker |
SPEAKER_00 |
transcript.pyannote[47].start |
189.92534375 |
transcript.pyannote[47].end |
208.15034375 |
transcript.pyannote[48].speaker |
SPEAKER_01 |
transcript.pyannote[48].start |
196.81034375 |
transcript.pyannote[48].end |
197.90721875 |
transcript.pyannote[49].speaker |
SPEAKER_01 |
transcript.pyannote[49].start |
198.26159375 |
transcript.pyannote[49].end |
199.24034375 |
transcript.pyannote[50].speaker |
SPEAKER_01 |
transcript.pyannote[50].start |
208.82534375 |
transcript.pyannote[50].end |
209.07846875 |
transcript.pyannote[51].speaker |
SPEAKER_01 |
transcript.pyannote[51].start |
209.58471875 |
transcript.pyannote[51].end |
209.87159375 |
transcript.pyannote[52].speaker |
SPEAKER_00 |
transcript.pyannote[52].start |
209.87159375 |
transcript.pyannote[52].end |
209.90534375 |
transcript.pyannote[53].speaker |
SPEAKER_01 |
transcript.pyannote[53].start |
209.90534375 |
transcript.pyannote[53].end |
209.92221875 |
transcript.pyannote[54].speaker |
SPEAKER_00 |
transcript.pyannote[54].start |
209.92221875 |
transcript.pyannote[54].end |
209.93909375 |
transcript.pyannote[55].speaker |
SPEAKER_01 |
transcript.pyannote[55].start |
209.93909375 |
transcript.pyannote[55].end |
211.35659375 |
transcript.pyannote[56].speaker |
SPEAKER_00 |
transcript.pyannote[56].start |
211.06971875 |
transcript.pyannote[56].end |
211.08659375 |
transcript.pyannote[57].speaker |
SPEAKER_00 |
transcript.pyannote[57].start |
211.10346875 |
transcript.pyannote[57].end |
211.17096875 |
transcript.pyannote[58].speaker |
SPEAKER_00 |
transcript.pyannote[58].start |
211.35659375 |
transcript.pyannote[58].end |
211.96409375 |
transcript.pyannote[59].speaker |
SPEAKER_01 |
transcript.pyannote[59].start |
211.96409375 |
transcript.pyannote[59].end |
226.02096875 |
transcript.pyannote[60].speaker |
SPEAKER_00 |
transcript.pyannote[60].start |
217.98846875 |
transcript.pyannote[60].end |
218.78159375 |
transcript.pyannote[61].speaker |
SPEAKER_00 |
transcript.pyannote[61].start |
222.49409375 |
transcript.pyannote[61].end |
223.43909375 |
transcript.pyannote[62].speaker |
SPEAKER_00 |
transcript.pyannote[62].start |
225.24471875 |
transcript.pyannote[62].end |
234.37409375 |
transcript.pyannote[63].speaker |
SPEAKER_00 |
transcript.pyannote[63].start |
234.71159375 |
transcript.pyannote[63].end |
234.74534375 |
transcript.pyannote[64].speaker |
SPEAKER_01 |
transcript.pyannote[64].start |
234.74534375 |
transcript.pyannote[64].end |
249.79784375 |
transcript.pyannote[65].speaker |
SPEAKER_00 |
transcript.pyannote[65].start |
244.78596875 |
transcript.pyannote[65].end |
246.11909375 |
transcript.pyannote[66].speaker |
SPEAKER_00 |
transcript.pyannote[66].start |
246.84471875 |
transcript.pyannote[66].end |
251.35034375 |
transcript.pyannote[67].speaker |
SPEAKER_01 |
transcript.pyannote[67].start |
249.98346875 |
transcript.pyannote[67].end |
251.33346875 |
transcript.pyannote[68].speaker |
SPEAKER_01 |
transcript.pyannote[68].start |
251.35034375 |
transcript.pyannote[68].end |
251.40096875 |
transcript.pyannote[69].speaker |
SPEAKER_00 |
transcript.pyannote[69].start |
251.58659375 |
transcript.pyannote[69].end |
260.37846875 |
transcript.pyannote[70].speaker |
SPEAKER_00 |
transcript.pyannote[70].start |
260.61471875 |
transcript.pyannote[70].end |
272.12346875 |
transcript.pyannote[71].speaker |
SPEAKER_01 |
transcript.pyannote[71].start |
266.26784375 |
transcript.pyannote[71].end |
266.55471875 |
transcript.pyannote[72].speaker |
SPEAKER_01 |
transcript.pyannote[72].start |
273.65909375 |
transcript.pyannote[72].end |
276.37596875 |
transcript.pyannote[73].speaker |
SPEAKER_00 |
transcript.pyannote[73].start |
275.19471875 |
transcript.pyannote[73].end |
277.70909375 |
transcript.pyannote[74].speaker |
SPEAKER_01 |
transcript.pyannote[74].start |
276.74721875 |
transcript.pyannote[74].end |
279.17721875 |
transcript.pyannote[75].speaker |
SPEAKER_00 |
transcript.pyannote[75].start |
278.90721875 |
transcript.pyannote[75].end |
311.44221875 |
transcript.pyannote[76].speaker |
SPEAKER_01 |
transcript.pyannote[76].start |
296.13659375 |
transcript.pyannote[76].end |
296.22096875 |
transcript.pyannote[77].speaker |
SPEAKER_01 |
transcript.pyannote[77].start |
307.84784375 |
transcript.pyannote[77].end |
318.73221875 |
transcript.pyannote[78].speaker |
SPEAKER_00 |
transcript.pyannote[78].start |
315.88034375 |
transcript.pyannote[78].end |
315.98159375 |
transcript.pyannote[79].speaker |
SPEAKER_00 |
transcript.pyannote[79].start |
317.63534375 |
transcript.pyannote[79].end |
323.84534375 |
transcript.pyannote[80].speaker |
SPEAKER_01 |
transcript.pyannote[80].start |
322.57971875 |
transcript.pyannote[80].end |
322.83284375 |
transcript.pyannote[81].speaker |
SPEAKER_00 |
transcript.pyannote[81].start |
323.99721875 |
transcript.pyannote[81].end |
396.18846875 |
transcript.pyannote[82].speaker |
SPEAKER_00 |
transcript.pyannote[82].start |
397.01534375 |
transcript.pyannote[82].end |
406.36409375 |
transcript.pyannote[83].speaker |
SPEAKER_00 |
transcript.pyannote[83].start |
406.83659375 |
transcript.pyannote[83].end |
415.00409375 |
transcript.pyannote[84].speaker |
SPEAKER_01 |
transcript.pyannote[84].start |
414.44721875 |
transcript.pyannote[84].end |
425.66909375 |
transcript.pyannote[85].speaker |
SPEAKER_00 |
transcript.pyannote[85].start |
425.73659375 |
transcript.pyannote[85].end |
439.03409375 |
transcript.pyannote[86].speaker |
SPEAKER_01 |
transcript.pyannote[86].start |
429.24659375 |
transcript.pyannote[86].end |
429.51659375 |
transcript.pyannote[87].speaker |
SPEAKER_01 |
transcript.pyannote[87].start |
439.03409375 |
transcript.pyannote[87].end |
445.76721875 |
transcript.pyannote[88].speaker |
SPEAKER_00 |
transcript.pyannote[88].start |
444.83909375 |
transcript.pyannote[88].end |
451.40346875 |
transcript.pyannote[89].speaker |
SPEAKER_00 |
transcript.pyannote[89].start |
451.63971875 |
transcript.pyannote[89].end |
452.65221875 |
transcript.pyannote[90].speaker |
SPEAKER_00 |
transcript.pyannote[90].start |
453.41159375 |
transcript.pyannote[90].end |
455.48721875 |
transcript.pyannote[91].speaker |
SPEAKER_00 |
transcript.pyannote[91].start |
455.90909375 |
transcript.pyannote[91].end |
464.97096875 |
transcript.pyannote[92].speaker |
SPEAKER_01 |
transcript.pyannote[92].start |
463.30034375 |
transcript.pyannote[92].end |
463.80659375 |
transcript.pyannote[93].speaker |
SPEAKER_01 |
transcript.pyannote[93].start |
464.97096875 |
transcript.pyannote[93].end |
465.03846875 |
transcript.pyannote[94].speaker |
SPEAKER_00 |
transcript.pyannote[94].start |
465.03846875 |
transcript.pyannote[94].end |
465.96659375 |
transcript.pyannote[95].speaker |
SPEAKER_01 |
transcript.pyannote[95].start |
465.96659375 |
transcript.pyannote[95].end |
466.03409375 |
transcript.pyannote[96].speaker |
SPEAKER_00 |
transcript.pyannote[96].start |
466.03409375 |
transcript.pyannote[96].end |
482.09909375 |
transcript.pyannote[97].speaker |
SPEAKER_00 |
transcript.pyannote[97].start |
483.09471875 |
transcript.pyannote[97].end |
520.15221875 |
transcript.pyannote[98].speaker |
SPEAKER_00 |
transcript.pyannote[98].start |
520.33784375 |
transcript.pyannote[98].end |
545.22846875 |
transcript.pyannote[99].speaker |
SPEAKER_00 |
transcript.pyannote[99].start |
545.39721875 |
transcript.pyannote[99].end |
547.48971875 |
transcript.pyannote[100].speaker |
SPEAKER_00 |
transcript.pyannote[100].start |
548.08034375 |
transcript.pyannote[100].end |
548.51909375 |
transcript.pyannote[101].speaker |
SPEAKER_00 |
transcript.pyannote[101].start |
548.68784375 |
transcript.pyannote[101].end |
552.18096875 |
transcript.pyannote[102].speaker |
SPEAKER_01 |
transcript.pyannote[102].start |
553.05846875 |
transcript.pyannote[102].end |
571.38471875 |
transcript.pyannote[103].speaker |
SPEAKER_00 |
transcript.pyannote[103].start |
560.83784375 |
transcript.pyannote[103].end |
561.31034375 |
transcript.pyannote[104].speaker |
SPEAKER_01 |
transcript.pyannote[104].start |
572.39721875 |
transcript.pyannote[104].end |
573.46034375 |
transcript.pyannote[105].speaker |
SPEAKER_00 |
transcript.pyannote[105].start |
573.46034375 |
transcript.pyannote[105].end |
573.47721875 |
transcript.pyannote[106].speaker |
SPEAKER_01 |
transcript.pyannote[106].start |
573.81471875 |
transcript.pyannote[106].end |
576.80159375 |
transcript.pyannote[107].speaker |
SPEAKER_00 |
transcript.pyannote[107].start |
575.21534375 |
transcript.pyannote[107].end |
576.71721875 |
transcript.pyannote[108].speaker |
SPEAKER_00 |
transcript.pyannote[108].start |
576.80159375 |
transcript.pyannote[108].end |
579.21471875 |
transcript.pyannote[109].speaker |
SPEAKER_01 |
transcript.pyannote[109].start |
577.72971875 |
transcript.pyannote[109].end |
579.31596875 |
transcript.pyannote[110].speaker |
SPEAKER_00 |
transcript.pyannote[110].start |
579.31596875 |
transcript.pyannote[110].end |
579.33284375 |
transcript.pyannote[111].speaker |
SPEAKER_01 |
transcript.pyannote[111].start |
579.33284375 |
transcript.pyannote[111].end |
579.40034375 |
transcript.pyannote[112].speaker |
SPEAKER_00 |
transcript.pyannote[112].start |
579.40034375 |
transcript.pyannote[112].end |
580.59846875 |
transcript.pyannote[113].speaker |
SPEAKER_01 |
transcript.pyannote[113].start |
580.59846875 |
transcript.pyannote[113].end |
585.35721875 |
transcript.pyannote[114].speaker |
SPEAKER_00 |
transcript.pyannote[114].start |
581.05409375 |
transcript.pyannote[114].end |
581.56034375 |
transcript.pyannote[115].speaker |
SPEAKER_00 |
transcript.pyannote[115].start |
584.42909375 |
transcript.pyannote[115].end |
584.78346875 |
transcript.pyannote[116].speaker |
SPEAKER_00 |
transcript.pyannote[116].start |
585.15471875 |
transcript.pyannote[116].end |
585.55971875 |
transcript.pyannote[117].speaker |
SPEAKER_00 |
transcript.pyannote[117].start |
585.74534375 |
transcript.pyannote[117].end |
587.24721875 |
transcript.pyannote[118].speaker |
SPEAKER_00 |
transcript.pyannote[118].start |
588.61409375 |
transcript.pyannote[118].end |
589.60971875 |
transcript.pyannote[119].speaker |
SPEAKER_01 |
transcript.pyannote[119].start |
589.84596875 |
transcript.pyannote[119].end |
591.29721875 |
transcript.pyannote[120].speaker |
SPEAKER_00 |
transcript.pyannote[120].start |
590.79096875 |
transcript.pyannote[120].end |
591.49971875 |
transcript.pyannote[121].speaker |
SPEAKER_01 |
transcript.pyannote[121].start |
592.22534375 |
transcript.pyannote[121].end |
593.06909375 |
transcript.pyannote[122].speaker |
SPEAKER_00 |
transcript.pyannote[122].start |
593.44034375 |
transcript.pyannote[122].end |
598.09784375 |
transcript.pyannote[123].speaker |
SPEAKER_01 |
transcript.pyannote[123].start |
599.54909375 |
transcript.pyannote[123].end |
600.37596875 |
transcript.pyannote[124].speaker |
SPEAKER_00 |
transcript.pyannote[124].start |
600.37596875 |
transcript.pyannote[124].end |
600.47721875 |
transcript.pyannote[125].speaker |
SPEAKER_00 |
transcript.pyannote[125].start |
600.73034375 |
transcript.pyannote[125].end |
603.31221875 |
transcript.pyannote[126].speaker |
SPEAKER_01 |
transcript.pyannote[126].start |
602.63721875 |
transcript.pyannote[126].end |
603.19409375 |
transcript.pyannote[127].speaker |
SPEAKER_01 |
transcript.pyannote[127].start |
604.64534375 |
transcript.pyannote[127].end |
604.69596875 |
transcript.pyannote[128].speaker |
SPEAKER_00 |
transcript.pyannote[128].start |
604.69596875 |
transcript.pyannote[128].end |
604.86471875 |
transcript.pyannote[129].speaker |
SPEAKER_01 |
transcript.pyannote[129].start |
604.86471875 |
transcript.pyannote[129].end |
606.11346875 |
transcript.pyannote[130].speaker |
SPEAKER_00 |
transcript.pyannote[130].start |
605.72534375 |
transcript.pyannote[130].end |
608.03721875 |
transcript.whisperx[0].start |
7.739 |
transcript.whisperx[0].end |
8.04 |
transcript.whisperx[0].text |
麻煩請勞動部長請紅部長 |
transcript.whisperx[1].start |
15.4 |
transcript.whisperx[1].end |
37.557 |
transcript.whisperx[1].text |
喂 業務員好部長好 先問一下無薪假的問題因為8月又攀升到8500人比7月又多1000多人最近是抖升應該是10月1號的公佈10月1號我想請教一下因為我看到你有提到你最近一直在仿視產業那你都仿視什麼產業其實傳統產業比較多那現在你預估11月的無薪假人數會繼續往上衝嗎 |
transcript.whisperx[2].start |
45.097 |
transcript.whisperx[2].end |
58.137 |
transcript.whisperx[2].text |
應該不是預估啦因為你有訪視嘛所以有了解嘛我們會要我覺得要為人數還增加當然要為人數增加做準備大概你覺得你預估大概多少不是估一個就狀況是會更嚴峻還是會趨緩 |
transcript.whisperx[3].start |
60.598 |
transcript.whisperx[3].end |
76.557 |
transcript.whisperx[3].text |
我們就是要我認為我們要對於人數還會再增加去做相關的政策上面的資源準備因為這個東西跟你邊預算或政府的因應作為都有關啦所以回答也不能那麼的抽象啦我相信你應該要給一個具體的答案嘛你覺得會比較嚴峻還是會趨緩 |
transcript.whisperx[4].start |
78.8 |
transcript.whisperx[4].end |
91.785 |
transcript.whisperx[4].text |
我們現在看到的數據因為9月16號的時候那一次公佈增加是240010月1號的時候公佈是增加1100就增加的幅度來說是有降低 |
transcript.whisperx[5].start |
92.919 |
transcript.whisperx[5].end |
110.327 |
transcript.whisperx[5].text |
對我現在問未來啦因為你有仿事嘛如果你都丟的不管我不會問你嘛你有仿事有些企業跟你回應說我們現在可能這個月還可以撐下個月撐不住或如何如何你會有一個判斷嘛這就是你仿事的目的嘛我們認為要就是是有可能會再增加的就是會更嚴峻啦 |
transcript.whisperx[6].start |
111.067 |
transcript.whisperx[6].end |
136.167 |
transcript.whisperx[6].text |
那當然你昨天我們也在審你們的像今天在審你們所提出來的預算就是有因應國際局勢的任性你們這邊是編的250億其中有100億是給勞保啦另外150億是辦理勞工的安定就業各項措施然後我看你的計畫裡面提的10項那其中有一項是辦理青年就業計畫那這個部分預計投入多少錢詳細的數字 |
transcript.whisperx[7].start |
140.666 |
transcript.whisperx[7].end |
160.76 |
transcript.whisperx[7].text |
一例投資多少錢總共是15億15億那其實你這個資源青年計劃我之前就有看過了在你提這個計劃預算之前就有看過那時候左下角是講說本項措施符合就業安定基金促進國民就業用途看起來這個錢原本是要用救安基金去付 |
transcript.whisperx[8].start |
162.288 |
transcript.whisperx[8].end |
188.971 |
transcript.whisperx[8].text |
同樣一個計劃忽然間又送特別預算過來特別預算一般是說要因應緊急狀況沒有錢的時候送那已經確定要用救安基金來付為什麼又送特別預算過來目的是什麼跟文說明其實我們在關稅的期間其實是有把包括適用對象包括補貼的金額其實都有在拉高但是因為你這個原本的資源青年就業計劃你是有名額限制嗎 |
transcript.whisperx[9].start |
190.012 |
transcript.whisperx[9].end |
207.466 |
transcript.whisperx[9].text |
你是符合條件就可以啊對對啊那既然是符合條件就可以那就沒有金額的問題啊不是那為什麼要另外再編特別預算來我說補貼的金額我們把它拉高沒有沒有本來金額你這邊救安基金就是四萬八你現在特別預算也是四萬八金額一樣啊 |
transcript.whisperx[10].start |
209.908 |
transcript.whisperx[10].end |
234.167 |
transcript.whisperx[10].text |
跟文說因為還是說你現在用特別預算來取代救安基金不是不是不是我們原定這部分就是要用特別預算來支援自己看救安基金不是不是因為特別預算還沒過還沒過所以現在就是先移緩季節我了解所以你的意思是說在沒有這沒有特別預算的話呢你用救安基金來支付那現在有特別預算救安基金就不用付了嘛對吧 |
transcript.whisperx[11].start |
234.787 |
transcript.whisperx[11].end |
250.1 |
transcript.whisperx[11].text |
意思是這樣嗎應該是說其實因為這是因為特別預算現在還在審查可是現在已經會有青年對於這個計畫對於資源有需求所以就是說所以我們先用這個先用基金對那之後一環基金之後就用特別預算對 |
transcript.whisperx[12].start |
251.661 |
transcript.whisperx[12].end |
268.849 |
transcript.whisperx[12].text |
那接下來我就想要順便問一下因為你這個計畫我看到他是用15到29歲啦未就業都可以那15歲到18歲應該理論上他應該在讀書啦那但是呢可能有一些未就業所以適用這個計畫請問一下大概15到18歲未就業有請領這個計畫的現在是多少人 |
transcript.whisperx[13].start |
274.127 |
transcript.whisperx[13].end |
291.97 |
transcript.whisperx[13].text |
15到18特別問15到你去統計一下好不好如果15我特別問15我可能要算一下統計一下好不好因為我們我覺得你們統計完之後應該要跟教育部來討論一下就是說為什麼有這些學生他是沒有去讀書然後是去就業有什麼狀況可能要跟社政機關一起研究一下 |
transcript.whisperx[14].start |
292.27 |
transcript.whisperx[14].end |
320.648 |
transcript.whisperx[14].text |
因為理論上我們應該還是鼓勵這個年齡的學生去讀書啦當然對所以這個不是說你就給他錢就不管他當然照顧他我覺得政府也應該做但是也應該要了解正常來說應該讀書為什麼你會來就業這個其實在我們其實相關的統計就是有他就是為就學為就業的一般我們簡稱為為的青年所以還是會有一些他在這個階段我覺得還是要跟教育部跟 |
transcript.whisperx[15].start |
321.528 |
transcript.whisperx[15].end |
345.883 |
transcript.whisperx[15].text |
跟那個衛福部大家去討論一下好再來我就因為講到救安基金看起來救安基金就是你的小金庫啦就是沒錢的時候拿出來用一下有錢就可以收回來然後之前大家對於救安基金有很多批評因為被拿去開演唱會啊拿去裝潢啊拿去拍影片啊然後這一些的那既然這個救安基金現在已經收這麼多多到感覺變成可以這樣子用 |
transcript.whisperx[16].start |
346.563 |
transcript.whisperx[16].end |
373.339 |
transcript.whisperx[16].text |
那我覺得你何不就是在繳交的部分呢我覺得你可以放寬一點讓有一些其實有困難的人可以不用繳交那目前就業安定費是根據就業服務法第55條啦有三個狀況是可以免繳啦一個譬如說他是中低收入戶或者是他是身心障礙者但是他有領取生活補助或者是醫療人福利法領取中低收入生活津貼這三種人他是不用繳交就業安定費 |
transcript.whisperx[17].start |
374.099 |
transcript.whisperx[17].end |
395.116 |
transcript.whisperx[17].text |
可是其實他都有一個財務的限制就他必須要符合可能收入比較低這一塊但是我們都知道像我們在地方也很多人跟我們反映他其實生活也不見得很好但是他就是沒有達到中低收入戶的標準那這些人假設他們家裡面有中高中重度的失能者要照顧的話他請一個外籍看護要不要繳救援安定費 要 |
transcript.whisperx[18].start |
397.051 |
transcript.whisperx[18].end |
424.985 |
transcript.whisperx[18].text |
其實我覺得對他來說是蠻大的一筆負擔那如果救安基金都已經這麼多了政府都可以拿去開演唱會了都可以拿去拍影片了那為什麼不能讓這些真的家裡面比較有困難的讓他免繳的我覺得部長您研究一下好不好跟我說明第一個我們在今年1月的時候其實我們就已經提出強化管理救安基金的方案所以不會再有之前看到的這些有爭議的使用狀況 |
transcript.whisperx[19].start |
426.045 |
transcript.whisperx[19].end |
452.421 |
transcript.whisperx[19].text |
那是代表說之前就是錢太多才會這樣嘛那你現在的錢還是一樣多啊更何況剛剛也講了嘛你用特別預算也來補了救安基金本來要支出的部分嘛所以救安基金的錢是綽綽有餘我們現在是用救安基金去補其實應該特別要用規劃用特別預算的部分錢就是有空出來本來要拿去付這個初次循職津貼但現在有特別預算了所以我覺得你 |
transcript.whisperx[20].start |
453.502 |
transcript.whisperx[20].end |
481.887 |
transcript.whisperx[20].text |
部長你去研究一下啦就是說救安基金你那麼多非必要的支出你都在花了過去是這樣今年錢一樣多啊未來這些支出我們都會我們做出救安基金的改革所以沒有 你改革但是未來會這樣過去會這樣代表說沒有那麼多的需求嘛他才會把這些錢拿來這樣用嘛那為什麼忽然間需求會增加是我們勞工條件越來越差嗎還是你看壞我們經濟否則你為什麼會認為說未來救安基金的需求會越來越大 |
transcript.whisperx[21].start |
483.169 |
transcript.whisperx[21].end |
507.125 |
transcript.whisperx[21].text |
如果你經濟穩定的話這不是告訴我們經濟穩定啊理論上來講救安基金是安定就業那他基本上他最起碼維持跟過去一樣的水平啊那為什麼你會認為說救安基金未來的支出會越來越多你如果把那些開演唱會啊拍影片這些錢把它去掉之後支付的還會更多我我相信那你很看壞我們經濟欸所以我我現在不是沒有叫你立刻給答案但我覺得研議一下因為 |
transcript.whisperx[22].start |
507.825 |
transcript.whisperx[22].end |
535.878 |
transcript.whisperx[22].text |
如果說救安基金的錢確實水位很高然後可以做像過去可以用那些用途的話為什麼針對這一些比較有困難的家庭他不符合免繳的用途我們不能夠放寬呢我相信這個錢也沒有很多所以我希望說不然你去試算一下你去試算一下如果說假設假設我講完假設針對就是他不符合中低收入戶但是家裡有重度失能以上的這些家庭他也許有困難讓他免繳 |
transcript.whisperx[23].start |
536.938 |
transcript.whisperx[23].end |
552.058 |
transcript.whisperx[23].text |
一個月兩千塊的就業安定費到底對於救安基金的影響有多大我覺得至少給個評估出來嘛給個評估然後再去看說欸救安基金這個如果扣掉一些非必要支出欸可以可以這個過得去那我覺得大家可以往這個方向去做啊 |
transcript.whisperx[24].start |
553.075 |
transcript.whisperx[24].end |
572.761 |
transcript.whisperx[24].text |
跟委員報告 第一個因為過去的確我們在免繳救安基金部分比較是針對收入以收入作為篩選條件那我們有看到一些委員其實對於這個救安基金免繳或少繳其實有提出希望做更多其他類型的期待 |
transcript.whisperx[25].start |
573.874 |
transcript.whisperx[25].end |
602.953 |
transcript.whisperx[25].text |
那我想我們可以來做一些評估你做一個研討我們也可以來做一些評估就是你把那個金額算出來然後當面我們會來整體估計一下包括救援基金的財務狀況這樣子那大概什麼時候會有這個研究出來我想我們可能一個月好不好給我們兩個月好不好部長你這麼勇於認識的人我們認識這麼久了對不對 一個月我兩個月啦你看你這樣子就訓掉了啦 一個月 |
transcript.whisperx[26].start |
604.727 |
transcript.whisperx[26].end |
606.659 |
transcript.whisperx[26].text |
我們盡快好不好 對那最慢兩個月 好 謝謝 |