iVOD / 163806

Field Value
IVOD_ID 163806
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/163806
日期 2025-10-03
會議資料.會議代碼 院會-11-4-3
會議資料.會議代碼:str 第11屆第4會期第3次會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 3
會議資料.種類 院會
會議資料.標題 第11屆第4會期第3次會議
影片種類 Clip
開始時間 2025-10-03T14:47:07+08:00
結束時間 2025-10-03T15:02:38+08:00
影片長度 00:15:31
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/095f1cfadbf5b890cc5fcf68fe4e397b704543300bdabf02399d32d779812cf3765b677a192402615ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 廖先翔
委員發言時間 14:47:07 - 15:02:38
會議時間 2025-10-03T09:00:00+08:00
會議名稱 第11屆第4會期第3次會議(事由:一、行政院院長、主計長、財政部部長、經濟部部長及相關部會首長列席報告「中央政府因應國際情勢強化經濟社會及民生國安韌性特別預算案」編製經過並備質詢(10月3日)。二、對行政院院長施政報告繼續質詢(10月7日)。三、10月3日上午9時至10時為國是論壇時間。四、10月7日下午2時15分至2時30分為處理臨時提案時間。)
transcript.pyannote[0].speaker SPEAKER_04
transcript.pyannote[0].start 16.77096875
transcript.pyannote[0].end 18.69471875
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 18.76221875
transcript.pyannote[1].end 18.77909375
transcript.pyannote[2].speaker SPEAKER_04
transcript.pyannote[2].start 18.77909375
transcript.pyannote[2].end 20.02784375
transcript.pyannote[3].speaker SPEAKER_04
transcript.pyannote[3].start 22.67721875
transcript.pyannote[3].end 24.97221875
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 23.94284375
transcript.pyannote[4].end 24.95534375
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 24.97221875
transcript.pyannote[5].end 25.02284375
transcript.pyannote[6].speaker SPEAKER_04
transcript.pyannote[6].start 25.39409375
transcript.pyannote[6].end 25.81596875
transcript.pyannote[7].speaker SPEAKER_04
transcript.pyannote[7].start 28.06034375
transcript.pyannote[7].end 29.30909375
transcript.pyannote[8].speaker SPEAKER_04
transcript.pyannote[8].start 29.59596875
transcript.pyannote[8].end 30.38909375
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 29.62971875
transcript.pyannote[9].end 30.37221875
transcript.pyannote[10].speaker SPEAKER_04
transcript.pyannote[10].start 30.89534375
transcript.pyannote[10].end 36.95346875
transcript.pyannote[11].speaker SPEAKER_04
transcript.pyannote[11].start 37.45971875
transcript.pyannote[11].end 40.22721875
transcript.pyannote[12].speaker SPEAKER_04
transcript.pyannote[12].start 40.86846875
transcript.pyannote[12].end 51.70221875
transcript.pyannote[13].speaker SPEAKER_04
transcript.pyannote[13].start 51.78659375
transcript.pyannote[13].end 53.22096875
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 55.95471875
transcript.pyannote[14].end 60.24096875
transcript.pyannote[15].speaker SPEAKER_04
transcript.pyannote[15].start 57.79409375
transcript.pyannote[15].end 59.86971875
transcript.pyannote[16].speaker SPEAKER_04
transcript.pyannote[16].start 60.34221875
transcript.pyannote[16].end 62.56971875
transcript.pyannote[17].speaker SPEAKER_04
transcript.pyannote[17].start 62.82284375
transcript.pyannote[17].end 64.59471875
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 64.64534375
transcript.pyannote[18].end 64.98284375
transcript.pyannote[19].speaker SPEAKER_04
transcript.pyannote[19].start 65.15159375
transcript.pyannote[19].end 79.22534375
transcript.pyannote[20].speaker SPEAKER_04
transcript.pyannote[20].start 79.41096875
transcript.pyannote[20].end 82.71846875
transcript.pyannote[21].speaker SPEAKER_04
transcript.pyannote[21].start 83.03909375
transcript.pyannote[21].end 88.82721875
transcript.pyannote[22].speaker SPEAKER_04
transcript.pyannote[22].start 89.13096875
transcript.pyannote[22].end 92.59034375
transcript.pyannote[23].speaker SPEAKER_04
transcript.pyannote[23].start 92.87721875
transcript.pyannote[23].end 96.37034375
transcript.pyannote[24].speaker SPEAKER_04
transcript.pyannote[24].start 96.62346875
transcript.pyannote[24].end 100.03221875
transcript.pyannote[25].speaker SPEAKER_04
transcript.pyannote[25].start 102.68159375
transcript.pyannote[25].end 103.03596875
transcript.pyannote[26].speaker SPEAKER_03
transcript.pyannote[26].start 103.03596875
transcript.pyannote[26].end 103.08659375
transcript.pyannote[27].speaker SPEAKER_04
transcript.pyannote[27].start 103.08659375
transcript.pyannote[27].end 103.27221875
transcript.pyannote[28].speaker SPEAKER_03
transcript.pyannote[28].start 103.27221875
transcript.pyannote[28].end 103.28909375
transcript.pyannote[29].speaker SPEAKER_04
transcript.pyannote[29].start 103.28909375
transcript.pyannote[29].end 103.30596875
transcript.pyannote[30].speaker SPEAKER_03
transcript.pyannote[30].start 103.30596875
transcript.pyannote[30].end 105.70221875
transcript.pyannote[31].speaker SPEAKER_04
transcript.pyannote[31].start 105.70221875
transcript.pyannote[31].end 106.24221875
transcript.pyannote[32].speaker SPEAKER_03
transcript.pyannote[32].start 106.24221875
transcript.pyannote[32].end 108.48659375
transcript.pyannote[33].speaker SPEAKER_04
transcript.pyannote[33].start 106.25909375
transcript.pyannote[33].end 107.30534375
transcript.pyannote[34].speaker SPEAKER_04
transcript.pyannote[34].start 107.94659375
transcript.pyannote[34].end 117.56534375
transcript.pyannote[35].speaker SPEAKER_04
transcript.pyannote[35].start 118.05471875
transcript.pyannote[35].end 121.56471875
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 122.13846875
transcript.pyannote[36].end 129.24284375
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 129.37784375
transcript.pyannote[37].end 132.78659375
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 133.00596875
transcript.pyannote[38].end 133.81596875
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 133.96784375
transcript.pyannote[39].end 137.05596875
transcript.pyannote[40].speaker SPEAKER_04
transcript.pyannote[40].start 137.24159375
transcript.pyannote[40].end 138.16971875
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 138.76034375
transcript.pyannote[41].end 139.99221875
transcript.pyannote[42].speaker SPEAKER_04
transcript.pyannote[42].start 139.99221875
transcript.pyannote[42].end 154.01534375
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 140.00909375
transcript.pyannote[43].end 140.07659375
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 145.57784375
transcript.pyannote[44].end 145.59471875
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 145.59471875
transcript.pyannote[45].end 146.64096875
transcript.pyannote[46].speaker SPEAKER_03
transcript.pyannote[46].start 154.90971875
transcript.pyannote[46].end 166.28346875
transcript.pyannote[47].speaker SPEAKER_04
transcript.pyannote[47].start 157.87971875
transcript.pyannote[47].end 159.06096875
transcript.pyannote[48].speaker SPEAKER_04
transcript.pyannote[48].start 160.25909375
transcript.pyannote[48].end 160.36034375
transcript.pyannote[49].speaker SPEAKER_04
transcript.pyannote[49].start 160.37721875
transcript.pyannote[49].end 160.42784375
transcript.pyannote[50].speaker SPEAKER_04
transcript.pyannote[50].start 163.31346875
transcript.pyannote[50].end 165.70971875
transcript.pyannote[51].speaker SPEAKER_04
transcript.pyannote[51].start 166.28346875
transcript.pyannote[51].end 166.40159375
transcript.pyannote[52].speaker SPEAKER_03
transcript.pyannote[52].start 166.40159375
transcript.pyannote[52].end 166.97534375
transcript.pyannote[53].speaker SPEAKER_04
transcript.pyannote[53].start 166.97534375
transcript.pyannote[53].end 170.67096875
transcript.pyannote[54].speaker SPEAKER_04
transcript.pyannote[54].start 171.09284375
transcript.pyannote[54].end 185.36909375
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 175.95284375
transcript.pyannote[55].end 176.98221875
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 179.74971875
transcript.pyannote[56].end 181.15034375
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 183.44534375
transcript.pyannote[57].end 184.03596875
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 185.65596875
transcript.pyannote[58].end 189.99284375
transcript.pyannote[59].speaker SPEAKER_04
transcript.pyannote[59].start 186.02721875
transcript.pyannote[59].end 186.51659375
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 190.71846875
transcript.pyannote[60].end 192.25409375
transcript.pyannote[61].speaker SPEAKER_04
transcript.pyannote[61].start 190.75221875
transcript.pyannote[61].end 199.25721875
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 193.68846875
transcript.pyannote[62].end 193.70534375
transcript.pyannote[63].speaker SPEAKER_04
transcript.pyannote[63].start 199.98284375
transcript.pyannote[63].end 200.75909375
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 200.89409375
transcript.pyannote[64].end 201.60284375
transcript.pyannote[65].speaker SPEAKER_04
transcript.pyannote[65].start 201.75471875
transcript.pyannote[65].end 202.88534375
transcript.pyannote[66].speaker SPEAKER_04
transcript.pyannote[66].start 202.93596875
transcript.pyannote[66].end 204.55596875
transcript.pyannote[67].speaker SPEAKER_04
transcript.pyannote[67].start 205.23096875
transcript.pyannote[67].end 206.26034375
transcript.pyannote[68].speaker SPEAKER_04
transcript.pyannote[68].start 206.61471875
transcript.pyannote[68].end 213.51659375
transcript.pyannote[69].speaker SPEAKER_04
transcript.pyannote[69].start 213.95534375
transcript.pyannote[69].end 216.79034375
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 215.79471875
transcript.pyannote[70].end 216.45284375
transcript.pyannote[71].speaker SPEAKER_04
transcript.pyannote[71].start 216.89159375
transcript.pyannote[71].end 217.38096875
transcript.pyannote[72].speaker SPEAKER_04
transcript.pyannote[72].start 217.56659375
transcript.pyannote[72].end 220.62096875
transcript.pyannote[73].speaker SPEAKER_04
transcript.pyannote[73].start 220.75596875
transcript.pyannote[73].end 223.50659375
transcript.pyannote[74].speaker SPEAKER_04
transcript.pyannote[74].start 224.21534375
transcript.pyannote[74].end 225.41346875
transcript.pyannote[75].speaker SPEAKER_04
transcript.pyannote[75].start 225.49784375
transcript.pyannote[75].end 226.67909375
transcript.pyannote[76].speaker SPEAKER_03
transcript.pyannote[76].start 227.30346875
transcript.pyannote[76].end 232.48409375
transcript.pyannote[77].speaker SPEAKER_04
transcript.pyannote[77].start 231.42096875
transcript.pyannote[77].end 235.38659375
transcript.pyannote[78].speaker SPEAKER_03
transcript.pyannote[78].start 233.96909375
transcript.pyannote[78].end 234.49221875
transcript.pyannote[79].speaker SPEAKER_03
transcript.pyannote[79].start 234.99846875
transcript.pyannote[79].end 235.03221875
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 235.03221875
transcript.pyannote[80].end 235.06596875
transcript.pyannote[81].speaker SPEAKER_03
transcript.pyannote[81].start 235.06596875
transcript.pyannote[81].end 235.08284375
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 235.08284375
transcript.pyannote[82].end 235.09971875
transcript.pyannote[83].speaker SPEAKER_03
transcript.pyannote[83].start 235.09971875
transcript.pyannote[83].end 235.21784375
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 235.21784375
transcript.pyannote[84].end 236.80409375
transcript.pyannote[85].speaker SPEAKER_04
transcript.pyannote[85].start 235.84221875
transcript.pyannote[85].end 236.71971875
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 236.98971875
transcript.pyannote[86].end 250.82721875
transcript.pyannote[87].speaker SPEAKER_04
transcript.pyannote[87].start 238.94721875
transcript.pyannote[87].end 239.25096875
transcript.pyannote[88].speaker SPEAKER_04
transcript.pyannote[88].start 241.57971875
transcript.pyannote[88].end 242.38971875
transcript.pyannote[89].speaker SPEAKER_03
transcript.pyannote[89].start 242.38971875
transcript.pyannote[89].end 242.40659375
transcript.pyannote[90].speaker SPEAKER_04
transcript.pyannote[90].start 249.86534375
transcript.pyannote[90].end 261.03659375
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 255.24846875
transcript.pyannote[91].end 255.72096875
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 255.77159375
transcript.pyannote[92].end 258.37034375
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 258.37034375
transcript.pyannote[93].end 258.38721875
transcript.pyannote[94].speaker SPEAKER_04
transcript.pyannote[94].start 261.27284375
transcript.pyannote[94].end 314.37846875
transcript.pyannote[95].speaker SPEAKER_03
transcript.pyannote[95].start 264.63096875
transcript.pyannote[95].end 265.18784375
transcript.pyannote[96].speaker SPEAKER_03
transcript.pyannote[96].start 267.93846875
transcript.pyannote[96].end 269.71034375
transcript.pyannote[97].speaker SPEAKER_03
transcript.pyannote[97].start 271.48221875
transcript.pyannote[97].end 272.39346875
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 315.22221875
transcript.pyannote[98].end 321.11159375
transcript.pyannote[99].speaker SPEAKER_04
transcript.pyannote[99].start 320.82471875
transcript.pyannote[99].end 334.56096875
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 321.87096875
transcript.pyannote[100].end 322.47846875
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 334.86471875
transcript.pyannote[101].end 335.96159375
transcript.pyannote[102].speaker SPEAKER_04
transcript.pyannote[102].start 335.11784375
transcript.pyannote[102].end 339.69096875
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 337.53096875
transcript.pyannote[103].end 341.17596875
transcript.pyannote[104].speaker SPEAKER_04
transcript.pyannote[104].start 341.17596875
transcript.pyannote[104].end 342.55971875
transcript.pyannote[105].speaker SPEAKER_04
transcript.pyannote[105].start 343.42034375
transcript.pyannote[105].end 343.80846875
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 343.70721875
transcript.pyannote[106].end 345.02346875
transcript.pyannote[107].speaker SPEAKER_04
transcript.pyannote[107].start 344.77034375
transcript.pyannote[107].end 361.18971875
transcript.pyannote[108].speaker SPEAKER_04
transcript.pyannote[108].start 361.62846875
transcript.pyannote[108].end 366.92721875
transcript.pyannote[109].speaker SPEAKER_04
transcript.pyannote[109].start 367.70346875
transcript.pyannote[109].end 368.46284375
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 368.73284375
transcript.pyannote[110].end 369.23909375
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 369.27284375
transcript.pyannote[111].end 380.81534375
transcript.pyannote[112].speaker SPEAKER_04
transcript.pyannote[112].start 377.64284375
transcript.pyannote[112].end 379.09409375
transcript.pyannote[113].speaker SPEAKER_04
transcript.pyannote[113].start 380.79846875
transcript.pyannote[113].end 381.77721875
transcript.pyannote[114].speaker SPEAKER_04
transcript.pyannote[114].start 382.43534375
transcript.pyannote[114].end 389.13471875
transcript.pyannote[115].speaker SPEAKER_04
transcript.pyannote[115].start 389.50596875
transcript.pyannote[115].end 389.99534375
transcript.pyannote[116].speaker SPEAKER_04
transcript.pyannote[116].start 390.13034375
transcript.pyannote[116].end 391.44659375
transcript.pyannote[117].speaker SPEAKER_04
transcript.pyannote[117].start 393.84284375
transcript.pyannote[117].end 395.05784375
transcript.pyannote[118].speaker SPEAKER_04
transcript.pyannote[118].start 395.36159375
transcript.pyannote[118].end 400.05284375
transcript.pyannote[119].speaker SPEAKER_05
transcript.pyannote[119].start 404.38971875
transcript.pyannote[119].end 415.27409375
transcript.pyannote[120].speaker SPEAKER_04
transcript.pyannote[120].start 413.41784375
transcript.pyannote[120].end 420.16784375
transcript.pyannote[121].speaker SPEAKER_05
transcript.pyannote[121].start 415.47659375
transcript.pyannote[121].end 415.64534375
transcript.pyannote[122].speaker SPEAKER_05
transcript.pyannote[122].start 415.66221875
transcript.pyannote[122].end 415.72971875
transcript.pyannote[123].speaker SPEAKER_05
transcript.pyannote[123].start 420.50534375
transcript.pyannote[123].end 427.47471875
transcript.pyannote[124].speaker SPEAKER_04
transcript.pyannote[124].start 421.11284375
transcript.pyannote[124].end 421.87221875
transcript.pyannote[125].speaker SPEAKER_04
transcript.pyannote[125].start 423.07034375
transcript.pyannote[125].end 423.69471875
transcript.pyannote[126].speaker SPEAKER_03
transcript.pyannote[126].start 423.69471875
transcript.pyannote[126].end 423.72846875
transcript.pyannote[127].speaker SPEAKER_03
transcript.pyannote[127].start 425.83784375
transcript.pyannote[127].end 427.57596875
transcript.pyannote[128].speaker SPEAKER_04
transcript.pyannote[128].start 427.47471875
transcript.pyannote[128].end 427.49159375
transcript.pyannote[129].speaker SPEAKER_05
transcript.pyannote[129].start 427.49159375
transcript.pyannote[129].end 427.50846875
transcript.pyannote[130].speaker SPEAKER_04
transcript.pyannote[130].start 427.50846875
transcript.pyannote[130].end 427.52534375
transcript.pyannote[131].speaker SPEAKER_05
transcript.pyannote[131].start 427.52534375
transcript.pyannote[131].end 427.55909375
transcript.pyannote[132].speaker SPEAKER_05
transcript.pyannote[132].start 427.57596875
transcript.pyannote[132].end 427.64346875
transcript.pyannote[133].speaker SPEAKER_03
transcript.pyannote[133].start 428.01471875
transcript.pyannote[133].end 432.30096875
transcript.pyannote[134].speaker SPEAKER_04
transcript.pyannote[134].start 428.77409375
transcript.pyannote[134].end 428.95971875
transcript.pyannote[135].speaker SPEAKER_04
transcript.pyannote[135].start 430.73159375
transcript.pyannote[135].end 439.27034375
transcript.pyannote[136].speaker SPEAKER_03
transcript.pyannote[136].start 433.04346875
transcript.pyannote[136].end 433.34721875
transcript.pyannote[137].speaker SPEAKER_03
transcript.pyannote[137].start 437.36346875
transcript.pyannote[137].end 438.96659375
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 438.96659375
transcript.pyannote[138].end 439.01721875
transcript.pyannote[139].speaker SPEAKER_04
transcript.pyannote[139].start 439.79346875
transcript.pyannote[139].end 445.17659375
transcript.pyannote[140].speaker SPEAKER_04
transcript.pyannote[140].start 445.56471875
transcript.pyannote[140].end 451.67346875
transcript.pyannote[141].speaker SPEAKER_04
transcript.pyannote[141].start 452.31471875
transcript.pyannote[141].end 456.01034375
transcript.pyannote[142].speaker SPEAKER_04
transcript.pyannote[142].start 456.22971875
transcript.pyannote[142].end 459.79034375
transcript.pyannote[143].speaker SPEAKER_04
transcript.pyannote[143].start 459.97596875
transcript.pyannote[143].end 463.08096875
transcript.pyannote[144].speaker SPEAKER_04
transcript.pyannote[144].start 463.35096875
transcript.pyannote[144].end 469.57784375
transcript.pyannote[145].speaker SPEAKER_04
transcript.pyannote[145].start 470.15159375
transcript.pyannote[145].end 474.10034375
transcript.pyannote[146].speaker SPEAKER_04
transcript.pyannote[146].start 474.35346875
transcript.pyannote[146].end 480.44534375
transcript.pyannote[147].speaker SPEAKER_04
transcript.pyannote[147].start 480.66471875
transcript.pyannote[147].end 482.89221875
transcript.pyannote[148].speaker SPEAKER_04
transcript.pyannote[148].start 483.12846875
transcript.pyannote[148].end 485.03534375
transcript.pyannote[149].speaker SPEAKER_03
transcript.pyannote[149].start 485.74409375
transcript.pyannote[149].end 485.76096875
transcript.pyannote[150].speaker SPEAKER_04
transcript.pyannote[150].start 485.76096875
transcript.pyannote[150].end 485.79471875
transcript.pyannote[151].speaker SPEAKER_03
transcript.pyannote[151].start 485.79471875
transcript.pyannote[151].end 486.01409375
transcript.pyannote[152].speaker SPEAKER_03
transcript.pyannote[152].start 486.58784375
transcript.pyannote[152].end 496.40909375
transcript.pyannote[153].speaker SPEAKER_04
transcript.pyannote[153].start 490.04721875
transcript.pyannote[153].end 490.77284375
transcript.pyannote[154].speaker SPEAKER_04
transcript.pyannote[154].start 494.82284375
transcript.pyannote[154].end 496.30784375
transcript.pyannote[155].speaker SPEAKER_03
transcript.pyannote[155].start 496.52721875
transcript.pyannote[155].end 496.56096875
transcript.pyannote[156].speaker SPEAKER_06
transcript.pyannote[156].start 496.56096875
transcript.pyannote[156].end 505.70721875
transcript.pyannote[157].speaker SPEAKER_03
transcript.pyannote[157].start 496.59471875
transcript.pyannote[157].end 496.72971875
transcript.pyannote[158].speaker SPEAKER_04
transcript.pyannote[158].start 505.70721875
transcript.pyannote[158].end 511.51221875
transcript.pyannote[159].speaker SPEAKER_06
transcript.pyannote[159].start 507.52971875
transcript.pyannote[159].end 507.59721875
transcript.pyannote[160].speaker SPEAKER_04
transcript.pyannote[160].start 511.66409375
transcript.pyannote[160].end 513.45284375
transcript.pyannote[161].speaker SPEAKER_04
transcript.pyannote[161].start 513.85784375
transcript.pyannote[161].end 514.46534375
transcript.pyannote[162].speaker SPEAKER_06
transcript.pyannote[162].start 515.15721875
transcript.pyannote[162].end 515.34284375
transcript.pyannote[163].speaker SPEAKER_04
transcript.pyannote[163].start 515.34284375
transcript.pyannote[163].end 516.27096875
transcript.pyannote[164].speaker SPEAKER_06
transcript.pyannote[164].start 515.37659375
transcript.pyannote[164].end 517.23284375
transcript.pyannote[165].speaker SPEAKER_04
transcript.pyannote[165].start 518.04284375
transcript.pyannote[165].end 518.81909375
transcript.pyannote[166].speaker SPEAKER_04
transcript.pyannote[166].start 520.99596875
transcript.pyannote[166].end 533.12909375
transcript.pyannote[167].speaker SPEAKER_03
transcript.pyannote[167].start 533.12909375
transcript.pyannote[167].end 533.98971875
transcript.pyannote[168].speaker SPEAKER_04
transcript.pyannote[168].start 534.32721875
transcript.pyannote[168].end 558.52596875
transcript.pyannote[169].speaker SPEAKER_04
transcript.pyannote[169].start 558.66096875
transcript.pyannote[169].end 560.58471875
transcript.pyannote[170].speaker SPEAKER_01
transcript.pyannote[170].start 559.36971875
transcript.pyannote[170].end 563.43659375
transcript.pyannote[171].speaker SPEAKER_01
transcript.pyannote[171].start 563.53784375
transcript.pyannote[171].end 582.52221875
transcript.pyannote[172].speaker SPEAKER_04
transcript.pyannote[172].start 581.49284375
transcript.pyannote[172].end 582.85971875
transcript.pyannote[173].speaker SPEAKER_01
transcript.pyannote[173].start 582.85971875
transcript.pyannote[173].end 582.92721875
transcript.pyannote[174].speaker SPEAKER_01
transcript.pyannote[174].start 583.36596875
transcript.pyannote[174].end 585.64409375
transcript.pyannote[175].speaker SPEAKER_04
transcript.pyannote[175].start 583.93971875
transcript.pyannote[175].end 584.20971875
transcript.pyannote[176].speaker SPEAKER_04
transcript.pyannote[176].start 585.12096875
transcript.pyannote[176].end 589.64346875
transcript.pyannote[177].speaker SPEAKER_04
transcript.pyannote[177].start 589.76159375
transcript.pyannote[177].end 591.65159375
transcript.pyannote[178].speaker SPEAKER_04
transcript.pyannote[178].start 591.82034375
transcript.pyannote[178].end 594.90846875
transcript.pyannote[179].speaker SPEAKER_01
transcript.pyannote[179].start 595.66784375
transcript.pyannote[179].end 610.39971875
transcript.pyannote[180].speaker SPEAKER_01
transcript.pyannote[180].start 610.87221875
transcript.pyannote[180].end 610.88909375
transcript.pyannote[181].speaker SPEAKER_04
transcript.pyannote[181].start 610.88909375
transcript.pyannote[181].end 617.53784375
transcript.pyannote[182].speaker SPEAKER_01
transcript.pyannote[182].start 617.53784375
transcript.pyannote[182].end 621.87471875
transcript.pyannote[183].speaker SPEAKER_03
transcript.pyannote[183].start 621.87471875
transcript.pyannote[183].end 628.08471875
transcript.pyannote[184].speaker SPEAKER_01
transcript.pyannote[184].start 623.44409375
transcript.pyannote[184].end 624.87846875
transcript.pyannote[185].speaker SPEAKER_03
transcript.pyannote[185].start 628.40534375
transcript.pyannote[185].end 636.11721875
transcript.pyannote[186].speaker SPEAKER_04
transcript.pyannote[186].start 636.25221875
transcript.pyannote[186].end 636.28596875
transcript.pyannote[187].speaker SPEAKER_03
transcript.pyannote[187].start 636.28596875
transcript.pyannote[187].end 636.97784375
transcript.pyannote[188].speaker SPEAKER_04
transcript.pyannote[188].start 636.97784375
transcript.pyannote[188].end 653.92034375
transcript.pyannote[189].speaker SPEAKER_04
transcript.pyannote[189].start 654.46034375
transcript.pyannote[189].end 657.88596875
transcript.pyannote[190].speaker SPEAKER_04
transcript.pyannote[190].start 658.57784375
transcript.pyannote[190].end 660.90659375
transcript.pyannote[191].speaker SPEAKER_04
transcript.pyannote[191].start 661.34534375
transcript.pyannote[191].end 667.77471875
transcript.pyannote[192].speaker SPEAKER_04
transcript.pyannote[192].start 668.38221875
transcript.pyannote[192].end 690.70784375
transcript.pyannote[193].speaker SPEAKER_02
transcript.pyannote[193].start 683.51909375
transcript.pyannote[193].end 683.92409375
transcript.pyannote[194].speaker SPEAKER_02
transcript.pyannote[194].start 686.48909375
transcript.pyannote[194].end 687.31596875
transcript.pyannote[195].speaker SPEAKER_02
transcript.pyannote[195].start 689.83034375
transcript.pyannote[195].end 698.04846875
transcript.pyannote[196].speaker SPEAKER_02
transcript.pyannote[196].start 698.25096875
transcript.pyannote[196].end 700.81596875
transcript.pyannote[197].speaker SPEAKER_04
transcript.pyannote[197].start 699.14534375
transcript.pyannote[197].end 699.87096875
transcript.pyannote[198].speaker SPEAKER_04
transcript.pyannote[198].start 700.36034375
transcript.pyannote[198].end 700.57971875
transcript.pyannote[199].speaker SPEAKER_02
transcript.pyannote[199].start 701.18721875
transcript.pyannote[199].end 706.75596875
transcript.pyannote[200].speaker SPEAKER_04
transcript.pyannote[200].start 705.03471875
transcript.pyannote[200].end 706.65471875
transcript.pyannote[201].speaker SPEAKER_04
transcript.pyannote[201].start 706.75596875
transcript.pyannote[201].end 719.68221875
transcript.pyannote[202].speaker SPEAKER_04
transcript.pyannote[202].start 720.03659375
transcript.pyannote[202].end 721.30221875
transcript.pyannote[203].speaker SPEAKER_04
transcript.pyannote[203].start 721.90971875
transcript.pyannote[203].end 722.50034375
transcript.pyannote[204].speaker SPEAKER_02
transcript.pyannote[204].start 721.99409375
transcript.pyannote[204].end 726.19596875
transcript.pyannote[205].speaker SPEAKER_04
transcript.pyannote[205].start 724.37346875
transcript.pyannote[205].end 726.28034375
transcript.pyannote[206].speaker SPEAKER_02
transcript.pyannote[206].start 726.28034375
transcript.pyannote[206].end 734.75159375
transcript.pyannote[207].speaker SPEAKER_04
transcript.pyannote[207].start 727.42784375
transcript.pyannote[207].end 728.42346875
transcript.pyannote[208].speaker SPEAKER_04
transcript.pyannote[208].start 733.72221875
transcript.pyannote[208].end 743.03721875
transcript.pyannote[209].speaker SPEAKER_02
transcript.pyannote[209].start 742.96971875
transcript.pyannote[209].end 743.56034375
transcript.pyannote[210].speaker SPEAKER_04
transcript.pyannote[210].start 743.56034375
transcript.pyannote[210].end 749.28096875
transcript.pyannote[211].speaker SPEAKER_02
transcript.pyannote[211].start 743.67846875
transcript.pyannote[211].end 744.11721875
transcript.pyannote[212].speaker SPEAKER_02
transcript.pyannote[212].start 744.87659375
transcript.pyannote[212].end 745.41659375
transcript.pyannote[213].speaker SPEAKER_02
transcript.pyannote[213].start 747.17159375
transcript.pyannote[213].end 748.28534375
transcript.pyannote[214].speaker SPEAKER_02
transcript.pyannote[214].start 749.34846875
transcript.pyannote[214].end 760.16534375
transcript.pyannote[215].speaker SPEAKER_02
transcript.pyannote[215].start 760.28346875
transcript.pyannote[215].end 764.11409375
transcript.pyannote[216].speaker SPEAKER_04
transcript.pyannote[216].start 764.43471875
transcript.pyannote[216].end 770.42534375
transcript.pyannote[217].speaker SPEAKER_04
transcript.pyannote[217].start 770.50971875
transcript.pyannote[217].end 771.47159375
transcript.pyannote[218].speaker SPEAKER_04
transcript.pyannote[218].start 771.84284375
transcript.pyannote[218].end 780.04409375
transcript.pyannote[219].speaker SPEAKER_04
transcript.pyannote[219].start 780.43221875
transcript.pyannote[219].end 780.82034375
transcript.pyannote[220].speaker SPEAKER_04
transcript.pyannote[220].start 781.68096875
transcript.pyannote[220].end 787.13159375
transcript.pyannote[221].speaker SPEAKER_04
transcript.pyannote[221].start 787.67159375
transcript.pyannote[221].end 789.86534375
transcript.pyannote[222].speaker SPEAKER_04
transcript.pyannote[222].start 790.08471875
transcript.pyannote[222].end 794.18534375
transcript.pyannote[223].speaker SPEAKER_04
transcript.pyannote[223].start 794.72534375
transcript.pyannote[223].end 801.12096875
transcript.pyannote[224].speaker SPEAKER_04
transcript.pyannote[224].start 801.93096875
transcript.pyannote[224].end 808.37721875
transcript.pyannote[225].speaker SPEAKER_04
transcript.pyannote[225].start 808.76534375
transcript.pyannote[225].end 811.07721875
transcript.pyannote[226].speaker SPEAKER_04
transcript.pyannote[226].start 811.68471875
transcript.pyannote[226].end 812.95034375
transcript.pyannote[227].speaker SPEAKER_04
transcript.pyannote[227].start 813.38909375
transcript.pyannote[227].end 816.03846875
transcript.pyannote[228].speaker SPEAKER_03
transcript.pyannote[228].start 816.03846875
transcript.pyannote[228].end 817.25346875
transcript.pyannote[229].speaker SPEAKER_03
transcript.pyannote[229].start 817.87784375
transcript.pyannote[229].end 827.96909375
transcript.pyannote[230].speaker SPEAKER_04
transcript.pyannote[230].start 824.69534375
transcript.pyannote[230].end 825.08346875
transcript.pyannote[231].speaker SPEAKER_04
transcript.pyannote[231].start 827.96909375
transcript.pyannote[231].end 828.03659375
transcript.pyannote[232].speaker SPEAKER_03
transcript.pyannote[232].start 828.03659375
transcript.pyannote[232].end 828.49221875
transcript.pyannote[233].speaker SPEAKER_04
transcript.pyannote[233].start 828.49221875
transcript.pyannote[233].end 840.20346875
transcript.pyannote[234].speaker SPEAKER_03
transcript.pyannote[234].start 828.54284375
transcript.pyannote[234].end 828.82971875
transcript.pyannote[235].speaker SPEAKER_04
transcript.pyannote[235].start 840.79409375
transcript.pyannote[235].end 844.15221875
transcript.pyannote[236].speaker SPEAKER_04
transcript.pyannote[236].start 844.74284375
transcript.pyannote[236].end 846.16034375
transcript.pyannote[237].speaker SPEAKER_04
transcript.pyannote[237].start 846.34596875
transcript.pyannote[237].end 853.58534375
transcript.pyannote[238].speaker SPEAKER_04
transcript.pyannote[238].start 853.82159375
transcript.pyannote[238].end 854.02409375
transcript.pyannote[239].speaker SPEAKER_03
transcript.pyannote[239].start 854.02409375
transcript.pyannote[239].end 854.44596875
transcript.pyannote[240].speaker SPEAKER_04
transcript.pyannote[240].start 854.44596875
transcript.pyannote[240].end 854.47971875
transcript.pyannote[241].speaker SPEAKER_03
transcript.pyannote[241].start 854.47971875
transcript.pyannote[241].end 859.91346875
transcript.pyannote[242].speaker SPEAKER_04
transcript.pyannote[242].start 854.49659375
transcript.pyannote[242].end 856.06596875
transcript.pyannote[243].speaker SPEAKER_03
transcript.pyannote[243].start 860.21721875
transcript.pyannote[243].end 864.16596875
transcript.pyannote[244].speaker SPEAKER_03
transcript.pyannote[244].start 864.94221875
transcript.pyannote[244].end 872.21534375
transcript.pyannote[245].speaker SPEAKER_04
transcript.pyannote[245].start 870.56159375
transcript.pyannote[245].end 871.37159375
transcript.pyannote[246].speaker SPEAKER_04
transcript.pyannote[246].start 872.21534375
transcript.pyannote[246].end 884.85471875
transcript.pyannote[247].speaker SPEAKER_03
transcript.pyannote[247].start 874.81409375
transcript.pyannote[247].end 875.23596875
transcript.pyannote[248].speaker SPEAKER_03
transcript.pyannote[248].start 875.92784375
transcript.pyannote[248].end 877.66596875
transcript.pyannote[249].speaker SPEAKER_03
transcript.pyannote[249].start 882.64409375
transcript.pyannote[249].end 883.18409375
transcript.pyannote[250].speaker SPEAKER_04
transcript.pyannote[250].start 885.29346875
transcript.pyannote[250].end 890.69346875
transcript.pyannote[251].speaker SPEAKER_04
transcript.pyannote[251].start 891.70596875
transcript.pyannote[251].end 897.37596875
transcript.pyannote[252].speaker SPEAKER_04
transcript.pyannote[252].start 897.93284375
transcript.pyannote[252].end 901.67909375
transcript.pyannote[253].speaker SPEAKER_04
transcript.pyannote[253].start 902.20221875
transcript.pyannote[253].end 905.72909375
transcript.pyannote[254].speaker SPEAKER_03
transcript.pyannote[254].start 906.74159375
transcript.pyannote[254].end 907.04534375
transcript.pyannote[255].speaker SPEAKER_05
transcript.pyannote[255].start 911.02784375
transcript.pyannote[255].end 911.75346875
transcript.pyannote[256].speaker SPEAKER_05
transcript.pyannote[256].start 912.52971875
transcript.pyannote[256].end 913.42409375
transcript.pyannote[257].speaker SPEAKER_04
transcript.pyannote[257].start 913.42409375
transcript.pyannote[257].end 914.57159375
transcript.pyannote[258].speaker SPEAKER_05
transcript.pyannote[258].start 914.26784375
transcript.pyannote[258].end 915.04409375
transcript.pyannote[259].speaker SPEAKER_04
transcript.pyannote[259].start 915.36471875
transcript.pyannote[259].end 920.32596875
transcript.pyannote[260].speaker SPEAKER_05
transcript.pyannote[260].start 921.25409375
transcript.pyannote[260].end 921.96284375
transcript.pyannote[261].speaker SPEAKER_04
transcript.pyannote[261].start 921.96284375
transcript.pyannote[261].end 922.72221875
transcript.pyannote[262].speaker SPEAKER_05
transcript.pyannote[262].start 922.87409375
transcript.pyannote[262].end 924.39284375
transcript.pyannote[263].speaker SPEAKER_04
transcript.pyannote[263].start 924.00471875
transcript.pyannote[263].end 928.52721875
transcript.pyannote[264].speaker SPEAKER_05
transcript.pyannote[264].start 927.75096875
transcript.pyannote[264].end 929.03346875
transcript.pyannote[265].speaker SPEAKER_04
transcript.pyannote[265].start 929.03346875
transcript.pyannote[265].end 931.41284375
transcript.pyannote[266].speaker SPEAKER_05
transcript.pyannote[266].start 930.50159375
transcript.pyannote[266].end 931.34534375
transcript.pyannote[267].speaker SPEAKER_04
transcript.pyannote[267].start 931.76721875
transcript.pyannote[267].end 932.96534375
transcript.whisperx[0].start 17.143
transcript.whisperx[0].end 40.033
transcript.whisperx[0].text 謝謝副院長 一樣邀請我們卓院長卓院長請備詢經濟部也可以先陪同一下幫忙一下經濟部部長我就先講 院長這一次對美關稅談判最大的戰場其實一開始都一直聚焦在半導體業我們一開始是認為對等關稅要全面的談好
transcript.whisperx[1].start 41.139
transcript.whisperx[1].end 52.701
transcript.whisperx[1].text 那請問一下院長這個年初台積電宣佈要對在投資1000億美金的一個投資設廠那目前我們的投審會收到了申請嗎
transcript.whisperx[2].start 56.32
transcript.whisperx[2].end 76.961
transcript.whisperx[2].text 你說額外的那個部分就是650加1000的那個1000所以這1000還沒有正式的申請所以短期內應該還不會過去那我想請教一下因為其實剛剛部長也有一再的重申最近新聞講的這個晶片五五分對不對這個議題我們重申我們沒有答應這件事情也沒有討論這件事情
transcript.whisperx[3].start 77.381
transcript.whisperx[3].end 99.493
transcript.whisperx[3].text 那我請教一下我們有沒有稍微的統計或計算過如果我們的台積電年初獎的那1000億投資進去了加原本的650億那它在美國的投資量能它的那個年生產量在我們以高階的這個5奈米以下的一個產量來講的話那未來它會跟台灣的比重會是多少你們有沒有統計過
transcript.whisperx[4].start 103.071
transcript.whisperx[4].end 120.968
transcript.whisperx[4].text 這個牽涉到他要幾年才能完成這個我們現在台灣已經確定台灣已經確定要建了現在已經有一些已經確定在建了還沒生產了這些量能有多少那未來如果說1650億美金在美國落地之後會有多少我想這應該大概都可以算得出來有沒有統計過
transcript.whisperx[5].start 122.416
transcript.whisperx[5].end 123.177
transcript.whisperx[5].text 5奈米以下喔
transcript.whisperx[6].start 138.892
transcript.whisperx[6].end 153.601
transcript.whisperx[6].text 全部的 不是不是低階的我們不用看嘛我們只在乎高階的嘛但是先進製程在國內也會持續的我就只在乎先進製程在台灣的比例台灣跟美國的比例因為院長一再重申55是不會嘛但實際上你們有沒有算過
transcript.whisperx[7].start 155.149
transcript.whisperx[7].end 170.166
transcript.whisperx[7].text 剛剛部長已經談過了我們國內也會增加對 那你就可以算你們可以算對不對它的時程還沒有定所以沒有辦法在這個而且我們在這裡也不要算這麼清楚你們計算一下如果1650億的美金在美國落地投資之後
transcript.whisperx[8].start 171.067
transcript.whisperx[8].end 200.633
transcript.whisperx[8].text 那台灣未來規劃的產能有多少我們希望先進製程台美雙邊的比例有多少可以計算出來讓我們國人安心那也證實了這個院長你講的沒有五十五十這件事情數字一攤開來大家都幸福嗎報告委員那個台積電是在美國大概是五座嘛台灣都是十座以上實際算這邊也算不清楚啦好不好我們事後算算清楚讓我們國人知道一下這個比例大概會是多少好不好這應該算得出來吧
transcript.whisperx[9].start 203.384
transcript.whisperx[9].end 226.491
transcript.whisperx[9].text 謝謝另外這次的五十五十大家很關心五十五十吳院長說不可能對不對這是我們不可能接受的一個條件你說我們沒有討論過也不會答應也不可能答應如果說美國真的有挑起這個議題的話我們能夠接受的最低的限度以高階親民來講的話你們能夠容忍多少
transcript.whisperx[10].start 227.472
transcript.whisperx[10].end 248.613
transcript.whisperx[10].text 這是談判的過程跟談判裡面的細節我不宜在這裡跟委員所以你們只能答應說不會五十但是五十多少以下你們不知道我們不會去討論幾比幾的問題是廠商有訂單這是美方的想法就是譬如說台積電他確定那邊有訂單他也願意去投資政府的角色是如何協助他
transcript.whisperx[11].start 250.394
transcript.whisperx[11].end 271.252
transcript.whisperx[11].text 這個就是一個客觀的公開數據嘛提早讓我們的國人知道嘛好沒關係 如果說院長認為這個是談判機密的話不願意提前講那我們至少知道說你的底線是50絕對不會放但是比50還多遠這一點就你們後續可能可能才會同樣的我們會以國家的利益跟產業的利益為優先來談判的好沒關係 院長沒辦法說也沒關係我不會強求謝謝
transcript.whisperx[12].start 273.133
transcript.whisperx[12].end 297.959
transcript.whisperx[12].text 接下來就是我們這次的特別預算當然很多的委員提到說可能明目是不是我們實際相符我想很多人討論過了如果說其實我是把它想做站在你們角度看這可以當作一個擴大內需任何在國內的投資對經濟一定都有幫助如果說在這樣子的角度再看的話對國內的經濟一定有幫助我可不可以跟
transcript.whisperx[13].start 299.02
transcript.whisperx[13].end 314.181
transcript.whisperx[13].text 請院長能夠承諾我們所有這五千多億的預算無論在未來的採購或者是投資是不是都能夠保證讓我們台灣我們本國的廠商來承攬這我們有辦法做到
transcript.whisperx[14].start 316.546
transcript.whisperx[14].end 330.742
transcript.whisperx[14].text 對 比如說我們支持產業方案每一分錢都是用在我們企業界的補助就是國內採購包括你一些可能一些經濟部的那當然就是在國內嘛我想不只經濟部包括可能國防部 海巡這些設備的採購有沒有辦法優先的來選擇國內的廠商
transcript.whisperx[15].start 334.926
transcript.whisperx[15].end 359.136
transcript.whisperx[15].text 能不能保障 因為這才有到促進經濟的一個效果吧我們能不能做到這樣的承諾國安部的確是在地承諾這跟你經濟部沒關係啊 我知道院長 這是不是我們的方向你能不能做這樣的承諾我們5500億我們盡力把這些投資的項目讓我們國內的廠商賺因為前幾天我們的總統也說了嘛希望讓造船業多一些利潤嘛那當然我們希望不只造船業嘛我們5500億的一個
transcript.whisperx[16].start 362.868
transcript.whisperx[16].end 378.279
transcript.whisperx[16].text 這個經費全數都能夠讓我們國內的廠商來賺這樣子的一個承諾或者目標你能不能承諾跟委員報告我想國防部的部分因為占到1130而已所以我想可以跟委員承諾我們這一次特別預算都會用在國內的直通跟營造謝謝國防部所以一定會擴大內需的產能謝謝國防部
transcript.whisperx[17].start 382.489
transcript.whisperx[17].end 397.918
transcript.whisperx[17].text 那我不曉得其他的部分海巡其實也不少嘛或者其他部會其實一些農業部這些一定是國內啦這個我了解啦那海巡也答應了嘛對不對那個海委會嘛對所以我們原則上這5500億應該都是用在我們國內嘛
transcript.whisperx[18].start 404.597
transcript.whisperx[18].end 418.068
transcript.whisperx[18].text 各位委員報告好就是說除非那個裝備我們必須是非常靈敏度非常高的而且在全世界國內生產不來的是輔導不來的否則原則上都是輔導國內的廠商優先的來做
transcript.whisperx[19].start 420.723
transcript.whisperx[19].end 437.48
transcript.whisperx[19].text 我們會努力朝這個方向因為擴大內需也是我們其中一個我想這應該也是我們行政院的目標吧當然是我們對於本土的產業實力的來致當然是用盡各種方法原則上都希望能夠讓我們國家的廠商來賺原則上當然是如此謝謝我們的院長
transcript.whisperx[20].start 439.844
transcript.whisperx[20].end 469.344
transcript.whisperx[20].text 那既然這樣子的投資都是國內的廠商來承攬促進經濟的話那我們的主計總數大概有預測明年的一個經濟的成長率大概是2.81那我想這個評估啦這個評估應該是不包含這個5500億的這個特別的預算應該是不包含嘛因為預算還沒通過那我們有沒有評估過因為我每次在普發現金或者是發消費券的時候都會評估說對國內的經濟成長率的幫助有多少或者是說對GDP的
transcript.whisperx[21].start 470.285
transcript.whisperx[21].end 484.681
transcript.whisperx[21].text 我們有沒有評估過這5500億因為普發一萬的部分應該有評估過好像佔GDP的0.5%那其餘的部分對我們國家的一個經濟的成長有多少的幫助這一點我不曉得我們行政院有沒有算過
transcript.whisperx[22].start 486.956
transcript.whisperx[22].end 514.293
transcript.whisperx[22].text 特別預算通過之後我會請主計總署再詳細說明有沒有算過他要更精細的算那應該他目前都有做整年度的沒有算就趕快算嘛有 我們有初估啦那國會會他是評估是大概是0.415的一個成長百分點那我們評估的話大概0.65百分點好 那就是我們就希望說錢花下去我們知道效果嘛所以說這個我們主計總署的原則上的預估大概是0.45的一個比例
transcript.whisperx[23].start 515.162
transcript.whisperx[23].end 521.025
transcript.whisperx[23].text 到時候大家再來一起檢視我們的成效另外我再請問一下比較細的就是我們的農業部這次有編列了190億的預算
transcript.whisperx[24].start 535.28
transcript.whisperx[24].end 562.532
transcript.whisperx[24].text 原則上大概180多億都是對國內的團體機關獎補助那農業部會編列這麼高的預算其實我當然開心的嘛我的選區內大概有七個農運會的一個團體啦我當然是感謝但是我想問的是農業部編這樣的預算的原因是不是我們已經打算開放美國的農業產品進來我們才會編列這麼高的一個預算來做因應你們是不是做這樣的一個準備我們在編這樣的一個預算的時候是針對
transcript.whisperx[25].start 563.774
transcript.whisperx[25].end 565.11
transcript.whisperx[25].text 那時候的出口的
transcript.whisperx[26].start 565.836
transcript.whisperx[26].end 594.596
transcript.whisperx[26].text 那個稅額是32%然後後來降到10%又提升到20%在這樣的一個Range之內我們也評估了我們出口的品項有哪一些受到影響那這些影響裡面怎麼樣做金融的支持怎麼樣做產業的提升所以這190是現況嗎對 是現在目前的一個情況如果說未來對美的這個農業農業產品有多一些開放的話我們農業部應該會有另外的措施我可以這樣理解嗎
transcript.whisperx[27].start 595.714
transcript.whisperx[27].end 610.226
transcript.whisperx[27].text 我想我們現在目前在處理的其實出口美國也會跟我們國內的市場會有一些互動所以未來如果說關稅最後確認了以後那我們會看實際的情況之下我們再去做相關的預算的調整
transcript.whisperx[28].start 610.899
transcript.whisperx[28].end 635.445
transcript.whisperx[28].text 好 所以是191是依照現況那如果說多開放的話會再評估要不要增加 這樣是這樣的理解對 如果說夠的話我們就不會那不夠的話我想我們會循程序來我們會看農業的這個直接的衝擊無論是進口或出口的業者受到什麼樣的衝擊農業部都會很詳實的去把它評估出來那麼我們會從這個預算當中率先來執行好 謝謝院長 謝謝餘部長
transcript.whisperx[29].start 636.565
transcript.whisperx[29].end 653.149
transcript.whisperx[29].text 接下來裡面也是比較細一點的就是我們因應美國關稅分散風險是大家最近在講的多增加東協或者是增加歐盟的一個出口的一個比例所以我們大概有編了10億的經費是強化雙邊經貿關係韌性其中10億裡面當然每一項大概我寫的
transcript.whisperx[30].start 658.65
transcript.whisperx[30].end 665.46
transcript.whisperx[30].text 我覺得寫的有點籠統啦但至少有個方向出來但其中有4億的經費他大概是編所謂的這個
transcript.whisperx[31].start 668.444
transcript.whisperx[31].end 697.506
transcript.whisperx[31].text 出訪 或是邀請國外的團體來台灣這樣的一個經費那 抱歉喔 站在行政院的立場抱歉 站在我們立法院的立場我們會擔心這四億元的一個經費會不會變成一個綁裝的一個旅遊團我們怎麼樣能夠確保這四億的經費能夠有實際的效益消敏我們立法院或者是民眾的疑慮我們那個是辦國內展覽比如說工具機展邀請國外的買主來台灣是 是這個
transcript.whisperx[32].start 699.586
transcript.whisperx[32].end 721.026
transcript.whisperx[32].text 訪團呢訪團也是一樣是工協會提出來我們設台灣館因為這件事情是在編預算而已嘛對不對那後續怎麼執行那當然各方有各界的一個想像那我想後續的資訊的公開是非常重要的或者是每一次的出訪或者是每一次的邀請它的成效是多少
transcript.whisperx[33].start 722.735
transcript.whisperx[33].end 742.635
transcript.whisperx[33].text 他那個都是補助廠商的有沒有辦法來做一個完整的揭露補助每一個工協會去辦什麼展覽或者是我們台灣辦什麼 買什麼客物來因為這私營的預算比很多部會加起來都還多啦好不好 所以我們才會特別看這筆預算那未來是不是部長也承諾
transcript.whisperx[34].start 743.836
transcript.whisperx[34].end 763.904
transcript.whisperx[34].text 這些預算未來都會有一些政府公開的一些程序讓大家了解它的功能是什麼我們海外參展除了大的廠商之外他有能力設他自己的館之外中小企業沒辦法所以我們弄一個比較大的台灣館讓中小企業可以在那邊展覽他的產品這個錢就是要用在這個地方
transcript.whisperx[35].start 764.772
transcript.whisperx[35].end 780.614
transcript.whisperx[35].text 好沒關係你們只要願意公開後續做一個資訊充分的揭露的話那我想後續大家一起來檢驗好不好謝謝那接下來還有一點就是我們這一次的特別預算有特別明定就是這次的特別預算不受預算法的62條跟63條的一個限制對不對
transcript.whisperx[36].start 781.801
transcript.whisperx[36].end 800.477
transcript.whisperx[36].text 也就是可以留用其實我覺得這個是立法院對於行政院的一個高度的尊重但是我們在裡面的預算也看到了一些可能媒體的一些廣告費用院長應該也知道這是我們立法院這一屆非常關注的項目最後審議的結果我們還不知道如果有一些預算被砍的話
transcript.whisperx[37].start 801.96
transcript.whisperx[37].end 817.11
transcript.whisperx[37].text 那我想院長你會不會去用這個不適用62跟63條的不得流用的規定直接去把它補回來因為你還有一個200億的扣打還是說你會尊重立法院如果說我們真的要砍什麼預算你要流進來你會再尊重我們立法院
transcript.whisperx[38].start 817.87
transcript.whisperx[38].end 839.926
transcript.whisperx[38].text 後續的200億我們一直強調需要的時候我們才會提出來我們不會這樣不珍惜國家的資源因為立法院如果提出來的時候有法律上的限制或准許我們怎樣使用原本63條的規定是被砍過的預算不能留用嘛指定項目有刪除的不能不得留用嘛但是這一次我們把這個條拿掉了你們可是可以留用的就算我們砍了你們還是可以用只要科目還在的話
transcript.whisperx[39].start 840.811
transcript.whisperx[39].end 863.683
transcript.whisperx[39].text 但我想確認的是未來我們如果說真的有做一些刪減的話你們會不會尊重立法院如果說真的要在特別的項目增加的話來做一些知會立法院不管是知會立法院也好還是學立法院的同意尊重的事情你們會不會願意做我第一個會要求我們這200億的預備的預算是需要的時候我們提出來不需要的時候我們寧願就把它那另外就是我也拜託
transcript.whisperx[40].start 865.403
transcript.whisperx[40].end 889.618
transcript.whisperx[40].text 大院裡面各委員會能夠合理的去審查預算真的需要的多留下來 多留下來我想6263這條放寬是立法院對行政院的一個尊重我們會珍惜這樣的空白授權我們也希望說未來在做一些流用的時候行政院也務必要尊重立法院我們會珍惜這樣的空白授權 我們尊重那還有一點時間啦 這個媒體朋友請我幫忙問的啦今天立法院內政部長麻煩一下
transcript.whisperx[41].start 892.775
transcript.whisperx[41].end 920.16
transcript.whisperx[41].text 今天立法院好像有很多媒體同仁說進來的時候有一些不往沒有的一些刑事局的同仁有在立法院做一些進來我們立法院或者是做一些檢查那可不可以簡單說明一下狀況有這樣的狀況嗎 剛剛講的什麼狀況刑事局除了平常的保安人員之外刑事局的同仁也有來我們立法院
transcript.whisperx[42].start 921.294
transcript.whisperx[42].end 930.834
transcript.whisperx[42].text 沒有耶沒有嗎我沒有這樣的訊息因為是有些媒體想要跟您請問一下如果沒有的話我沒有這樣的訊息那我們後續再做一些確認好不好好 謝謝