iVOD / 163988

Field Value
IVOD_ID 163988
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/163988
日期 2025-10-09
會議資料.會議代碼 委員會-11-4-26-2
會議資料.會議代碼:str 第11屆第4會期社會福利及衛生環境委員會第2次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 2
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.標題 第11屆第4會期社會福利及衛生環境委員會第2次全體委員會議
影片種類 Clip
開始時間 2025-10-09T11:34:35+08:00
結束時間 2025-10-09T11:51:10+08:00
影片長度 00:16:35
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/0913948005eacb62181e6a11debb2b02819c05f3ca7f3b915dd0128aa318ab8e9eca1244ea1315045ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 陳瑩
委員發言時間 11:34:35 - 11:51:10
會議時間 2025-10-09T09:00:00+08:00
會議名稱 立法院第11屆第4會期社會福利及衛生環境委員會第2次全體委員會議(事由:邀請勞動部部長針對「因關稅造成我國市場就業及勞動環境衝擊之影響及因應對策」進行專題報告,並備質詢。【10月8日及9日二天一次會】)
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 19.48784375
transcript.pyannote[0].end 21.49596875
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 22.28909375
transcript.pyannote[1].end 23.80784375
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 32.02596875
transcript.pyannote[2].end 32.58284375
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 32.76846875
transcript.pyannote[3].end 48.20909375
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 48.51284375
transcript.pyannote[4].end 60.35909375
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 60.73034375
transcript.pyannote[5].end 68.67846875
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 69.82596875
transcript.pyannote[6].end 88.72596875
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 88.94534375
transcript.pyannote[7].end 95.91471875
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 95.94846875
transcript.pyannote[8].end 96.03284375
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 96.13409375
transcript.pyannote[9].end 99.94784375
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 100.11659375
transcript.pyannote[10].end 100.42034375
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 101.34846875
transcript.pyannote[11].end 102.76596875
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 103.22159375
transcript.pyannote[12].end 107.89596875
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 108.35159375
transcript.pyannote[13].end 109.04346875
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 109.73534375
transcript.pyannote[14].end 109.80284375
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 113.49846875
transcript.pyannote[15].end 115.43909375
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 115.54034375
transcript.pyannote[16].end 123.84284375
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 125.96909375
transcript.pyannote[17].end 126.18846875
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 126.18846875
transcript.pyannote[18].end 128.21346875
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 130.25534375
transcript.pyannote[19].end 133.29284375
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 133.74846875
transcript.pyannote[20].end 134.37284375
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 134.91284375
transcript.pyannote[21].end 139.73909375
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 141.76409375
transcript.pyannote[22].end 144.70034375
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 145.76346875
transcript.pyannote[23].end 147.53534375
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 149.35784375
transcript.pyannote[24].end 152.20971875
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 151.29846875
transcript.pyannote[25].end 151.66971875
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 152.34471875
transcript.pyannote[26].end 155.66909375
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 156.52971875
transcript.pyannote[27].end 159.14534375
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 159.56721875
transcript.pyannote[28].end 160.02284375
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 160.37721875
transcript.pyannote[29].end 163.39784375
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 163.61721875
transcript.pyannote[30].end 164.61284375
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 165.25409375
transcript.pyannote[31].end 172.45971875
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 173.28659375
transcript.pyannote[32].end 188.45721875
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 189.45284375
transcript.pyannote[33].end 192.10221875
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 192.23721875
transcript.pyannote[34].end 192.47346875
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 192.87846875
transcript.pyannote[35].end 196.32096875
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 197.58659375
transcript.pyannote[36].end 202.04159375
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 203.84721875
transcript.pyannote[37].end 210.79971875
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 210.86721875
transcript.pyannote[38].end 211.25534375
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 211.00221875
transcript.pyannote[39].end 219.52409375
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 219.55784375
transcript.pyannote[40].end 230.45909375
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 219.59159375
transcript.pyannote[41].end 219.64221875
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 219.76034375
transcript.pyannote[42].end 219.96284375
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 231.10034375
transcript.pyannote[43].end 238.49159375
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 238.64346875
transcript.pyannote[44].end 251.58659375
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 251.58659375
transcript.pyannote[45].end 251.94096875
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 251.94096875
transcript.pyannote[46].end 254.21909375
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 254.75909375
transcript.pyannote[47].end 264.74909375
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 265.06971875
transcript.pyannote[48].end 266.87534375
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 267.24659375
transcript.pyannote[49].end 270.45284375
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 270.84096875
transcript.pyannote[50].end 278.92409375
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 279.41346875
transcript.pyannote[51].end 281.13471875
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 281.62409375
transcript.pyannote[52].end 298.83659375
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 299.66346875
transcript.pyannote[53].end 299.69721875
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 299.69721875
transcript.pyannote[54].end 299.73096875
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 299.73096875
transcript.pyannote[55].end 299.76471875
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 299.76471875
transcript.pyannote[56].end 300.32159375
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 300.82784375
transcript.pyannote[57].end 304.94534375
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 304.75971875
transcript.pyannote[58].end 309.88971875
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 309.34971875
transcript.pyannote[59].end 309.94034375
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 309.94034375
transcript.pyannote[60].end 309.95721875
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 310.29471875
transcript.pyannote[61].end 312.48846875
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 312.11721875
transcript.pyannote[62].end 314.02409375
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 314.17596875
transcript.pyannote[63].end 318.66471875
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 317.77034375
transcript.pyannote[64].end 319.72784375
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 320.16659375
transcript.pyannote[65].end 320.50409375
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 320.77409375
transcript.pyannote[66].end 324.31784375
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 325.02659375
transcript.pyannote[67].end 327.05159375
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 325.97159375
transcript.pyannote[68].end 326.49471875
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 327.08534375
transcript.pyannote[69].end 329.95409375
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 331.10159375
transcript.pyannote[70].end 333.64971875
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 332.78909375
transcript.pyannote[71].end 333.51471875
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 333.95346875
transcript.pyannote[72].end 337.61534375
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 337.51409375
transcript.pyannote[73].end 349.71471875
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 337.85159375
transcript.pyannote[74].end 339.01596875
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 349.98471875
transcript.pyannote[75].end 366.62346875
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 366.75846875
transcript.pyannote[76].end 374.03159375
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 374.65596875
transcript.pyannote[77].end 399.88409375
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 400.10346875
transcript.pyannote[78].end 412.40534375
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 410.11034375
transcript.pyannote[79].end 410.75159375
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 412.08471875
transcript.pyannote[80].end 414.12659375
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 415.52721875
transcript.pyannote[81].end 419.98221875
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 420.60659375
transcript.pyannote[82].end 421.19721875
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 421.33221875
transcript.pyannote[83].end 422.02409375
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 423.01971875
transcript.pyannote[84].end 423.93096875
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 423.96471875
transcript.pyannote[85].end 434.39346875
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 434.73096875
transcript.pyannote[86].end 440.40096875
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 440.99159375
transcript.pyannote[87].end 442.30784375
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 443.16846875
transcript.pyannote[88].end 447.69096875
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 447.62346875
transcript.pyannote[89].end 449.63159375
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 450.17159375
transcript.pyannote[90].end 460.36409375
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 460.87034375
transcript.pyannote[91].end 482.57159375
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 482.92596875
transcript.pyannote[92].end 494.09721875
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 494.70471875
transcript.pyannote[93].end 496.39221875
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 497.21909375
transcript.pyannote[94].end 528.79221875
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 528.91034375
transcript.pyannote[95].end 532.26846875
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 532.84221875
transcript.pyannote[96].end 533.46659375
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 533.46659375
transcript.pyannote[97].end 534.02346875
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 534.15846875
transcript.pyannote[98].end 542.07284375
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 543.27096875
transcript.pyannote[99].end 543.33846875
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 543.42284375
transcript.pyannote[100].end 546.22409375
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 543.65909375
transcript.pyannote[101].end 543.72659375
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 546.52784375
transcript.pyannote[102].end 550.22346875
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 550.59471875
transcript.pyannote[103].end 554.84721875
transcript.pyannote[104].speaker SPEAKER_01
transcript.pyannote[104].start 555.35346875
transcript.pyannote[104].end 559.16721875
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 558.76221875
transcript.pyannote[105].end 561.27659375
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 561.98534375
transcript.pyannote[106].end 562.62659375
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 563.20034375
transcript.pyannote[107].end 567.04784375
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 567.31784375
transcript.pyannote[108].end 600.81471875
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 601.67534375
transcript.pyannote[109].end 602.16471875
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 602.82284375
transcript.pyannote[110].end 604.74659375
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 605.30346875
transcript.pyannote[111].end 611.15909375
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 611.46284375
transcript.pyannote[112].end 611.49659375
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 611.78346875
transcript.pyannote[113].end 628.15221875
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 628.32096875
transcript.pyannote[114].end 639.03659375
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 639.40784375
transcript.pyannote[115].end 639.98159375
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 641.29784375
transcript.pyannote[116].end 642.41159375
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 642.98534375
transcript.pyannote[117].end 643.37346875
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 643.47471875
transcript.pyannote[118].end 650.44409375
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 648.89159375
transcript.pyannote[119].end 653.53221875
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 653.92034375
transcript.pyannote[120].end 656.97471875
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 657.27846875
transcript.pyannote[121].end 662.34096875
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 662.93159375
transcript.pyannote[122].end 663.42096875
transcript.pyannote[123].speaker SPEAKER_01
transcript.pyannote[123].start 663.67409375
transcript.pyannote[123].end 668.71971875
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 668.82096875
transcript.pyannote[124].end 672.66846875
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 672.53346875
transcript.pyannote[125].end 672.93846875
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 673.14096875
transcript.pyannote[126].end 688.36221875
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 688.71659375
transcript.pyannote[127].end 689.37471875
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 689.61096875
transcript.pyannote[128].end 692.85096875
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 693.88034375
transcript.pyannote[129].end 711.46409375
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 711.68346875
transcript.pyannote[130].end 712.66221875
transcript.pyannote[131].speaker SPEAKER_01
transcript.pyannote[131].start 712.91534375
transcript.pyannote[131].end 715.58159375
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 716.50971875
transcript.pyannote[132].end 725.99346875
transcript.pyannote[133].speaker SPEAKER_01
transcript.pyannote[133].start 726.29721875
transcript.pyannote[133].end 732.37221875
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 733.03034375
transcript.pyannote[134].end 736.65846875
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 738.05909375
transcript.pyannote[135].end 743.32409375
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 743.69534375
transcript.pyannote[136].end 753.34784375
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 754.10721875
transcript.pyannote[137].end 754.42784375
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 754.81596875
transcript.pyannote[138].end 761.41409375
transcript.pyannote[139].speaker SPEAKER_01
transcript.pyannote[139].start 762.76409375
transcript.pyannote[139].end 766.84784375
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 767.28659375
transcript.pyannote[140].end 796.76721875
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 767.60721875
transcript.pyannote[141].end 768.33284375
transcript.pyannote[142].speaker SPEAKER_01
transcript.pyannote[142].start 796.76721875
transcript.pyannote[142].end 801.77909375
transcript.pyannote[143].speaker SPEAKER_00
transcript.pyannote[143].start 802.84221875
transcript.pyannote[143].end 810.04784375
transcript.pyannote[144].speaker SPEAKER_01
transcript.pyannote[144].start 811.11096875
transcript.pyannote[144].end 831.31034375
transcript.pyannote[145].speaker SPEAKER_01
transcript.pyannote[145].start 831.71534375
transcript.pyannote[145].end 848.48909375
transcript.pyannote[146].speaker SPEAKER_01
transcript.pyannote[146].start 848.86034375
transcript.pyannote[146].end 854.29409375
transcript.pyannote[147].speaker SPEAKER_00
transcript.pyannote[147].start 853.83846875
transcript.pyannote[147].end 869.46471875
transcript.pyannote[148].speaker SPEAKER_00
transcript.pyannote[148].start 869.61659375
transcript.pyannote[148].end 876.50159375
transcript.pyannote[149].speaker SPEAKER_01
transcript.pyannote[149].start 875.99534375
transcript.pyannote[149].end 880.41659375
transcript.pyannote[150].speaker SPEAKER_00
transcript.pyannote[150].start 879.48846875
transcript.pyannote[150].end 885.69846875
transcript.pyannote[151].speaker SPEAKER_01
transcript.pyannote[151].start 882.20534375
transcript.pyannote[151].end 882.98159375
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 885.10784375
transcript.pyannote[152].end 886.94721875
transcript.pyannote[153].speaker SPEAKER_00
transcript.pyannote[153].start 886.60971875
transcript.pyannote[153].end 895.62096875
transcript.pyannote[154].speaker SPEAKER_01
transcript.pyannote[154].start 896.27909375
transcript.pyannote[154].end 899.04659375
transcript.pyannote[155].speaker SPEAKER_00
transcript.pyannote[155].start 898.84409375
transcript.pyannote[155].end 906.31971875
transcript.pyannote[156].speaker SPEAKER_01
transcript.pyannote[156].start 903.82221875
transcript.pyannote[156].end 904.14284375
transcript.pyannote[157].speaker SPEAKER_01
transcript.pyannote[157].start 907.41659375
transcript.pyannote[157].end 915.78659375
transcript.pyannote[158].speaker SPEAKER_00
transcript.pyannote[158].start 917.91284375
transcript.pyannote[158].end 921.82784375
transcript.pyannote[159].speaker SPEAKER_01
transcript.pyannote[159].start 919.38096875
transcript.pyannote[159].end 920.08971875
transcript.pyannote[160].speaker SPEAKER_01
transcript.pyannote[160].start 922.19909375
transcript.pyannote[160].end 925.27034375
transcript.pyannote[161].speaker SPEAKER_01
transcript.pyannote[161].start 925.74284375
transcript.pyannote[161].end 927.19409375
transcript.pyannote[162].speaker SPEAKER_00
transcript.pyannote[162].start 927.24471875
transcript.pyannote[162].end 931.21034375
transcript.pyannote[163].speaker SPEAKER_01
transcript.pyannote[163].start 928.86471875
transcript.pyannote[163].end 930.34971875
transcript.pyannote[164].speaker SPEAKER_00
transcript.pyannote[164].start 931.58159375
transcript.pyannote[164].end 931.59846875
transcript.pyannote[165].speaker SPEAKER_01
transcript.pyannote[165].start 931.59846875
transcript.pyannote[165].end 932.88096875
transcript.pyannote[166].speaker SPEAKER_00
transcript.pyannote[166].start 931.61534375
transcript.pyannote[166].end 931.96971875
transcript.pyannote[167].speaker SPEAKER_00
transcript.pyannote[167].start 933.43784375
transcript.pyannote[167].end 935.98596875
transcript.pyannote[168].speaker SPEAKER_01
transcript.pyannote[168].start 933.47159375
transcript.pyannote[168].end 934.83846875
transcript.pyannote[169].speaker SPEAKER_01
transcript.pyannote[169].start 936.77909375
transcript.pyannote[169].end 938.95596875
transcript.pyannote[170].speaker SPEAKER_01
transcript.pyannote[170].start 939.31034375
transcript.pyannote[170].end 940.15409375
transcript.pyannote[171].speaker SPEAKER_01
transcript.pyannote[171].start 941.53784375
transcript.pyannote[171].end 944.92971875
transcript.pyannote[172].speaker SPEAKER_01
transcript.pyannote[172].start 945.58784375
transcript.pyannote[172].end 946.98846875
transcript.pyannote[173].speaker SPEAKER_01
transcript.pyannote[173].start 947.56221875
transcript.pyannote[173].end 948.03471875
transcript.pyannote[174].speaker SPEAKER_01
transcript.pyannote[174].start 948.30471875
transcript.pyannote[174].end 959.93159375
transcript.pyannote[175].speaker SPEAKER_01
transcript.pyannote[175].start 960.75846875
transcript.pyannote[175].end 979.69221875
transcript.pyannote[176].speaker SPEAKER_01
transcript.pyannote[176].start 979.92846875
transcript.pyannote[176].end 980.58659375
transcript.pyannote[177].speaker SPEAKER_01
transcript.pyannote[177].start 981.05909375
transcript.pyannote[177].end 992.97284375
transcript.pyannote[178].speaker SPEAKER_00
transcript.pyannote[178].start 992.97284375
transcript.pyannote[178].end 993.37784375
transcript.pyannote[179].speaker SPEAKER_01
transcript.pyannote[179].start 992.98971875
transcript.pyannote[179].end 993.79971875
transcript.pyannote[180].speaker SPEAKER_01
transcript.pyannote[180].start 995.26784375
transcript.pyannote[180].end 995.97659375
transcript.whisperx[0].start 19.702
transcript.whisperx[0].end 22.363
transcript.whisperx[0].text 謝謝主席 麻煩請勞動部長請勞動部長 洪部長蔣委員好
transcript.whisperx[1].start 32.953
transcript.whisperx[1].end 44.722
transcript.whisperx[1].text 部長好這一次對美的關稅談判主要分為兩個部分從貿易額來看分別佔32%的一般傳統產業跟68%的電子相關高科技產業前者是佔定適用20加N衝擊的影響的事業單位和勞工的人數將遠大於後者
transcript.whisperx[2].start 61.114
transcript.whisperx[2].end 88.234
transcript.whisperx[2].text 首先呢就這個勞動就業市場的這個衝擊產業影響最大的大概是由哪些產業現在影響比較大的目前從數據上面看到的包括金屬製品包括機械設備那也包括汽車零組件然後也包括其他的運具裡面當然蠻多是自行車
transcript.whisperx[3].start 88.988
transcript.whisperx[3].end 114.635
transcript.whisperx[3].text 好那在這些產業當中到底有多少勞工那中小業中小企業的占比還有這個就是說這些你們數據你們勞動部都有掌握嗎有所以大概多少勞工目前這幾個行業加起來的話應該占的比例蠻大的數據上我們現在設定
transcript.whisperx[4].start 116.727
transcript.whisperx[4].end 139.035
transcript.whisperx[4].text 強化版的公安令措施開放的九大行業裡面總體的勞工占所有減班休息的勞工大概是占八成以上占八成所以多少7106占現在是8505那在九大就九大的這強化版公安令措施行業大概是7100
transcript.whisperx[5].start 141.929
transcript.whisperx[5].end 164.396
transcript.whisperx[5].text 這是你們剛剛後面算的那些嗎就是剛剛就是你剛講是減班休息的好所以減班休息就是你們唯一的這個好沒關係這個後續我會我會帶到好那所以你們這個中小企業佔的比例
transcript.whisperx[6].start 165.545
transcript.whisperx[6].end 191.783
transcript.whisperx[6].text 中小企業佔的比例是比較高的目前看起來50人以下的加數是35750人 357加 好那勞動部你們所掌握的數據其實外界有提出質疑認為說是嚴重低估那部長剛剛所說的衝擊的這個勞工人數大概有四萬兩千你們說八千多人
transcript.whisperx[7].start 193.462
transcript.whisperx[7].end 195.124
transcript.whisperx[7].text 減班休息的數字目前是8505但是衝擊的這個
transcript.whisperx[8].start 203.908
transcript.whisperx[8].end 230.209
transcript.whisperx[8].text 你們那個減班人數只有衝擊就是只有用減班人數去看而已不是陳委員講的應該是有一次在這個有一個四萬二的這個數字那這四萬二數其實它並不是勞動部估的它其實是應該是行政院當時應該是經濟部的相關的智庫的估計這樣子那行政院把它提供給我們做一個參考
transcript.whisperx[9].start 231.155
transcript.whisperx[9].end 252.693
transcript.whisperx[9].text 好那是這樣子因為當然也有媒體或者其他人在評估就是說這樣的衝擊其實涵蓋勞工大至少有20萬人好那實際上光是製造業的從業人數中因為有包括這個食品及飾品製造業是那還有紡織業還有橡膠
transcript.whisperx[10].start 254.835
transcript.whisperx[10].end 280.874
transcript.whisperx[10].text 橡膠製品製造業還有塑膠製品製造業大概有大概這個九大製造業大概就涵蓋了一百零五萬人了那所以我想要請教就是說你們勞動部是如何推估這個行政院公佈這個四萬二這個四萬兩千人這個數據他的是怎麼樣的這個確認他的正確性
transcript.whisperx[11].start 281.673
transcript.whisperx[11].end 297.101
transcript.whisperx[11].text 跟那個聰遠說明你講的一百零五萬的這個數字是我們當時公佈九個行業適用強化版規模安定措施這九個行業總體的從業人數是一百零五萬可是並不是這一百零五萬都會受到衝擊並不是這個 並不是這樣的狀況
transcript.whisperx[12].start 301.271
transcript.whisperx[12].end 323.806
transcript.whisperx[12].text 對啊所以你們怎麼去推估後來還有個4萬2的這個4萬2那應該是經濟部跟他經濟部的智庫去推估出來的數字那請問請我們是經濟部跟他的什麼去推估出來他其實應該是用一定一些研究的方法去做做這個數字的方法對他不是去對那個勞保行業別人
transcript.whisperx[13].start 326.127
transcript.whisperx[13].end 349.201
transcript.whisperx[13].text 所以研究他們用什麼樣研究的方法這可能要細看一下他們的那你會後再提供給我們看是怎麼樣因為那個42000主要是經濟部跟他的智庫去推估出來的那但是這個數字後來是行政院給我們作為參考用這樣子
transcript.whisperx[14].start 350.046
transcript.whisperx[14].end 372.001
transcript.whisperx[14].text 好那根據勞動部10月1號公布最新一期的減班休息那你們的這個總人總人數和這個家數分別剛剛有提到好就是8505人那有398家其中呢有310家的廠商表達是因為受到這個關稅的影響所以
transcript.whisperx[15].start 375.038
transcript.whisperx[15].end 399.458
transcript.whisperx[15].text 這個部分總人數大概有達到7755人所以大概就是佔全部通報員工人數的九成那勞動部也有表示就是說本期增加了1171人那相較於上一期增加的2471人那這個成長的幅度就比較趨於平緩好那
transcript.whisperx[16].start 400.279
transcript.whisperx[16].end 421.825
transcript.whisperx[16].text 我想要請教就是說難道減班休息的人數是勞動部的這個唯一唯一作為衡量關稅衝擊的指標嗎也不是還有沒有其他那你們其他是因為可能包括包括之前包括之前那也包括大解大量解雇
transcript.whisperx[17].start 423.086
transcript.whisperx[17].end 449.427
transcript.whisperx[17].text 大姐 OK包括大姐 包括之前幾個東西我們都重複但是的確在其他的數據比方說之前的通報裡面並沒有像減班休息的數字的成長的幅度這樣好 那有一種狀況就是假如是產業外移或者他官場歇業了我想這些失業的勞工他就不會出現在這個減班休息的統計上對 所以他就會變成是之前或大姐
transcript.whisperx[18].start 450.233
transcript.whisperx[18].end 471.739
transcript.whisperx[18].text 那因為因為這個好就是說後來這些人大概連班都沒有機會剪了啦那所以你們的失業統計就是他這個母數可能又要建立在這個千萬勞工的這個大母數的基礎上好那即使就說20萬人失業了那顯示數據喔的這個百分比也不會很高所以
transcript.whisperx[19].start 472.799
transcript.whisperx[19].end 495.757
transcript.whisperx[19].text 我想就是說勞動部對於這個就業市場有一個你們有沒有這個即時正確的這個見識指標有嗎跟文說明其實因為之前的通報或者是大姐其實她不會出於母數所以其實還是會直接看到她的個數就是直接人數上面的數據
transcript.whisperx[20].start 497.304
transcript.whisperx[20].end 512.051
transcript.whisperx[20].text 所以我想是這樣本席要在這裡建議勞動部就是說你們可以看一下目前受到衝擊的傳統產業就是說這個行業別勞保投保人數有沒有減少
transcript.whisperx[21].start 512.751
transcript.whisperx[21].end 541.55
transcript.whisperx[21].text 那這個是每個月都會更新變化的數字所以每個月5號呢是雇主申報的這個期限那至少6號在部長的桌上就可以有這幾個行業別投保人數增減的數字所以我不曉得部長覺得說這樣的數據是不是重要是 我再跟委員補充其實我們大家都會看幾個因為減慢休息然後解聘的數字還有包括失業給付的數字
transcript.whisperx[22].start 543.736
transcript.whisperx[22].end 560.45
transcript.whisperx[22].text 因為這幾個數字大概是比較比較敏感的去了解現在就業市場的狀況因為解聘解聘未必等於這個產業外移所以這個部分我覺得還是有一些落差因為解聘就會後面就是失業
transcript.whisperx[23].start 563.466
transcript.whisperx[23].end 589.084
transcript.whisperx[23].text 我講的是產業外移未必完全就是說解聘未必完全就等於產業外移這樣子的一個因素那再來就是說這個月的2號你們發布了這個因應關稅的這個支持方案跟四大措施包含了鬆綁適用對象還有擴增服務內涵以及這個跨部會資源整合以提高效益等等
transcript.whisperx[24].start 589.964
transcript.whisperx[24].end 599.906
transcript.whisperx[24].text 那第一個措施主動訪視衝擊我想要請教部長就是說直到現在你們去訪談工會跟事業單位有得到什麼樣的結論嗎
transcript.whisperx[25].start 603.068
transcript.whisperx[25].end 627.922
transcript.whisperx[25].text 這分成兩個部分因為我們去訪韓工會的確會有一些受衝擊的影響的產業他並沒有工會所以所以我們是請我們的五分數其實五個分數其實幾乎在這從四月到現在半年左右的時間他們幾乎這個訪視就是聯繫跟訪視加起來差不多兩萬多個加次那包括
transcript.whisperx[26].start 628.522
transcript.whisperx[26].end 638.256
transcript.whisperx[26].text 包括在尤其現在大家看起來比較嚴重的地方會是在中部那剛才講的幾個產業包括機械業包括
transcript.whisperx[27].start 641.305
transcript.whisperx[27].end 664.362
transcript.whisperx[27].text 可能水五金機械業水五金幾個金屬製品跟其他運輸都是在中部其實是比較多的因為是這樣子啊就是說經營的風險是雇主那他不是勞工那但是我想你們做這些訪視是不是在你們的這個訪談記錄啊
transcript.whisperx[28].start 666.883
transcript.whisperx[28].end 692.641
transcript.whisperx[28].text 這些僱主的意見我們能不能會後給我們辦公室做參考可以好謝謝那再來第二個措施就是強化僱用安定還有補貼勞工被減薪或降低工時那你們可以補助這個減少的薪資是從五成提高到七成我想要請教就是說你們如何可以周知這些事業單位或者僱主
transcript.whisperx[29].start 694.102
transcript.whisperx[29].end 714.336
transcript.whisperx[29].text 因為他們如果通報的話都會有聯繫的方式所以在聯繫方式上我們都會主動跟這些僱主來聯繫說其實你可以來申請包括幫勞工來申請這個強化版的管理措施那有些勞工其實他有留下聯絡方式我們也會主動跟他聯絡其實你可以申請這個薪資查核補貼我們都會主動聯絡再來就是說
transcript.whisperx[30].start 716.61
transcript.whisperx[30].end 736.429
transcript.whisperx[30].text 受到衝擊在就業的部分你們要對接失業勞工跟缺工的事業單位那也要給他們提供客製化的就業媒合服務我想這個部分我們是給予很高的肯定那但是請問你們要如何具體的執行然後預估的這個KPI是多少
transcript.whisperx[31].start 738.106
transcript.whisperx[31].end 765.361
transcript.whisperx[31].text 因為這個跟文說明因為你剛才講的這個是我們在勞工就業通的計畫那勞工就業通的計畫他主要是設計給因為關稅等等國際情勢的因素而比方說被解雇而失業的勞工對那所以整體的KPI並不是我們自己定因為我也不希望這個數字定很高因為如果定很高代表我們失業的人很多但所以如果你們的具體執行會
transcript.whisperx[32].start 767.338
transcript.whisperx[32].end 794.065
transcript.whisperx[32].text 我想我們會 我自己覺得我們會希望盡量就是我們遇到是因為關稅的因素被解雇然後產生失業狀況我們會盡量的提高對他們的這個轉職的服務所以在這個轉職服務裡面我們也看到的確蠻多他傳統產業其實中高齡的勞工比較多所以因為中高齡的勞工多所以他的職務在設計或者是其實我們有一些相關的訓練我們從這部分為中高齡的勞工多做設計我們其實從這個角度來去協助他們
transcript.whisperx[33].start 796.966
transcript.whisperx[33].end 809.849
transcript.whisperx[33].text 因为今天这样回答也是很抽象因为我不知道你们要设计什么我刚才说包括我们把这个服务从植物在设计其实也从它原本是其他的计划我们把它给整合进来
transcript.whisperx[34].start 811.152
transcript.whisperx[34].end 832.775
transcript.whisperx[34].text 好 沒關係今天時間也差不多了我想這個會後也都希望你們可以做比較詳細的補充那最後一個就是說最後一個措施是這個青年接軌職場然後初次尋找青年然後依規定報名參加計劃完成各項求職準備然後沒有
transcript.whisperx[35].start 833.235
transcript.whisperx[35].end 848.14
transcript.whisperx[35].text 未能找到工作者就發給尋職津貼這個部分聽起來好像是一個已經是既有的計劃那而且再來就是說參加計劃期間找到工作且穩定就業者就發給就業獎金最高
transcript.whisperx[36].start 849.521
transcript.whisperx[36].end 867.954
transcript.whisperx[36].text 合計發給發到4.8萬元這是一個既有的計劃他不是既有計劃但過去其實有真的青年尋職的部分但因為這次關稅因為我們考量到其實會有一些企業他當他遇到關稅衝擊的時候他可能會縮減給年輕人一開始的這個就業的機會
transcript.whisperx[37].start 869.835
transcript.whisperx[37].end 895.522
transcript.whisperx[37].text 所以當時我們經過一些學者的討論認為我們其實應該要對於年輕人的尋子有個強化版的做法所以剛剛因為這個我是看不出來有什麼差別第一個我們提高我們提高提高了這個津貼的津貼的額度就是3萬多到4萬多對然後我們也把適用的範圍放寬然後也包括一開過去其實是要尋子90天那我們現在把它縮減到60天就可以
transcript.whisperx[38].start 896.663
transcript.whisperx[38].end 921.388
transcript.whisperx[38].text 就是說60天的計劃 縮到60天60天沒有工作沒有工作原本是要90天那我們現在把它縮短到60天就可以那但是縮短60天符合那這樣子的就是說期間大概總共要多久計劃是三個月就是他求職找到是三個月我們會給他相關的津貼
transcript.whisperx[39].start 922.244
transcript.whisperx[39].end 944.55
transcript.whisperx[39].text 好那你們怎麼樣去定義說出自尋職這個定義要怎麼去他就是第一次找工作的狀況我們在我們的記錄上面是看得到如果你們記錄上沒有記錄的話在投保記錄上面是看得到的好那我想這個這個部分我們希望就是說可以有一些
transcript.whisperx[40].start 945.683
transcript.whisperx[40].end 959.204
transcript.whisperx[40].text 更令人有感的一些措施在這邊我想今天提醒了很多點因為畢竟說我們關稅現在還在談有些衝擊浪潮要過一段時間
transcript.whisperx[41].start 960.856
transcript.whisperx[41].end 978.776
transcript.whisperx[41].text 才會慢慢的湧現所以在這裡要特別提醒你們就是說要麻煩你們要隨時注意這個現有的這個方案措施的成效那特別是很多他都是有時效性的那如果整個行政作業太慢的話有再多的美意到最後也都會變質
transcript.whisperx[42].start 981.158
transcript.whisperx[42].end 992.591
transcript.whisperx[42].text 所以在這邊因為下個月部長你任期就滿一年了那我們很期待說這個一年過去了部長可以有很好的成績單交出來這樣子謝謝