IVOD_ID |
163988 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/163988 |
日期 |
2025-10-09 |
會議資料.會議代碼 |
委員會-11-4-26-2 |
會議資料.會議代碼:str |
第11屆第4會期社會福利及衛生環境委員會第2次全體委員會議 |
會議資料.屆 |
11 |
會議資料.會期 |
4 |
會議資料.會次 |
2 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
26 |
會議資料.委員會代碼:str[0] |
社會福利及衛生環境委員會 |
會議資料.標題 |
第11屆第4會期社會福利及衛生環境委員會第2次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2025-10-09T11:34:35+08:00 |
結束時間 |
2025-10-09T11:51:10+08:00 |
影片長度 |
00:16:35 |
支援功能[0] |
ai-transcript |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/0913948005eacb62181e6a11debb2b02819c05f3ca7f3b915dd0128aa318ab8e9eca1244ea1315045ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
陳瑩 |
委員發言時間 |
11:34:35 - 11:51:10 |
會議時間 |
2025-10-09T09:00:00+08:00 |
會議名稱 |
立法院第11屆第4會期社會福利及衛生環境委員會第2次全體委員會議(事由:邀請勞動部部長針對「因關稅造成我國市場就業及勞動環境衝擊之影響及因應對策」進行專題報告,並備質詢。【10月8日及9日二天一次會】) |
transcript.pyannote[0].speaker |
SPEAKER_01 |
transcript.pyannote[0].start |
19.48784375 |
transcript.pyannote[0].end |
21.49596875 |
transcript.pyannote[1].speaker |
SPEAKER_00 |
transcript.pyannote[1].start |
22.28909375 |
transcript.pyannote[1].end |
23.80784375 |
transcript.pyannote[2].speaker |
SPEAKER_00 |
transcript.pyannote[2].start |
32.02596875 |
transcript.pyannote[2].end |
32.58284375 |
transcript.pyannote[3].speaker |
SPEAKER_01 |
transcript.pyannote[3].start |
32.76846875 |
transcript.pyannote[3].end |
48.20909375 |
transcript.pyannote[4].speaker |
SPEAKER_01 |
transcript.pyannote[4].start |
48.51284375 |
transcript.pyannote[4].end |
60.35909375 |
transcript.pyannote[5].speaker |
SPEAKER_01 |
transcript.pyannote[5].start |
60.73034375 |
transcript.pyannote[5].end |
68.67846875 |
transcript.pyannote[6].speaker |
SPEAKER_00 |
transcript.pyannote[6].start |
69.82596875 |
transcript.pyannote[6].end |
88.72596875 |
transcript.pyannote[7].speaker |
SPEAKER_01 |
transcript.pyannote[7].start |
88.94534375 |
transcript.pyannote[7].end |
95.91471875 |
transcript.pyannote[8].speaker |
SPEAKER_01 |
transcript.pyannote[8].start |
95.94846875 |
transcript.pyannote[8].end |
96.03284375 |
transcript.pyannote[9].speaker |
SPEAKER_01 |
transcript.pyannote[9].start |
96.13409375 |
transcript.pyannote[9].end |
99.94784375 |
transcript.pyannote[10].speaker |
SPEAKER_00 |
transcript.pyannote[10].start |
100.11659375 |
transcript.pyannote[10].end |
100.42034375 |
transcript.pyannote[11].speaker |
SPEAKER_01 |
transcript.pyannote[11].start |
101.34846875 |
transcript.pyannote[11].end |
102.76596875 |
transcript.pyannote[12].speaker |
SPEAKER_00 |
transcript.pyannote[12].start |
103.22159375 |
transcript.pyannote[12].end |
107.89596875 |
transcript.pyannote[13].speaker |
SPEAKER_00 |
transcript.pyannote[13].start |
108.35159375 |
transcript.pyannote[13].end |
109.04346875 |
transcript.pyannote[14].speaker |
SPEAKER_00 |
transcript.pyannote[14].start |
109.73534375 |
transcript.pyannote[14].end |
109.80284375 |
transcript.pyannote[15].speaker |
SPEAKER_00 |
transcript.pyannote[15].start |
113.49846875 |
transcript.pyannote[15].end |
115.43909375 |
transcript.pyannote[16].speaker |
SPEAKER_00 |
transcript.pyannote[16].start |
115.54034375 |
transcript.pyannote[16].end |
123.84284375 |
transcript.pyannote[17].speaker |
SPEAKER_00 |
transcript.pyannote[17].start |
125.96909375 |
transcript.pyannote[17].end |
126.18846875 |
transcript.pyannote[18].speaker |
SPEAKER_01 |
transcript.pyannote[18].start |
126.18846875 |
transcript.pyannote[18].end |
128.21346875 |
transcript.pyannote[19].speaker |
SPEAKER_00 |
transcript.pyannote[19].start |
130.25534375 |
transcript.pyannote[19].end |
133.29284375 |
transcript.pyannote[20].speaker |
SPEAKER_00 |
transcript.pyannote[20].start |
133.74846875 |
transcript.pyannote[20].end |
134.37284375 |
transcript.pyannote[21].speaker |
SPEAKER_00 |
transcript.pyannote[21].start |
134.91284375 |
transcript.pyannote[21].end |
139.73909375 |
transcript.pyannote[22].speaker |
SPEAKER_01 |
transcript.pyannote[22].start |
141.76409375 |
transcript.pyannote[22].end |
144.70034375 |
transcript.pyannote[23].speaker |
SPEAKER_01 |
transcript.pyannote[23].start |
145.76346875 |
transcript.pyannote[23].end |
147.53534375 |
transcript.pyannote[24].speaker |
SPEAKER_01 |
transcript.pyannote[24].start |
149.35784375 |
transcript.pyannote[24].end |
152.20971875 |
transcript.pyannote[25].speaker |
SPEAKER_00 |
transcript.pyannote[25].start |
151.29846875 |
transcript.pyannote[25].end |
151.66971875 |
transcript.pyannote[26].speaker |
SPEAKER_01 |
transcript.pyannote[26].start |
152.34471875 |
transcript.pyannote[26].end |
155.66909375 |
transcript.pyannote[27].speaker |
SPEAKER_01 |
transcript.pyannote[27].start |
156.52971875 |
transcript.pyannote[27].end |
159.14534375 |
transcript.pyannote[28].speaker |
SPEAKER_01 |
transcript.pyannote[28].start |
159.56721875 |
transcript.pyannote[28].end |
160.02284375 |
transcript.pyannote[29].speaker |
SPEAKER_01 |
transcript.pyannote[29].start |
160.37721875 |
transcript.pyannote[29].end |
163.39784375 |
transcript.pyannote[30].speaker |
SPEAKER_01 |
transcript.pyannote[30].start |
163.61721875 |
transcript.pyannote[30].end |
164.61284375 |
transcript.pyannote[31].speaker |
SPEAKER_00 |
transcript.pyannote[31].start |
165.25409375 |
transcript.pyannote[31].end |
172.45971875 |
transcript.pyannote[32].speaker |
SPEAKER_01 |
transcript.pyannote[32].start |
173.28659375 |
transcript.pyannote[32].end |
188.45721875 |
transcript.pyannote[33].speaker |
SPEAKER_01 |
transcript.pyannote[33].start |
189.45284375 |
transcript.pyannote[33].end |
192.10221875 |
transcript.pyannote[34].speaker |
SPEAKER_00 |
transcript.pyannote[34].start |
192.23721875 |
transcript.pyannote[34].end |
192.47346875 |
transcript.pyannote[35].speaker |
SPEAKER_00 |
transcript.pyannote[35].start |
192.87846875 |
transcript.pyannote[35].end |
196.32096875 |
transcript.pyannote[36].speaker |
SPEAKER_01 |
transcript.pyannote[36].start |
197.58659375 |
transcript.pyannote[36].end |
202.04159375 |
transcript.pyannote[37].speaker |
SPEAKER_01 |
transcript.pyannote[37].start |
203.84721875 |
transcript.pyannote[37].end |
210.79971875 |
transcript.pyannote[38].speaker |
SPEAKER_01 |
transcript.pyannote[38].start |
210.86721875 |
transcript.pyannote[38].end |
211.25534375 |
transcript.pyannote[39].speaker |
SPEAKER_00 |
transcript.pyannote[39].start |
211.00221875 |
transcript.pyannote[39].end |
219.52409375 |
transcript.pyannote[40].speaker |
SPEAKER_00 |
transcript.pyannote[40].start |
219.55784375 |
transcript.pyannote[40].end |
230.45909375 |
transcript.pyannote[41].speaker |
SPEAKER_01 |
transcript.pyannote[41].start |
219.59159375 |
transcript.pyannote[41].end |
219.64221875 |
transcript.pyannote[42].speaker |
SPEAKER_01 |
transcript.pyannote[42].start |
219.76034375 |
transcript.pyannote[42].end |
219.96284375 |
transcript.pyannote[43].speaker |
SPEAKER_01 |
transcript.pyannote[43].start |
231.10034375 |
transcript.pyannote[43].end |
238.49159375 |
transcript.pyannote[44].speaker |
SPEAKER_01 |
transcript.pyannote[44].start |
238.64346875 |
transcript.pyannote[44].end |
251.58659375 |
transcript.pyannote[45].speaker |
SPEAKER_00 |
transcript.pyannote[45].start |
251.58659375 |
transcript.pyannote[45].end |
251.94096875 |
transcript.pyannote[46].speaker |
SPEAKER_01 |
transcript.pyannote[46].start |
251.94096875 |
transcript.pyannote[46].end |
254.21909375 |
transcript.pyannote[47].speaker |
SPEAKER_01 |
transcript.pyannote[47].start |
254.75909375 |
transcript.pyannote[47].end |
264.74909375 |
transcript.pyannote[48].speaker |
SPEAKER_01 |
transcript.pyannote[48].start |
265.06971875 |
transcript.pyannote[48].end |
266.87534375 |
transcript.pyannote[49].speaker |
SPEAKER_01 |
transcript.pyannote[49].start |
267.24659375 |
transcript.pyannote[49].end |
270.45284375 |
transcript.pyannote[50].speaker |
SPEAKER_01 |
transcript.pyannote[50].start |
270.84096875 |
transcript.pyannote[50].end |
278.92409375 |
transcript.pyannote[51].speaker |
SPEAKER_01 |
transcript.pyannote[51].start |
279.41346875 |
transcript.pyannote[51].end |
281.13471875 |
transcript.pyannote[52].speaker |
SPEAKER_00 |
transcript.pyannote[52].start |
281.62409375 |
transcript.pyannote[52].end |
298.83659375 |
transcript.pyannote[53].speaker |
SPEAKER_00 |
transcript.pyannote[53].start |
299.66346875 |
transcript.pyannote[53].end |
299.69721875 |
transcript.pyannote[54].speaker |
SPEAKER_01 |
transcript.pyannote[54].start |
299.69721875 |
transcript.pyannote[54].end |
299.73096875 |
transcript.pyannote[55].speaker |
SPEAKER_00 |
transcript.pyannote[55].start |
299.73096875 |
transcript.pyannote[55].end |
299.76471875 |
transcript.pyannote[56].speaker |
SPEAKER_01 |
transcript.pyannote[56].start |
299.76471875 |
transcript.pyannote[56].end |
300.32159375 |
transcript.pyannote[57].speaker |
SPEAKER_01 |
transcript.pyannote[57].start |
300.82784375 |
transcript.pyannote[57].end |
304.94534375 |
transcript.pyannote[58].speaker |
SPEAKER_00 |
transcript.pyannote[58].start |
304.75971875 |
transcript.pyannote[58].end |
309.88971875 |
transcript.pyannote[59].speaker |
SPEAKER_01 |
transcript.pyannote[59].start |
309.34971875 |
transcript.pyannote[59].end |
309.94034375 |
transcript.pyannote[60].speaker |
SPEAKER_00 |
transcript.pyannote[60].start |
309.94034375 |
transcript.pyannote[60].end |
309.95721875 |
transcript.pyannote[61].speaker |
SPEAKER_00 |
transcript.pyannote[61].start |
310.29471875 |
transcript.pyannote[61].end |
312.48846875 |
transcript.pyannote[62].speaker |
SPEAKER_01 |
transcript.pyannote[62].start |
312.11721875 |
transcript.pyannote[62].end |
314.02409375 |
transcript.pyannote[63].speaker |
SPEAKER_00 |
transcript.pyannote[63].start |
314.17596875 |
transcript.pyannote[63].end |
318.66471875 |
transcript.pyannote[64].speaker |
SPEAKER_01 |
transcript.pyannote[64].start |
317.77034375 |
transcript.pyannote[64].end |
319.72784375 |
transcript.pyannote[65].speaker |
SPEAKER_00 |
transcript.pyannote[65].start |
320.16659375 |
transcript.pyannote[65].end |
320.50409375 |
transcript.pyannote[66].speaker |
SPEAKER_01 |
transcript.pyannote[66].start |
320.77409375 |
transcript.pyannote[66].end |
324.31784375 |
transcript.pyannote[67].speaker |
SPEAKER_00 |
transcript.pyannote[67].start |
325.02659375 |
transcript.pyannote[67].end |
327.05159375 |
transcript.pyannote[68].speaker |
SPEAKER_01 |
transcript.pyannote[68].start |
325.97159375 |
transcript.pyannote[68].end |
326.49471875 |
transcript.pyannote[69].speaker |
SPEAKER_01 |
transcript.pyannote[69].start |
327.08534375 |
transcript.pyannote[69].end |
329.95409375 |
transcript.pyannote[70].speaker |
SPEAKER_00 |
transcript.pyannote[70].start |
331.10159375 |
transcript.pyannote[70].end |
333.64971875 |
transcript.pyannote[71].speaker |
SPEAKER_01 |
transcript.pyannote[71].start |
332.78909375 |
transcript.pyannote[71].end |
333.51471875 |
transcript.pyannote[72].speaker |
SPEAKER_01 |
transcript.pyannote[72].start |
333.95346875 |
transcript.pyannote[72].end |
337.61534375 |
transcript.pyannote[73].speaker |
SPEAKER_00 |
transcript.pyannote[73].start |
337.51409375 |
transcript.pyannote[73].end |
349.71471875 |
transcript.pyannote[74].speaker |
SPEAKER_01 |
transcript.pyannote[74].start |
337.85159375 |
transcript.pyannote[74].end |
339.01596875 |
transcript.pyannote[75].speaker |
SPEAKER_01 |
transcript.pyannote[75].start |
349.98471875 |
transcript.pyannote[75].end |
366.62346875 |
transcript.pyannote[76].speaker |
SPEAKER_01 |
transcript.pyannote[76].start |
366.75846875 |
transcript.pyannote[76].end |
374.03159375 |
transcript.pyannote[77].speaker |
SPEAKER_01 |
transcript.pyannote[77].start |
374.65596875 |
transcript.pyannote[77].end |
399.88409375 |
transcript.pyannote[78].speaker |
SPEAKER_01 |
transcript.pyannote[78].start |
400.10346875 |
transcript.pyannote[78].end |
412.40534375 |
transcript.pyannote[79].speaker |
SPEAKER_00 |
transcript.pyannote[79].start |
410.11034375 |
transcript.pyannote[79].end |
410.75159375 |
transcript.pyannote[80].speaker |
SPEAKER_00 |
transcript.pyannote[80].start |
412.08471875 |
transcript.pyannote[80].end |
414.12659375 |
transcript.pyannote[81].speaker |
SPEAKER_00 |
transcript.pyannote[81].start |
415.52721875 |
transcript.pyannote[81].end |
419.98221875 |
transcript.pyannote[82].speaker |
SPEAKER_01 |
transcript.pyannote[82].start |
420.60659375 |
transcript.pyannote[82].end |
421.19721875 |
transcript.pyannote[83].speaker |
SPEAKER_00 |
transcript.pyannote[83].start |
421.33221875 |
transcript.pyannote[83].end |
422.02409375 |
transcript.pyannote[84].speaker |
SPEAKER_01 |
transcript.pyannote[84].start |
423.01971875 |
transcript.pyannote[84].end |
423.93096875 |
transcript.pyannote[85].speaker |
SPEAKER_00 |
transcript.pyannote[85].start |
423.96471875 |
transcript.pyannote[85].end |
434.39346875 |
transcript.pyannote[86].speaker |
SPEAKER_01 |
transcript.pyannote[86].start |
434.73096875 |
transcript.pyannote[86].end |
440.40096875 |
transcript.pyannote[87].speaker |
SPEAKER_01 |
transcript.pyannote[87].start |
440.99159375 |
transcript.pyannote[87].end |
442.30784375 |
transcript.pyannote[88].speaker |
SPEAKER_01 |
transcript.pyannote[88].start |
443.16846875 |
transcript.pyannote[88].end |
447.69096875 |
transcript.pyannote[89].speaker |
SPEAKER_00 |
transcript.pyannote[89].start |
447.62346875 |
transcript.pyannote[89].end |
449.63159375 |
transcript.pyannote[90].speaker |
SPEAKER_01 |
transcript.pyannote[90].start |
450.17159375 |
transcript.pyannote[90].end |
460.36409375 |
transcript.pyannote[91].speaker |
SPEAKER_01 |
transcript.pyannote[91].start |
460.87034375 |
transcript.pyannote[91].end |
482.57159375 |
transcript.pyannote[92].speaker |
SPEAKER_00 |
transcript.pyannote[92].start |
482.92596875 |
transcript.pyannote[92].end |
494.09721875 |
transcript.pyannote[93].speaker |
SPEAKER_00 |
transcript.pyannote[93].start |
494.70471875 |
transcript.pyannote[93].end |
496.39221875 |
transcript.pyannote[94].speaker |
SPEAKER_01 |
transcript.pyannote[94].start |
497.21909375 |
transcript.pyannote[94].end |
528.79221875 |
transcript.pyannote[95].speaker |
SPEAKER_01 |
transcript.pyannote[95].start |
528.91034375 |
transcript.pyannote[95].end |
532.26846875 |
transcript.pyannote[96].speaker |
SPEAKER_01 |
transcript.pyannote[96].start |
532.84221875 |
transcript.pyannote[96].end |
533.46659375 |
transcript.pyannote[97].speaker |
SPEAKER_00 |
transcript.pyannote[97].start |
533.46659375 |
transcript.pyannote[97].end |
534.02346875 |
transcript.pyannote[98].speaker |
SPEAKER_00 |
transcript.pyannote[98].start |
534.15846875 |
transcript.pyannote[98].end |
542.07284375 |
transcript.pyannote[99].speaker |
SPEAKER_00 |
transcript.pyannote[99].start |
543.27096875 |
transcript.pyannote[99].end |
543.33846875 |
transcript.pyannote[100].speaker |
SPEAKER_00 |
transcript.pyannote[100].start |
543.42284375 |
transcript.pyannote[100].end |
546.22409375 |
transcript.pyannote[101].speaker |
SPEAKER_01 |
transcript.pyannote[101].start |
543.65909375 |
transcript.pyannote[101].end |
543.72659375 |
transcript.pyannote[102].speaker |
SPEAKER_00 |
transcript.pyannote[102].start |
546.52784375 |
transcript.pyannote[102].end |
550.22346875 |
transcript.pyannote[103].speaker |
SPEAKER_01 |
transcript.pyannote[103].start |
550.59471875 |
transcript.pyannote[103].end |
554.84721875 |
transcript.pyannote[104].speaker |
SPEAKER_01 |
transcript.pyannote[104].start |
555.35346875 |
transcript.pyannote[104].end |
559.16721875 |
transcript.pyannote[105].speaker |
SPEAKER_00 |
transcript.pyannote[105].start |
558.76221875 |
transcript.pyannote[105].end |
561.27659375 |
transcript.pyannote[106].speaker |
SPEAKER_01 |
transcript.pyannote[106].start |
561.98534375 |
transcript.pyannote[106].end |
562.62659375 |
transcript.pyannote[107].speaker |
SPEAKER_01 |
transcript.pyannote[107].start |
563.20034375 |
transcript.pyannote[107].end |
567.04784375 |
transcript.pyannote[108].speaker |
SPEAKER_01 |
transcript.pyannote[108].start |
567.31784375 |
transcript.pyannote[108].end |
600.81471875 |
transcript.pyannote[109].speaker |
SPEAKER_00 |
transcript.pyannote[109].start |
601.67534375 |
transcript.pyannote[109].end |
602.16471875 |
transcript.pyannote[110].speaker |
SPEAKER_00 |
transcript.pyannote[110].start |
602.82284375 |
transcript.pyannote[110].end |
604.74659375 |
transcript.pyannote[111].speaker |
SPEAKER_00 |
transcript.pyannote[111].start |
605.30346875 |
transcript.pyannote[111].end |
611.15909375 |
transcript.pyannote[112].speaker |
SPEAKER_00 |
transcript.pyannote[112].start |
611.46284375 |
transcript.pyannote[112].end |
611.49659375 |
transcript.pyannote[113].speaker |
SPEAKER_00 |
transcript.pyannote[113].start |
611.78346875 |
transcript.pyannote[113].end |
628.15221875 |
transcript.pyannote[114].speaker |
SPEAKER_00 |
transcript.pyannote[114].start |
628.32096875 |
transcript.pyannote[114].end |
639.03659375 |
transcript.pyannote[115].speaker |
SPEAKER_00 |
transcript.pyannote[115].start |
639.40784375 |
transcript.pyannote[115].end |
639.98159375 |
transcript.pyannote[116].speaker |
SPEAKER_00 |
transcript.pyannote[116].start |
641.29784375 |
transcript.pyannote[116].end |
642.41159375 |
transcript.pyannote[117].speaker |
SPEAKER_00 |
transcript.pyannote[117].start |
642.98534375 |
transcript.pyannote[117].end |
643.37346875 |
transcript.pyannote[118].speaker |
SPEAKER_00 |
transcript.pyannote[118].start |
643.47471875 |
transcript.pyannote[118].end |
650.44409375 |
transcript.pyannote[119].speaker |
SPEAKER_01 |
transcript.pyannote[119].start |
648.89159375 |
transcript.pyannote[119].end |
653.53221875 |
transcript.pyannote[120].speaker |
SPEAKER_01 |
transcript.pyannote[120].start |
653.92034375 |
transcript.pyannote[120].end |
656.97471875 |
transcript.pyannote[121].speaker |
SPEAKER_01 |
transcript.pyannote[121].start |
657.27846875 |
transcript.pyannote[121].end |
662.34096875 |
transcript.pyannote[122].speaker |
SPEAKER_01 |
transcript.pyannote[122].start |
662.93159375 |
transcript.pyannote[122].end |
663.42096875 |
transcript.pyannote[123].speaker |
SPEAKER_01 |
transcript.pyannote[123].start |
663.67409375 |
transcript.pyannote[123].end |
668.71971875 |
transcript.pyannote[124].speaker |
SPEAKER_01 |
transcript.pyannote[124].start |
668.82096875 |
transcript.pyannote[124].end |
672.66846875 |
transcript.pyannote[125].speaker |
SPEAKER_00 |
transcript.pyannote[125].start |
672.53346875 |
transcript.pyannote[125].end |
672.93846875 |
transcript.pyannote[126].speaker |
SPEAKER_01 |
transcript.pyannote[126].start |
673.14096875 |
transcript.pyannote[126].end |
688.36221875 |
transcript.pyannote[127].speaker |
SPEAKER_01 |
transcript.pyannote[127].start |
688.71659375 |
transcript.pyannote[127].end |
689.37471875 |
transcript.pyannote[128].speaker |
SPEAKER_01 |
transcript.pyannote[128].start |
689.61096875 |
transcript.pyannote[128].end |
692.85096875 |
transcript.pyannote[129].speaker |
SPEAKER_00 |
transcript.pyannote[129].start |
693.88034375 |
transcript.pyannote[129].end |
711.46409375 |
transcript.pyannote[130].speaker |
SPEAKER_00 |
transcript.pyannote[130].start |
711.68346875 |
transcript.pyannote[130].end |
712.66221875 |
transcript.pyannote[131].speaker |
SPEAKER_01 |
transcript.pyannote[131].start |
712.91534375 |
transcript.pyannote[131].end |
715.58159375 |
transcript.pyannote[132].speaker |
SPEAKER_01 |
transcript.pyannote[132].start |
716.50971875 |
transcript.pyannote[132].end |
725.99346875 |
transcript.pyannote[133].speaker |
SPEAKER_01 |
transcript.pyannote[133].start |
726.29721875 |
transcript.pyannote[133].end |
732.37221875 |
transcript.pyannote[134].speaker |
SPEAKER_01 |
transcript.pyannote[134].start |
733.03034375 |
transcript.pyannote[134].end |
736.65846875 |
transcript.pyannote[135].speaker |
SPEAKER_00 |
transcript.pyannote[135].start |
738.05909375 |
transcript.pyannote[135].end |
743.32409375 |
transcript.pyannote[136].speaker |
SPEAKER_00 |
transcript.pyannote[136].start |
743.69534375 |
transcript.pyannote[136].end |
753.34784375 |
transcript.pyannote[137].speaker |
SPEAKER_00 |
transcript.pyannote[137].start |
754.10721875 |
transcript.pyannote[137].end |
754.42784375 |
transcript.pyannote[138].speaker |
SPEAKER_00 |
transcript.pyannote[138].start |
754.81596875 |
transcript.pyannote[138].end |
761.41409375 |
transcript.pyannote[139].speaker |
SPEAKER_01 |
transcript.pyannote[139].start |
762.76409375 |
transcript.pyannote[139].end |
766.84784375 |
transcript.pyannote[140].speaker |
SPEAKER_00 |
transcript.pyannote[140].start |
767.28659375 |
transcript.pyannote[140].end |
796.76721875 |
transcript.pyannote[141].speaker |
SPEAKER_01 |
transcript.pyannote[141].start |
767.60721875 |
transcript.pyannote[141].end |
768.33284375 |
transcript.pyannote[142].speaker |
SPEAKER_01 |
transcript.pyannote[142].start |
796.76721875 |
transcript.pyannote[142].end |
801.77909375 |
transcript.pyannote[143].speaker |
SPEAKER_00 |
transcript.pyannote[143].start |
802.84221875 |
transcript.pyannote[143].end |
810.04784375 |
transcript.pyannote[144].speaker |
SPEAKER_01 |
transcript.pyannote[144].start |
811.11096875 |
transcript.pyannote[144].end |
831.31034375 |
transcript.pyannote[145].speaker |
SPEAKER_01 |
transcript.pyannote[145].start |
831.71534375 |
transcript.pyannote[145].end |
848.48909375 |
transcript.pyannote[146].speaker |
SPEAKER_01 |
transcript.pyannote[146].start |
848.86034375 |
transcript.pyannote[146].end |
854.29409375 |
transcript.pyannote[147].speaker |
SPEAKER_00 |
transcript.pyannote[147].start |
853.83846875 |
transcript.pyannote[147].end |
869.46471875 |
transcript.pyannote[148].speaker |
SPEAKER_00 |
transcript.pyannote[148].start |
869.61659375 |
transcript.pyannote[148].end |
876.50159375 |
transcript.pyannote[149].speaker |
SPEAKER_01 |
transcript.pyannote[149].start |
875.99534375 |
transcript.pyannote[149].end |
880.41659375 |
transcript.pyannote[150].speaker |
SPEAKER_00 |
transcript.pyannote[150].start |
879.48846875 |
transcript.pyannote[150].end |
885.69846875 |
transcript.pyannote[151].speaker |
SPEAKER_01 |
transcript.pyannote[151].start |
882.20534375 |
transcript.pyannote[151].end |
882.98159375 |
transcript.pyannote[152].speaker |
SPEAKER_01 |
transcript.pyannote[152].start |
885.10784375 |
transcript.pyannote[152].end |
886.94721875 |
transcript.pyannote[153].speaker |
SPEAKER_00 |
transcript.pyannote[153].start |
886.60971875 |
transcript.pyannote[153].end |
895.62096875 |
transcript.pyannote[154].speaker |
SPEAKER_01 |
transcript.pyannote[154].start |
896.27909375 |
transcript.pyannote[154].end |
899.04659375 |
transcript.pyannote[155].speaker |
SPEAKER_00 |
transcript.pyannote[155].start |
898.84409375 |
transcript.pyannote[155].end |
906.31971875 |
transcript.pyannote[156].speaker |
SPEAKER_01 |
transcript.pyannote[156].start |
903.82221875 |
transcript.pyannote[156].end |
904.14284375 |
transcript.pyannote[157].speaker |
SPEAKER_01 |
transcript.pyannote[157].start |
907.41659375 |
transcript.pyannote[157].end |
915.78659375 |
transcript.pyannote[158].speaker |
SPEAKER_00 |
transcript.pyannote[158].start |
917.91284375 |
transcript.pyannote[158].end |
921.82784375 |
transcript.pyannote[159].speaker |
SPEAKER_01 |
transcript.pyannote[159].start |
919.38096875 |
transcript.pyannote[159].end |
920.08971875 |
transcript.pyannote[160].speaker |
SPEAKER_01 |
transcript.pyannote[160].start |
922.19909375 |
transcript.pyannote[160].end |
925.27034375 |
transcript.pyannote[161].speaker |
SPEAKER_01 |
transcript.pyannote[161].start |
925.74284375 |
transcript.pyannote[161].end |
927.19409375 |
transcript.pyannote[162].speaker |
SPEAKER_00 |
transcript.pyannote[162].start |
927.24471875 |
transcript.pyannote[162].end |
931.21034375 |
transcript.pyannote[163].speaker |
SPEAKER_01 |
transcript.pyannote[163].start |
928.86471875 |
transcript.pyannote[163].end |
930.34971875 |
transcript.pyannote[164].speaker |
SPEAKER_00 |
transcript.pyannote[164].start |
931.58159375 |
transcript.pyannote[164].end |
931.59846875 |
transcript.pyannote[165].speaker |
SPEAKER_01 |
transcript.pyannote[165].start |
931.59846875 |
transcript.pyannote[165].end |
932.88096875 |
transcript.pyannote[166].speaker |
SPEAKER_00 |
transcript.pyannote[166].start |
931.61534375 |
transcript.pyannote[166].end |
931.96971875 |
transcript.pyannote[167].speaker |
SPEAKER_00 |
transcript.pyannote[167].start |
933.43784375 |
transcript.pyannote[167].end |
935.98596875 |
transcript.pyannote[168].speaker |
SPEAKER_01 |
transcript.pyannote[168].start |
933.47159375 |
transcript.pyannote[168].end |
934.83846875 |
transcript.pyannote[169].speaker |
SPEAKER_01 |
transcript.pyannote[169].start |
936.77909375 |
transcript.pyannote[169].end |
938.95596875 |
transcript.pyannote[170].speaker |
SPEAKER_01 |
transcript.pyannote[170].start |
939.31034375 |
transcript.pyannote[170].end |
940.15409375 |
transcript.pyannote[171].speaker |
SPEAKER_01 |
transcript.pyannote[171].start |
941.53784375 |
transcript.pyannote[171].end |
944.92971875 |
transcript.pyannote[172].speaker |
SPEAKER_01 |
transcript.pyannote[172].start |
945.58784375 |
transcript.pyannote[172].end |
946.98846875 |
transcript.pyannote[173].speaker |
SPEAKER_01 |
transcript.pyannote[173].start |
947.56221875 |
transcript.pyannote[173].end |
948.03471875 |
transcript.pyannote[174].speaker |
SPEAKER_01 |
transcript.pyannote[174].start |
948.30471875 |
transcript.pyannote[174].end |
959.93159375 |
transcript.pyannote[175].speaker |
SPEAKER_01 |
transcript.pyannote[175].start |
960.75846875 |
transcript.pyannote[175].end |
979.69221875 |
transcript.pyannote[176].speaker |
SPEAKER_01 |
transcript.pyannote[176].start |
979.92846875 |
transcript.pyannote[176].end |
980.58659375 |
transcript.pyannote[177].speaker |
SPEAKER_01 |
transcript.pyannote[177].start |
981.05909375 |
transcript.pyannote[177].end |
992.97284375 |
transcript.pyannote[178].speaker |
SPEAKER_00 |
transcript.pyannote[178].start |
992.97284375 |
transcript.pyannote[178].end |
993.37784375 |
transcript.pyannote[179].speaker |
SPEAKER_01 |
transcript.pyannote[179].start |
992.98971875 |
transcript.pyannote[179].end |
993.79971875 |
transcript.pyannote[180].speaker |
SPEAKER_01 |
transcript.pyannote[180].start |
995.26784375 |
transcript.pyannote[180].end |
995.97659375 |
transcript.whisperx[0].start |
19.702 |
transcript.whisperx[0].end |
22.363 |
transcript.whisperx[0].text |
謝謝主席 麻煩請勞動部長請勞動部長 洪部長蔣委員好 |
transcript.whisperx[1].start |
32.953 |
transcript.whisperx[1].end |
44.722 |
transcript.whisperx[1].text |
部長好這一次對美的關稅談判主要分為兩個部分從貿易額來看分別佔32%的一般傳統產業跟68%的電子相關高科技產業前者是佔定適用20加N衝擊的影響的事業單位和勞工的人數將遠大於後者 |
transcript.whisperx[2].start |
61.114 |
transcript.whisperx[2].end |
88.234 |
transcript.whisperx[2].text |
首先呢就這個勞動就業市場的這個衝擊產業影響最大的大概是由哪些產業現在影響比較大的目前從數據上面看到的包括金屬製品包括機械設備那也包括汽車零組件然後也包括其他的運具裡面當然蠻多是自行車 |
transcript.whisperx[3].start |
88.988 |
transcript.whisperx[3].end |
114.635 |
transcript.whisperx[3].text |
好那在這些產業當中到底有多少勞工那中小業中小企業的占比還有這個就是說這些你們數據你們勞動部都有掌握嗎有所以大概多少勞工目前這幾個行業加起來的話應該占的比例蠻大的數據上我們現在設定 |
transcript.whisperx[4].start |
116.727 |
transcript.whisperx[4].end |
139.035 |
transcript.whisperx[4].text |
強化版的公安令措施開放的九大行業裡面總體的勞工占所有減班休息的勞工大概是占八成以上占八成所以多少7106占現在是8505那在九大就九大的這強化版公安令措施行業大概是7100 |
transcript.whisperx[5].start |
141.929 |
transcript.whisperx[5].end |
164.396 |
transcript.whisperx[5].text |
這是你們剛剛後面算的那些嗎就是剛剛就是你剛講是減班休息的好所以減班休息就是你們唯一的這個好沒關係這個後續我會我會帶到好那所以你們這個中小企業佔的比例 |
transcript.whisperx[6].start |
165.545 |
transcript.whisperx[6].end |
191.783 |
transcript.whisperx[6].text |
中小企業佔的比例是比較高的目前看起來50人以下的加數是35750人 357加 好那勞動部你們所掌握的數據其實外界有提出質疑認為說是嚴重低估那部長剛剛所說的衝擊的這個勞工人數大概有四萬兩千你們說八千多人 |
transcript.whisperx[7].start |
193.462 |
transcript.whisperx[7].end |
195.124 |
transcript.whisperx[7].text |
減班休息的數字目前是8505但是衝擊的這個 |
transcript.whisperx[8].start |
203.908 |
transcript.whisperx[8].end |
230.209 |
transcript.whisperx[8].text |
你們那個減班人數只有衝擊就是只有用減班人數去看而已不是陳委員講的應該是有一次在這個有一個四萬二的這個數字那這四萬二數其實它並不是勞動部估的它其實是應該是行政院當時應該是經濟部的相關的智庫的估計這樣子那行政院把它提供給我們做一個參考 |
transcript.whisperx[9].start |
231.155 |
transcript.whisperx[9].end |
252.693 |
transcript.whisperx[9].text |
好那是這樣子因為當然也有媒體或者其他人在評估就是說這樣的衝擊其實涵蓋勞工大至少有20萬人好那實際上光是製造業的從業人數中因為有包括這個食品及飾品製造業是那還有紡織業還有橡膠 |
transcript.whisperx[10].start |
254.835 |
transcript.whisperx[10].end |
280.874 |
transcript.whisperx[10].text |
橡膠製品製造業還有塑膠製品製造業大概有大概這個九大製造業大概就涵蓋了一百零五萬人了那所以我想要請教就是說你們勞動部是如何推估這個行政院公佈這個四萬二這個四萬兩千人這個數據他的是怎麼樣的這個確認他的正確性 |
transcript.whisperx[11].start |
281.673 |
transcript.whisperx[11].end |
297.101 |
transcript.whisperx[11].text |
跟那個聰遠說明你講的一百零五萬的這個數字是我們當時公佈九個行業適用強化版規模安定措施這九個行業總體的從業人數是一百零五萬可是並不是這一百零五萬都會受到衝擊並不是這個 並不是這樣的狀況 |
transcript.whisperx[12].start |
301.271 |
transcript.whisperx[12].end |
323.806 |
transcript.whisperx[12].text |
對啊所以你們怎麼去推估後來還有個4萬2的這個4萬2那應該是經濟部跟他經濟部的智庫去推估出來的數字那請問請我們是經濟部跟他的什麼去推估出來他其實應該是用一定一些研究的方法去做做這個數字的方法對他不是去對那個勞保行業別人 |
transcript.whisperx[13].start |
326.127 |
transcript.whisperx[13].end |
349.201 |
transcript.whisperx[13].text |
所以研究他們用什麼樣研究的方法這可能要細看一下他們的那你會後再提供給我們看是怎麼樣因為那個42000主要是經濟部跟他的智庫去推估出來的那但是這個數字後來是行政院給我們作為參考用這樣子 |
transcript.whisperx[14].start |
350.046 |
transcript.whisperx[14].end |
372.001 |
transcript.whisperx[14].text |
好那根據勞動部10月1號公布最新一期的減班休息那你們的這個總人總人數和這個家數分別剛剛有提到好就是8505人那有398家其中呢有310家的廠商表達是因為受到這個關稅的影響所以 |
transcript.whisperx[15].start |
375.038 |
transcript.whisperx[15].end |
399.458 |
transcript.whisperx[15].text |
這個部分總人數大概有達到7755人所以大概就是佔全部通報員工人數的九成那勞動部也有表示就是說本期增加了1171人那相較於上一期增加的2471人那這個成長的幅度就比較趨於平緩好那 |
transcript.whisperx[16].start |
400.279 |
transcript.whisperx[16].end |
421.825 |
transcript.whisperx[16].text |
我想要請教就是說難道減班休息的人數是勞動部的這個唯一唯一作為衡量關稅衝擊的指標嗎也不是還有沒有其他那你們其他是因為可能包括包括之前包括之前那也包括大解大量解雇 |
transcript.whisperx[17].start |
423.086 |
transcript.whisperx[17].end |
449.427 |
transcript.whisperx[17].text |
大姐 OK包括大姐 包括之前幾個東西我們都重複但是的確在其他的數據比方說之前的通報裡面並沒有像減班休息的數字的成長的幅度這樣好 那有一種狀況就是假如是產業外移或者他官場歇業了我想這些失業的勞工他就不會出現在這個減班休息的統計上對 所以他就會變成是之前或大姐 |
transcript.whisperx[18].start |
450.233 |
transcript.whisperx[18].end |
471.739 |
transcript.whisperx[18].text |
那因為因為這個好就是說後來這些人大概連班都沒有機會剪了啦那所以你們的失業統計就是他這個母數可能又要建立在這個千萬勞工的這個大母數的基礎上好那即使就說20萬人失業了那顯示數據喔的這個百分比也不會很高所以 |
transcript.whisperx[19].start |
472.799 |
transcript.whisperx[19].end |
495.757 |
transcript.whisperx[19].text |
我想就是說勞動部對於這個就業市場有一個你們有沒有這個即時正確的這個見識指標有嗎跟文說明其實因為之前的通報或者是大姐其實她不會出於母數所以其實還是會直接看到她的個數就是直接人數上面的數據 |
transcript.whisperx[20].start |
497.304 |
transcript.whisperx[20].end |
512.051 |
transcript.whisperx[20].text |
所以我想是這樣本席要在這裡建議勞動部就是說你們可以看一下目前受到衝擊的傳統產業就是說這個行業別勞保投保人數有沒有減少 |
transcript.whisperx[21].start |
512.751 |
transcript.whisperx[21].end |
541.55 |
transcript.whisperx[21].text |
那這個是每個月都會更新變化的數字所以每個月5號呢是雇主申報的這個期限那至少6號在部長的桌上就可以有這幾個行業別投保人數增減的數字所以我不曉得部長覺得說這樣的數據是不是重要是 我再跟委員補充其實我們大家都會看幾個因為減慢休息然後解聘的數字還有包括失業給付的數字 |
transcript.whisperx[22].start |
543.736 |
transcript.whisperx[22].end |
560.45 |
transcript.whisperx[22].text |
因為這幾個數字大概是比較比較敏感的去了解現在就業市場的狀況因為解聘解聘未必等於這個產業外移所以這個部分我覺得還是有一些落差因為解聘就會後面就是失業 |
transcript.whisperx[23].start |
563.466 |
transcript.whisperx[23].end |
589.084 |
transcript.whisperx[23].text |
我講的是產業外移未必完全就是說解聘未必完全就等於產業外移這樣子的一個因素那再來就是說這個月的2號你們發布了這個因應關稅的這個支持方案跟四大措施包含了鬆綁適用對象還有擴增服務內涵以及這個跨部會資源整合以提高效益等等 |
transcript.whisperx[24].start |
589.964 |
transcript.whisperx[24].end |
599.906 |
transcript.whisperx[24].text |
那第一個措施主動訪視衝擊我想要請教部長就是說直到現在你們去訪談工會跟事業單位有得到什麼樣的結論嗎 |
transcript.whisperx[25].start |
603.068 |
transcript.whisperx[25].end |
627.922 |
transcript.whisperx[25].text |
這分成兩個部分因為我們去訪韓工會的確會有一些受衝擊的影響的產業他並沒有工會所以所以我們是請我們的五分數其實五個分數其實幾乎在這從四月到現在半年左右的時間他們幾乎這個訪視就是聯繫跟訪視加起來差不多兩萬多個加次那包括 |
transcript.whisperx[26].start |
628.522 |
transcript.whisperx[26].end |
638.256 |
transcript.whisperx[26].text |
包括在尤其現在大家看起來比較嚴重的地方會是在中部那剛才講的幾個產業包括機械業包括 |
transcript.whisperx[27].start |
641.305 |
transcript.whisperx[27].end |
664.362 |
transcript.whisperx[27].text |
可能水五金機械業水五金幾個金屬製品跟其他運輸都是在中部其實是比較多的因為是這樣子啊就是說經營的風險是雇主那他不是勞工那但是我想你們做這些訪視是不是在你們的這個訪談記錄啊 |
transcript.whisperx[28].start |
666.883 |
transcript.whisperx[28].end |
692.641 |
transcript.whisperx[28].text |
這些僱主的意見我們能不能會後給我們辦公室做參考可以好謝謝那再來第二個措施就是強化僱用安定還有補貼勞工被減薪或降低工時那你們可以補助這個減少的薪資是從五成提高到七成我想要請教就是說你們如何可以周知這些事業單位或者僱主 |
transcript.whisperx[29].start |
694.102 |
transcript.whisperx[29].end |
714.336 |
transcript.whisperx[29].text |
因為他們如果通報的話都會有聯繫的方式所以在聯繫方式上我們都會主動跟這些僱主來聯繫說其實你可以來申請包括幫勞工來申請這個強化版的管理措施那有些勞工其實他有留下聯絡方式我們也會主動跟他聯絡其實你可以申請這個薪資查核補貼我們都會主動聯絡再來就是說 |
transcript.whisperx[30].start |
716.61 |
transcript.whisperx[30].end |
736.429 |
transcript.whisperx[30].text |
受到衝擊在就業的部分你們要對接失業勞工跟缺工的事業單位那也要給他們提供客製化的就業媒合服務我想這個部分我們是給予很高的肯定那但是請問你們要如何具體的執行然後預估的這個KPI是多少 |
transcript.whisperx[31].start |
738.106 |
transcript.whisperx[31].end |
765.361 |
transcript.whisperx[31].text |
因為這個跟文說明因為你剛才講的這個是我們在勞工就業通的計畫那勞工就業通的計畫他主要是設計給因為關稅等等國際情勢的因素而比方說被解雇而失業的勞工對那所以整體的KPI並不是我們自己定因為我也不希望這個數字定很高因為如果定很高代表我們失業的人很多但所以如果你們的具體執行會 |
transcript.whisperx[32].start |
767.338 |
transcript.whisperx[32].end |
794.065 |
transcript.whisperx[32].text |
我想我們會 我自己覺得我們會希望盡量就是我們遇到是因為關稅的因素被解雇然後產生失業狀況我們會盡量的提高對他們的這個轉職的服務所以在這個轉職服務裡面我們也看到的確蠻多他傳統產業其實中高齡的勞工比較多所以因為中高齡的勞工多所以他的職務在設計或者是其實我們有一些相關的訓練我們從這部分為中高齡的勞工多做設計我們其實從這個角度來去協助他們 |
transcript.whisperx[33].start |
796.966 |
transcript.whisperx[33].end |
809.849 |
transcript.whisperx[33].text |
因为今天这样回答也是很抽象因为我不知道你们要设计什么我刚才说包括我们把这个服务从植物在设计其实也从它原本是其他的计划我们把它给整合进来 |
transcript.whisperx[34].start |
811.152 |
transcript.whisperx[34].end |
832.775 |
transcript.whisperx[34].text |
好 沒關係今天時間也差不多了我想這個會後也都希望你們可以做比較詳細的補充那最後一個就是說最後一個措施是這個青年接軌職場然後初次尋找青年然後依規定報名參加計劃完成各項求職準備然後沒有 |
transcript.whisperx[35].start |
833.235 |
transcript.whisperx[35].end |
848.14 |
transcript.whisperx[35].text |
未能找到工作者就發給尋職津貼這個部分聽起來好像是一個已經是既有的計劃那而且再來就是說參加計劃期間找到工作且穩定就業者就發給就業獎金最高 |
transcript.whisperx[36].start |
849.521 |
transcript.whisperx[36].end |
867.954 |
transcript.whisperx[36].text |
合計發給發到4.8萬元這是一個既有的計劃他不是既有計劃但過去其實有真的青年尋職的部分但因為這次關稅因為我們考量到其實會有一些企業他當他遇到關稅衝擊的時候他可能會縮減給年輕人一開始的這個就業的機會 |
transcript.whisperx[37].start |
869.835 |
transcript.whisperx[37].end |
895.522 |
transcript.whisperx[37].text |
所以當時我們經過一些學者的討論認為我們其實應該要對於年輕人的尋子有個強化版的做法所以剛剛因為這個我是看不出來有什麼差別第一個我們提高我們提高提高了這個津貼的津貼的額度就是3萬多到4萬多對然後我們也把適用的範圍放寬然後也包括一開過去其實是要尋子90天那我們現在把它縮減到60天就可以 |
transcript.whisperx[38].start |
896.663 |
transcript.whisperx[38].end |
921.388 |
transcript.whisperx[38].text |
就是說60天的計劃 縮到60天60天沒有工作沒有工作原本是要90天那我們現在把它縮短到60天就可以那但是縮短60天符合那這樣子的就是說期間大概總共要多久計劃是三個月就是他求職找到是三個月我們會給他相關的津貼 |
transcript.whisperx[39].start |
922.244 |
transcript.whisperx[39].end |
944.55 |
transcript.whisperx[39].text |
好那你們怎麼樣去定義說出自尋職這個定義要怎麼去他就是第一次找工作的狀況我們在我們的記錄上面是看得到如果你們記錄上沒有記錄的話在投保記錄上面是看得到的好那我想這個這個部分我們希望就是說可以有一些 |
transcript.whisperx[40].start |
945.683 |
transcript.whisperx[40].end |
959.204 |
transcript.whisperx[40].text |
更令人有感的一些措施在這邊我想今天提醒了很多點因為畢竟說我們關稅現在還在談有些衝擊浪潮要過一段時間 |
transcript.whisperx[41].start |
960.856 |
transcript.whisperx[41].end |
978.776 |
transcript.whisperx[41].text |
才會慢慢的湧現所以在這裡要特別提醒你們就是說要麻煩你們要隨時注意這個現有的這個方案措施的成效那特別是很多他都是有時效性的那如果整個行政作業太慢的話有再多的美意到最後也都會變質 |
transcript.whisperx[42].start |
981.158 |
transcript.whisperx[42].end |
992.591 |
transcript.whisperx[42].text |
所以在這邊因為下個月部長你任期就滿一年了那我們很期待說這個一年過去了部長可以有很好的成績單交出來這樣子謝謝 |