iVOD / 163622

Field Value
IVOD_ID 163622
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/163622
日期 2025-08-26
會議資料.會議代碼 院會-11-3-26
會議資料.會議代碼:str 第11屆第3會期第26次會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 26
會議資料.種類 院會
會議資料.標題 第11屆第3會期第26次會議
影片種類 Clip
開始時間 2025-08-26T11:22:23+08:00
結束時間 2025-08-26T11:38:12+08:00
影片長度 00:15:49
支援功能[0] ai-transcript
支援功能[1] gazette
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/97036d915349e79021a6b234e64f9c4f7691804860db32eff354879b3588d5bdd5025eb6a0fa74945ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 賴士葆
委員發言時間 11:22:23 - 11:38:12
會議時間 2025-08-26T09:00:00+08:00
會議名稱 第11屆第3會期第26次會議(事由:一、行政院院長提出「臺美關稅談判之進程、方針、原則及臺灣產業可能遭受之衝擊影響評估」專案報告並備質詢(8月25日)。二、行政院院長、主計長、財政部部長及相關部會首長列席報告「114年度中央政府總預算追加預算案」編製經過並備質詢(8月26日上午)。三、行政院院長、主計長、財政部部長及相關部會首長列席報告「丹娜絲颱風及七二八豪雨災後復原重建特別預算案」編製經過並備質詢(8月26日下午)。四、8月22日上午9時至10時為國是論壇時間。)
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 0.03096875
transcript.pyannote[0].end 5.05971875
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 9.19409375
transcript.pyannote[1].end 13.07534375
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 13.68284375
transcript.pyannote[2].end 14.76284375
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 15.11721875
transcript.pyannote[3].end 18.72846875
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 19.43721875
transcript.pyannote[4].end 21.58034375
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 31.80659375
transcript.pyannote[5].end 32.41409375
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 33.22409375
transcript.pyannote[6].end 34.57409375
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 35.21534375
transcript.pyannote[7].end 38.94471875
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 39.97409375
transcript.pyannote[8].end 41.45909375
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 42.20159375
transcript.pyannote[9].end 44.54721875
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 45.08721875
transcript.pyannote[10].end 50.67284375
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 51.17909375
transcript.pyannote[11].end 51.92159375
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 52.46159375
transcript.pyannote[12].end 55.70159375
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 56.34284375
transcript.pyannote[13].end 59.24534375
transcript.pyannote[14].speaker SPEAKER_04
transcript.pyannote[14].start 60.10596875
transcript.pyannote[14].end 63.48096875
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 62.85659375
transcript.pyannote[15].end 67.32846875
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 67.85159375
transcript.pyannote[16].end 71.09159375
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 71.56409375
transcript.pyannote[17].end 78.90471875
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 79.27596875
transcript.pyannote[18].end 81.09846875
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 81.73971875
transcript.pyannote[19].end 83.15721875
transcript.pyannote[20].speaker SPEAKER_04
transcript.pyannote[20].start 81.95909375
transcript.pyannote[20].end 83.03909375
transcript.pyannote[21].speaker SPEAKER_04
transcript.pyannote[21].start 83.15721875
transcript.pyannote[21].end 95.25659375
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 83.42721875
transcript.pyannote[22].end 84.32159375
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 87.00471875
transcript.pyannote[23].end 87.79784375
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 89.04659375
transcript.pyannote[24].end 89.75534375
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 90.70034375
transcript.pyannote[25].end 91.37534375
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 91.59471875
transcript.pyannote[26].end 92.59034375
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 93.95721875
transcript.pyannote[27].end 94.88534375
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 95.25659375
transcript.pyannote[28].end 98.02409375
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 98.56409375
transcript.pyannote[29].end 99.39096875
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 99.59346875
transcript.pyannote[30].end 103.79534375
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 104.01471875
transcript.pyannote[31].end 104.03159375
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 104.04846875
transcript.pyannote[32].end 105.51659375
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 105.75284375
transcript.pyannote[33].end 106.10721875
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 106.32659375
transcript.pyannote[34].end 107.86221875
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 111.55784375
transcript.pyannote[35].end 112.57034375
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 113.51534375
transcript.pyannote[36].end 115.67534375
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 116.92409375
transcript.pyannote[37].end 117.63284375
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 120.04596875
transcript.pyannote[38].end 124.04534375
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 124.88909375
transcript.pyannote[39].end 131.57159375
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 132.06096875
transcript.pyannote[40].end 133.07346875
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 133.83284375
transcript.pyannote[41].end 134.98034375
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 135.60471875
transcript.pyannote[42].end 137.20784375
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 137.68034375
transcript.pyannote[43].end 141.22409375
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 141.22409375
transcript.pyannote[44].end 143.73846875
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 141.88221875
transcript.pyannote[45].end 145.10534375
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 145.47659375
transcript.pyannote[46].end 150.30284375
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 150.64034375
transcript.pyannote[47].end 154.35284375
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 155.44971875
transcript.pyannote[48].end 156.36096875
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 157.08659375
transcript.pyannote[49].end 160.76534375
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 161.44034375
transcript.pyannote[50].end 164.47784375
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 165.00096875
transcript.pyannote[51].end 169.60784375
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 169.91159375
transcript.pyannote[52].end 171.61596875
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 173.03346875
transcript.pyannote[53].end 177.70784375
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 178.41659375
transcript.pyannote[54].end 179.69909375
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 180.40784375
transcript.pyannote[55].end 183.95159375
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 180.44159375
transcript.pyannote[56].end 181.48784375
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 183.54659375
transcript.pyannote[57].end 184.86284375
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 185.18346875
transcript.pyannote[58].end 186.06096875
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 186.26346875
transcript.pyannote[59].end 187.32659375
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 188.40659375
transcript.pyannote[60].end 191.19096875
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 191.62971875
transcript.pyannote[61].end 192.23721875
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 193.08096875
transcript.pyannote[62].end 196.23659375
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 196.28721875
transcript.pyannote[63].end 198.97034375
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 199.56096875
transcript.pyannote[64].end 203.22284375
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 203.52659375
transcript.pyannote[65].end 205.63596875
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 205.72034375
transcript.pyannote[66].end 217.41471875
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 218.08971875
transcript.pyannote[67].end 221.44784375
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 222.20721875
transcript.pyannote[68].end 226.91534375
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 227.26971875
transcript.pyannote[69].end 231.11721875
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 231.53909375
transcript.pyannote[70].end 233.58096875
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 233.96909375
transcript.pyannote[71].end 235.38659375
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 235.69034375
transcript.pyannote[72].end 236.87159375
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 237.25971875
transcript.pyannote[73].end 237.73221875
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 238.50846875
transcript.pyannote[74].end 246.76034375
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 247.45221875
transcript.pyannote[75].end 249.61221875
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 249.61221875
transcript.pyannote[76].end 251.70471875
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 250.55721875
transcript.pyannote[77].end 251.29971875
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 251.70471875
transcript.pyannote[78].end 252.32909375
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 252.88596875
transcript.pyannote[79].end 254.96159375
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 254.97846875
transcript.pyannote[80].end 256.29471875
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 256.51409375
transcript.pyannote[81].end 257.20596875
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 258.06659375
transcript.pyannote[82].end 260.02409375
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 260.44596875
transcript.pyannote[83].end 262.06596875
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 260.63159375
transcript.pyannote[84].end 260.85096875
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 260.85096875
transcript.pyannote[85].end 260.90159375
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 260.90159375
transcript.pyannote[86].end 261.76221875
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 262.35284375
transcript.pyannote[87].end 263.98971875
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 264.64784375
transcript.pyannote[88].end 265.25534375
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 265.86284375
transcript.pyannote[89].end 268.03971875
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 268.84971875
transcript.pyannote[90].end 269.52471875
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 269.79471875
transcript.pyannote[91].end 271.76909375
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 271.92096875
transcript.pyannote[92].end 273.86159375
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 274.40159375
transcript.pyannote[93].end 276.08909375
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 277.40534375
transcript.pyannote[94].end 278.58659375
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 278.77221875
transcript.pyannote[95].end 280.25721875
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 280.93221875
transcript.pyannote[96].end 281.87721875
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 282.45096875
transcript.pyannote[97].end 283.85159375
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 284.07096875
transcript.pyannote[98].end 286.43346875
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 286.63596875
transcript.pyannote[99].end 288.20534375
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 288.44159375
transcript.pyannote[100].end 290.04471875
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 290.51721875
transcript.pyannote[101].end 293.57159375
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 294.17909375
transcript.pyannote[102].end 296.47409375
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 296.74409375
transcript.pyannote[103].end 298.54971875
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 299.10659375
transcript.pyannote[104].end 305.41784375
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 306.26159375
transcript.pyannote[105].end 312.48846875
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 310.95284375
transcript.pyannote[106].end 313.92284375
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 313.34909375
transcript.pyannote[107].end 313.61909375
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 314.12534375
transcript.pyannote[108].end 318.17534375
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 318.44534375
transcript.pyannote[109].end 321.34784375
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 321.70221875
transcript.pyannote[110].end 323.01846875
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 324.08159375
transcript.pyannote[111].end 325.09409375
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 325.87034375
transcript.pyannote[112].end 330.89909375
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 327.40596875
transcript.pyannote[113].end 329.95409375
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 331.42221875
transcript.pyannote[114].end 333.59909375
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 334.51034375
transcript.pyannote[115].end 335.60721875
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 335.91096875
transcript.pyannote[116].end 337.12596875
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 337.48034375
transcript.pyannote[117].end 339.31971875
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 341.04096875
transcript.pyannote[118].end 342.86346875
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 343.25159375
transcript.pyannote[119].end 344.31471875
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 344.83784375
transcript.pyannote[120].end 346.45784375
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 346.55909375
transcript.pyannote[121].end 347.04846875
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 347.11596875
transcript.pyannote[122].end 348.56721875
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 348.75284375
transcript.pyannote[123].end 351.89159375
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 352.93784375
transcript.pyannote[124].end 353.89971875
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 354.59159375
transcript.pyannote[125].end 359.06346875
transcript.pyannote[126].speaker SPEAKER_02
transcript.pyannote[126].start 358.27034375
transcript.pyannote[126].end 362.45534375
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 359.73846875
transcript.pyannote[127].end 360.12659375
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 362.45534375
transcript.pyannote[128].end 363.88971875
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 363.97409375
transcript.pyannote[129].end 364.61534375
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 364.68284375
transcript.pyannote[130].end 367.51784375
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 367.99034375
transcript.pyannote[131].end 368.68221875
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 369.28971875
transcript.pyannote[132].end 370.45409375
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 371.09534375
transcript.pyannote[133].end 372.93471875
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 373.87971875
transcript.pyannote[134].end 376.32659375
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 377.27159375
transcript.pyannote[135].end 378.82409375
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 379.66784375
transcript.pyannote[136].end 380.15721875
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 381.00096875
transcript.pyannote[137].end 383.66721875
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 384.05534375
transcript.pyannote[138].end 385.75971875
transcript.pyannote[139].speaker SPEAKER_02
transcript.pyannote[139].start 385.25346875
transcript.pyannote[139].end 387.31221875
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 386.55284375
transcript.pyannote[140].end 392.03721875
transcript.pyannote[141].speaker SPEAKER_02
transcript.pyannote[141].start 390.46784375
transcript.pyannote[141].end 395.05784375
transcript.pyannote[142].speaker SPEAKER_00
transcript.pyannote[142].start 393.38721875
transcript.pyannote[142].end 402.48284375
transcript.pyannote[143].speaker SPEAKER_02
transcript.pyannote[143].start 395.37846875
transcript.pyannote[143].end 395.66534375
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 402.73596875
transcript.pyannote[144].end 411.49409375
transcript.pyannote[145].speaker SPEAKER_02
transcript.pyannote[145].start 410.24534375
transcript.pyannote[145].end 416.94471875
transcript.pyannote[146].speaker SPEAKER_00
transcript.pyannote[146].start 416.94471875
transcript.pyannote[146].end 419.22284375
transcript.pyannote[147].speaker SPEAKER_00
transcript.pyannote[147].start 420.38721875
transcript.pyannote[147].end 421.77096875
transcript.pyannote[148].speaker SPEAKER_00
transcript.pyannote[148].start 422.42909375
transcript.pyannote[148].end 424.01534375
transcript.pyannote[149].speaker SPEAKER_00
transcript.pyannote[149].start 424.70721875
transcript.pyannote[149].end 426.29346875
transcript.pyannote[150].speaker SPEAKER_00
transcript.pyannote[150].start 426.90096875
transcript.pyannote[150].end 430.34346875
transcript.pyannote[151].speaker SPEAKER_00
transcript.pyannote[151].start 430.44471875
transcript.pyannote[151].end 431.74409375
transcript.pyannote[152].speaker SPEAKER_00
transcript.pyannote[152].start 432.36846875
transcript.pyannote[152].end 443.32034375
transcript.pyannote[153].speaker SPEAKER_02
transcript.pyannote[153].start 443.32034375
transcript.pyannote[153].end 444.26534375
transcript.pyannote[154].speaker SPEAKER_00
transcript.pyannote[154].start 443.42159375
transcript.pyannote[154].end 453.68159375
transcript.pyannote[155].speaker SPEAKER_03
transcript.pyannote[155].start 454.18784375
transcript.pyannote[155].end 490.48596875
transcript.pyannote[156].speaker SPEAKER_00
transcript.pyannote[156].start 454.23846875
transcript.pyannote[156].end 455.67284375
transcript.pyannote[157].speaker SPEAKER_00
transcript.pyannote[157].start 463.45221875
transcript.pyannote[157].end 464.43096875
transcript.pyannote[158].speaker SPEAKER_00
transcript.pyannote[158].start 479.68596875
transcript.pyannote[158].end 483.38159375
transcript.pyannote[159].speaker SPEAKER_00
transcript.pyannote[159].start 488.08971875
transcript.pyannote[159].end 490.68846875
transcript.pyannote[160].speaker SPEAKER_00
transcript.pyannote[160].start 491.21159375
transcript.pyannote[160].end 494.46846875
transcript.pyannote[161].speaker SPEAKER_03
transcript.pyannote[161].start 494.56971875
transcript.pyannote[161].end 495.00846875
transcript.pyannote[162].speaker SPEAKER_00
transcript.pyannote[162].start 495.12659375
transcript.pyannote[162].end 497.42159375
transcript.pyannote[163].speaker SPEAKER_00
transcript.pyannote[163].start 498.11346875
transcript.pyannote[163].end 499.00784375
transcript.pyannote[164].speaker SPEAKER_00
transcript.pyannote[164].start 500.00346875
transcript.pyannote[164].end 502.07909375
transcript.pyannote[165].speaker SPEAKER_00
transcript.pyannote[165].start 502.90596875
transcript.pyannote[165].end 504.00284375
transcript.pyannote[166].speaker SPEAKER_00
transcript.pyannote[166].start 504.57659375
transcript.pyannote[166].end 505.45409375
transcript.pyannote[167].speaker SPEAKER_00
transcript.pyannote[167].start 506.43284375
transcript.pyannote[167].end 507.73221875
transcript.pyannote[168].speaker SPEAKER_03
transcript.pyannote[168].start 508.01909375
transcript.pyannote[168].end 509.89221875
transcript.pyannote[169].speaker SPEAKER_00
transcript.pyannote[169].start 508.23846875
transcript.pyannote[169].end 513.89159375
transcript.pyannote[170].speaker SPEAKER_03
transcript.pyannote[170].start 513.89159375
transcript.pyannote[170].end 528.97784375
transcript.pyannote[171].speaker SPEAKER_00
transcript.pyannote[171].start 514.39784375
transcript.pyannote[171].end 515.24159375
transcript.pyannote[172].speaker SPEAKER_00
transcript.pyannote[172].start 515.62971875
transcript.pyannote[172].end 516.92909375
transcript.pyannote[173].speaker SPEAKER_00
transcript.pyannote[173].start 516.96284375
transcript.pyannote[173].end 518.14409375
transcript.pyannote[174].speaker SPEAKER_00
transcript.pyannote[174].start 519.49409375
transcript.pyannote[174].end 519.61221875
transcript.pyannote[175].speaker SPEAKER_00
transcript.pyannote[175].start 521.63721875
transcript.pyannote[175].end 521.65409375
transcript.pyannote[176].speaker SPEAKER_02
transcript.pyannote[176].start 521.65409375
transcript.pyannote[176].end 522.54846875
transcript.pyannote[177].speaker SPEAKER_00
transcript.pyannote[177].start 522.54846875
transcript.pyannote[177].end 522.61596875
transcript.pyannote[178].speaker SPEAKER_02
transcript.pyannote[178].start 524.77596875
transcript.pyannote[178].end 526.09221875
transcript.pyannote[179].speaker SPEAKER_02
transcript.pyannote[179].start 527.32409375
transcript.pyannote[179].end 528.42096875
transcript.pyannote[180].speaker SPEAKER_02
transcript.pyannote[180].start 528.97784375
transcript.pyannote[180].end 538.91721875
transcript.pyannote[181].speaker SPEAKER_03
transcript.pyannote[181].start 529.61909375
transcript.pyannote[181].end 530.63159375
transcript.pyannote[182].speaker SPEAKER_00
transcript.pyannote[182].start 533.50034375
transcript.pyannote[182].end 533.98971875
transcript.pyannote[183].speaker SPEAKER_00
transcript.pyannote[183].start 536.03159375
transcript.pyannote[183].end 536.57159375
transcript.pyannote[184].speaker SPEAKER_00
transcript.pyannote[184].start 538.95096875
transcript.pyannote[184].end 540.52034375
transcript.pyannote[185].speaker SPEAKER_00
transcript.pyannote[185].start 540.79034375
transcript.pyannote[185].end 541.60034375
transcript.pyannote[186].speaker SPEAKER_02
transcript.pyannote[186].start 541.60034375
transcript.pyannote[186].end 542.89971875
transcript.pyannote[187].speaker SPEAKER_00
transcript.pyannote[187].start 542.35971875
transcript.pyannote[187].end 545.34659375
transcript.pyannote[188].speaker SPEAKER_02
transcript.pyannote[188].start 543.33846875
transcript.pyannote[188].end 544.08096875
transcript.pyannote[189].speaker SPEAKER_02
transcript.pyannote[189].start 544.14846875
transcript.pyannote[189].end 544.78971875
transcript.pyannote[190].speaker SPEAKER_01
transcript.pyannote[190].start 544.78971875
transcript.pyannote[190].end 544.84034375
transcript.pyannote[191].speaker SPEAKER_00
transcript.pyannote[191].start 545.92034375
transcript.pyannote[191].end 546.34221875
transcript.pyannote[192].speaker SPEAKER_00
transcript.pyannote[192].start 547.01721875
transcript.pyannote[192].end 548.46846875
transcript.pyannote[193].speaker SPEAKER_01
transcript.pyannote[193].start 547.10159375
transcript.pyannote[193].end 547.86096875
transcript.pyannote[194].speaker SPEAKER_00
transcript.pyannote[194].start 548.95784375
transcript.pyannote[194].end 553.44659375
transcript.pyannote[195].speaker SPEAKER_00
transcript.pyannote[195].start 553.76721875
transcript.pyannote[195].end 555.20159375
transcript.pyannote[196].speaker SPEAKER_00
transcript.pyannote[196].start 556.73721875
transcript.pyannote[196].end 558.01971875
transcript.pyannote[197].speaker SPEAKER_00
transcript.pyannote[197].start 559.04909375
transcript.pyannote[197].end 559.82534375
transcript.pyannote[198].speaker SPEAKER_00
transcript.pyannote[198].start 560.12909375
transcript.pyannote[198].end 562.74471875
transcript.pyannote[199].speaker SPEAKER_00
transcript.pyannote[199].start 562.86284375
transcript.pyannote[199].end 563.94284375
transcript.pyannote[200].speaker SPEAKER_00
transcript.pyannote[200].start 564.63471875
transcript.pyannote[200].end 569.25846875
transcript.pyannote[201].speaker SPEAKER_00
transcript.pyannote[201].start 569.79846875
transcript.pyannote[201].end 570.97971875
transcript.pyannote[202].speaker SPEAKER_00
transcript.pyannote[202].start 571.48596875
transcript.pyannote[202].end 572.59971875
transcript.pyannote[203].speaker SPEAKER_00
transcript.pyannote[203].start 573.29159375
transcript.pyannote[203].end 574.10159375
transcript.pyannote[204].speaker SPEAKER_00
transcript.pyannote[204].start 574.11846875
transcript.pyannote[204].end 575.77221875
transcript.pyannote[205].speaker SPEAKER_00
transcript.pyannote[205].start 576.95346875
transcript.pyannote[205].end 579.18096875
transcript.pyannote[206].speaker SPEAKER_00
transcript.pyannote[206].start 579.29909375
transcript.pyannote[206].end 580.05846875
transcript.pyannote[207].speaker SPEAKER_00
transcript.pyannote[207].start 580.37909375
transcript.pyannote[207].end 582.23534375
transcript.pyannote[208].speaker SPEAKER_00
transcript.pyannote[208].start 582.33659375
transcript.pyannote[208].end 585.15471875
transcript.pyannote[209].speaker SPEAKER_00
transcript.pyannote[209].start 585.55971875
transcript.pyannote[209].end 589.86284375
transcript.pyannote[210].speaker SPEAKER_00
transcript.pyannote[210].start 590.48721875
transcript.pyannote[210].end 593.01846875
transcript.pyannote[211].speaker SPEAKER_00
transcript.pyannote[211].start 594.09846875
transcript.pyannote[211].end 597.23721875
transcript.pyannote[212].speaker SPEAKER_00
transcript.pyannote[212].start 598.14846875
transcript.pyannote[212].end 598.53659375
transcript.pyannote[213].speaker SPEAKER_00
transcript.pyannote[213].start 598.67159375
transcript.pyannote[213].end 599.19471875
transcript.pyannote[214].speaker SPEAKER_00
transcript.pyannote[214].start 599.68409375
transcript.pyannote[214].end 601.62471875
transcript.pyannote[215].speaker SPEAKER_00
transcript.pyannote[215].start 602.55284375
transcript.pyannote[215].end 604.76346875
transcript.pyannote[216].speaker SPEAKER_00
transcript.pyannote[216].start 604.83096875
transcript.pyannote[216].end 606.68721875
transcript.pyannote[217].speaker SPEAKER_00
transcript.pyannote[217].start 606.94034375
transcript.pyannote[217].end 607.49721875
transcript.pyannote[218].speaker SPEAKER_00
transcript.pyannote[218].start 608.59409375
transcript.pyannote[218].end 609.10034375
transcript.pyannote[219].speaker SPEAKER_00
transcript.pyannote[219].start 609.62346875
transcript.pyannote[219].end 612.50909375
transcript.pyannote[220].speaker SPEAKER_00
transcript.pyannote[220].start 612.88034375
transcript.pyannote[220].end 614.24721875
transcript.pyannote[221].speaker SPEAKER_00
transcript.pyannote[221].start 614.50034375
transcript.pyannote[221].end 615.59721875
transcript.pyannote[222].speaker SPEAKER_00
transcript.pyannote[222].start 615.98534375
transcript.pyannote[222].end 618.33096875
transcript.pyannote[223].speaker SPEAKER_00
transcript.pyannote[223].start 618.98909375
transcript.pyannote[223].end 620.13659375
transcript.pyannote[224].speaker SPEAKER_00
transcript.pyannote[224].start 620.96346875
transcript.pyannote[224].end 623.07284375
transcript.pyannote[225].speaker SPEAKER_00
transcript.pyannote[225].start 623.66346875
transcript.pyannote[225].end 625.67159375
transcript.pyannote[226].speaker SPEAKER_00
transcript.pyannote[226].start 626.36346875
transcript.pyannote[226].end 628.30409375
transcript.pyannote[227].speaker SPEAKER_00
transcript.pyannote[227].start 628.64159375
transcript.pyannote[227].end 631.08846875
transcript.pyannote[228].speaker SPEAKER_00
transcript.pyannote[228].start 631.57784375
transcript.pyannote[228].end 631.83096875
transcript.pyannote[229].speaker SPEAKER_00
transcript.pyannote[229].start 631.89846875
transcript.pyannote[229].end 633.40034375
transcript.pyannote[230].speaker SPEAKER_00
transcript.pyannote[230].start 633.73784375
transcript.pyannote[230].end 634.15971875
transcript.pyannote[231].speaker SPEAKER_00
transcript.pyannote[231].start 634.54784375
transcript.pyannote[231].end 636.16784375
transcript.pyannote[232].speaker SPEAKER_00
transcript.pyannote[232].start 636.70784375
transcript.pyannote[232].end 637.97346875
transcript.pyannote[233].speaker SPEAKER_00
transcript.pyannote[233].start 638.95221875
transcript.pyannote[233].end 640.50471875
transcript.pyannote[234].speaker SPEAKER_00
transcript.pyannote[234].start 640.84221875
transcript.pyannote[234].end 647.72721875
transcript.pyannote[235].speaker SPEAKER_03
transcript.pyannote[235].start 645.43221875
transcript.pyannote[235].end 645.90471875
transcript.pyannote[236].speaker SPEAKER_03
transcript.pyannote[236].start 646.44471875
transcript.pyannote[236].end 646.79909375
transcript.pyannote[237].speaker SPEAKER_03
transcript.pyannote[237].start 647.72721875
transcript.pyannote[237].end 650.00534375
transcript.pyannote[238].speaker SPEAKER_00
transcript.pyannote[238].start 648.21659375
transcript.pyannote[238].end 652.60409375
transcript.pyannote[239].speaker SPEAKER_00
transcript.pyannote[239].start 653.38034375
transcript.pyannote[239].end 654.37596875
transcript.pyannote[240].speaker SPEAKER_00
transcript.pyannote[240].start 654.81471875
transcript.pyannote[240].end 656.56971875
transcript.pyannote[241].speaker SPEAKER_00
transcript.pyannote[241].start 656.97471875
transcript.pyannote[241].end 660.01221875
transcript.pyannote[242].speaker SPEAKER_00
transcript.pyannote[242].start 661.09221875
transcript.pyannote[242].end 662.98221875
transcript.pyannote[243].speaker SPEAKER_00
transcript.pyannote[243].start 664.01159375
transcript.pyannote[243].end 665.73284375
transcript.pyannote[244].speaker SPEAKER_00
transcript.pyannote[244].start 667.16721875
transcript.pyannote[244].end 668.82096875
transcript.pyannote[245].speaker SPEAKER_00
transcript.pyannote[245].start 669.36096875
transcript.pyannote[245].end 670.82909375
transcript.pyannote[246].speaker SPEAKER_02
transcript.pyannote[246].start 671.21721875
transcript.pyannote[246].end 672.48284375
transcript.pyannote[247].speaker SPEAKER_00
transcript.pyannote[247].start 671.53784375
transcript.pyannote[247].end 675.53721875
transcript.pyannote[248].speaker SPEAKER_00
transcript.pyannote[248].start 676.14471875
transcript.pyannote[248].end 688.27784375
transcript.pyannote[249].speaker SPEAKER_00
transcript.pyannote[249].start 689.12159375
transcript.pyannote[249].end 692.00721875
transcript.pyannote[250].speaker SPEAKER_00
transcript.pyannote[250].start 692.90159375
transcript.pyannote[250].end 693.37409375
transcript.pyannote[251].speaker SPEAKER_00
transcript.pyannote[251].start 693.74534375
transcript.pyannote[251].end 695.85471875
transcript.pyannote[252].speaker SPEAKER_00
transcript.pyannote[252].start 695.95596875
transcript.pyannote[252].end 697.47471875
transcript.pyannote[253].speaker SPEAKER_00
transcript.pyannote[253].start 698.06534375
transcript.pyannote[253].end 702.30096875
transcript.pyannote[254].speaker SPEAKER_00
transcript.pyannote[254].start 702.48659375
transcript.pyannote[254].end 705.00096875
transcript.pyannote[255].speaker SPEAKER_00
transcript.pyannote[255].start 705.49034375
transcript.pyannote[255].end 706.67159375
transcript.pyannote[256].speaker SPEAKER_00
transcript.pyannote[256].start 708.19034375
transcript.pyannote[256].end 708.71346875
transcript.pyannote[257].speaker SPEAKER_00
transcript.pyannote[257].start 709.89471875
transcript.pyannote[257].end 712.71284375
transcript.pyannote[258].speaker SPEAKER_00
transcript.pyannote[258].start 712.99971875
transcript.pyannote[258].end 718.12971875
transcript.pyannote[259].speaker SPEAKER_03
transcript.pyannote[259].start 714.55221875
transcript.pyannote[259].end 735.25784375
transcript.pyannote[260].speaker SPEAKER_00
transcript.pyannote[260].start 721.85909375
transcript.pyannote[260].end 723.66471875
transcript.pyannote[261].speaker SPEAKER_00
transcript.pyannote[261].start 727.09034375
transcript.pyannote[261].end 728.47409375
transcript.pyannote[262].speaker SPEAKER_00
transcript.pyannote[262].start 729.50346875
transcript.pyannote[262].end 731.20784375
transcript.pyannote[263].speaker SPEAKER_00
transcript.pyannote[263].start 732.20346875
transcript.pyannote[263].end 733.67159375
transcript.pyannote[264].speaker SPEAKER_00
transcript.pyannote[264].start 734.34659375
transcript.pyannote[264].end 735.03846875
transcript.pyannote[265].speaker SPEAKER_00
transcript.pyannote[265].start 735.25784375
transcript.pyannote[265].end 737.04659375
transcript.pyannote[266].speaker SPEAKER_00
transcript.pyannote[266].start 737.78909375
transcript.pyannote[266].end 741.06284375
transcript.pyannote[267].speaker SPEAKER_02
transcript.pyannote[267].start 739.52721875
transcript.pyannote[267].end 758.22471875
transcript.pyannote[268].speaker SPEAKER_00
transcript.pyannote[268].start 755.96346875
transcript.pyannote[268].end 764.58659375
transcript.pyannote[269].speaker SPEAKER_02
transcript.pyannote[269].start 759.84471875
transcript.pyannote[269].end 762.17346875
transcript.pyannote[270].speaker SPEAKER_02
transcript.pyannote[270].start 763.82721875
transcript.pyannote[270].end 769.71659375
transcript.pyannote[271].speaker SPEAKER_00
transcript.pyannote[271].start 764.85659375
transcript.pyannote[271].end 768.33284375
transcript.pyannote[272].speaker SPEAKER_00
transcript.pyannote[272].start 769.17659375
transcript.pyannote[272].end 772.60221875
transcript.pyannote[273].speaker SPEAKER_02
transcript.pyannote[273].start 771.28596875
transcript.pyannote[273].end 772.33221875
transcript.pyannote[274].speaker SPEAKER_02
transcript.pyannote[274].start 772.60221875
transcript.pyannote[274].end 772.61909375
transcript.pyannote[275].speaker SPEAKER_00
transcript.pyannote[275].start 773.17596875
transcript.pyannote[275].end 775.25159375
transcript.pyannote[276].speaker SPEAKER_02
transcript.pyannote[276].start 774.55971875
transcript.pyannote[276].end 781.78221875
transcript.pyannote[277].speaker SPEAKER_00
transcript.pyannote[277].start 778.40721875
transcript.pyannote[277].end 779.30159375
transcript.pyannote[278].speaker SPEAKER_00
transcript.pyannote[278].start 780.61784375
transcript.pyannote[278].end 780.85409375
transcript.pyannote[279].speaker SPEAKER_00
transcript.pyannote[279].start 781.71471875
transcript.pyannote[279].end 783.30096875
transcript.pyannote[280].speaker SPEAKER_00
transcript.pyannote[280].start 783.58784375
transcript.pyannote[280].end 784.58346875
transcript.pyannote[281].speaker SPEAKER_02
transcript.pyannote[281].start 783.72284375
transcript.pyannote[281].end 785.86596875
transcript.pyannote[282].speaker SPEAKER_00
transcript.pyannote[282].start 785.05596875
transcript.pyannote[282].end 787.58721875
transcript.pyannote[283].speaker SPEAKER_00
transcript.pyannote[283].start 788.14409375
transcript.pyannote[283].end 790.86096875
transcript.pyannote[284].speaker SPEAKER_00
transcript.pyannote[284].start 791.21534375
transcript.pyannote[284].end 794.18534375
transcript.pyannote[285].speaker SPEAKER_00
transcript.pyannote[285].start 794.64096875
transcript.pyannote[285].end 798.06659375
transcript.pyannote[286].speaker SPEAKER_00
transcript.pyannote[286].start 798.48846875
transcript.pyannote[286].end 800.32784375
transcript.pyannote[287].speaker SPEAKER_00
transcript.pyannote[287].start 800.81721875
transcript.pyannote[287].end 804.58034375
transcript.pyannote[288].speaker SPEAKER_00
transcript.pyannote[288].start 804.98534375
transcript.pyannote[288].end 812.05596875
transcript.pyannote[289].speaker SPEAKER_00
transcript.pyannote[289].start 812.47784375
transcript.pyannote[289].end 817.00034375
transcript.pyannote[290].speaker SPEAKER_00
transcript.pyannote[290].start 817.08471875
transcript.pyannote[290].end 819.24471875
transcript.pyannote[291].speaker SPEAKER_00
transcript.pyannote[291].start 819.88596875
transcript.pyannote[291].end 820.99971875
transcript.pyannote[292].speaker SPEAKER_00
transcript.pyannote[292].start 821.38784375
transcript.pyannote[292].end 822.19784375
transcript.pyannote[293].speaker SPEAKER_00
transcript.pyannote[293].start 822.36659375
transcript.pyannote[293].end 823.66596875
transcript.pyannote[294].speaker SPEAKER_00
transcript.pyannote[294].start 824.57721875
transcript.pyannote[294].end 826.99034375
transcript.pyannote[295].speaker SPEAKER_00
transcript.pyannote[295].start 827.59784375
transcript.pyannote[295].end 830.02784375
transcript.pyannote[296].speaker SPEAKER_00
transcript.pyannote[296].start 830.50034375
transcript.pyannote[296].end 833.58846875
transcript.pyannote[297].speaker SPEAKER_00
transcript.pyannote[297].start 833.70659375
transcript.pyannote[297].end 834.75284375
transcript.pyannote[298].speaker SPEAKER_00
transcript.pyannote[298].start 834.97221875
transcript.pyannote[298].end 836.17034375
transcript.pyannote[299].speaker SPEAKER_00
transcript.pyannote[299].start 836.38971875
transcript.pyannote[299].end 840.30471875
transcript.pyannote[300].speaker SPEAKER_00
transcript.pyannote[300].start 840.81096875
transcript.pyannote[300].end 852.03284375
transcript.pyannote[301].speaker SPEAKER_03
transcript.pyannote[301].start 850.80096875
transcript.pyannote[301].end 850.90221875
transcript.pyannote[302].speaker SPEAKER_03
transcript.pyannote[302].start 851.05409375
transcript.pyannote[302].end 851.10471875
transcript.pyannote[303].speaker SPEAKER_03
transcript.pyannote[303].start 851.20596875
transcript.pyannote[303].end 851.34096875
transcript.pyannote[304].speaker SPEAKER_03
transcript.pyannote[304].start 852.25221875
transcript.pyannote[304].end 863.13659375
transcript.pyannote[305].speaker SPEAKER_00
transcript.pyannote[305].start 856.89284375
transcript.pyannote[305].end 857.92221875
transcript.pyannote[306].speaker SPEAKER_00
transcript.pyannote[306].start 858.31034375
transcript.pyannote[306].end 859.32284375
transcript.pyannote[307].speaker SPEAKER_00
transcript.pyannote[307].start 861.51659375
transcript.pyannote[307].end 863.06909375
transcript.pyannote[308].speaker SPEAKER_00
transcript.pyannote[308].start 863.13659375
transcript.pyannote[308].end 863.37284375
transcript.pyannote[309].speaker SPEAKER_03
transcript.pyannote[309].start 863.37284375
transcript.pyannote[309].end 865.68471875
transcript.pyannote[310].speaker SPEAKER_00
transcript.pyannote[310].start 863.50784375
transcript.pyannote[310].end 866.10659375
transcript.pyannote[311].speaker SPEAKER_03
transcript.pyannote[311].start 865.71846875
transcript.pyannote[311].end 865.81971875
transcript.pyannote[312].speaker SPEAKER_03
transcript.pyannote[312].start 866.39346875
transcript.pyannote[312].end 867.65909375
transcript.pyannote[313].speaker SPEAKER_00
transcript.pyannote[313].start 866.57909375
transcript.pyannote[313].end 867.06846875
transcript.pyannote[314].speaker SPEAKER_00
transcript.pyannote[314].start 867.65909375
transcript.pyannote[314].end 871.60784375
transcript.pyannote[315].speaker SPEAKER_00
transcript.pyannote[315].start 872.13096875
transcript.pyannote[315].end 880.55159375
transcript.pyannote[316].speaker SPEAKER_02
transcript.pyannote[316].start 873.66659375
transcript.pyannote[316].end 877.69971875
transcript.pyannote[317].speaker SPEAKER_02
transcript.pyannote[317].start 879.50534375
transcript.pyannote[317].end 887.28471875
transcript.pyannote[318].speaker SPEAKER_00
transcript.pyannote[318].start 882.30659375
transcript.pyannote[318].end 883.36971875
transcript.pyannote[319].speaker SPEAKER_00
transcript.pyannote[319].start 884.71971875
transcript.pyannote[319].end 885.39471875
transcript.pyannote[320].speaker SPEAKER_00
transcript.pyannote[320].start 886.50846875
transcript.pyannote[320].end 889.22534375
transcript.pyannote[321].speaker SPEAKER_00
transcript.pyannote[321].start 889.68096875
transcript.pyannote[321].end 892.87034375
transcript.pyannote[322].speaker SPEAKER_00
transcript.pyannote[322].start 893.19096875
transcript.pyannote[322].end 894.57471875
transcript.pyannote[323].speaker SPEAKER_00
transcript.pyannote[323].start 894.96284375
transcript.pyannote[323].end 900.19409375
transcript.pyannote[324].speaker SPEAKER_00
transcript.pyannote[324].start 900.58221875
transcript.pyannote[324].end 905.50971875
transcript.pyannote[325].speaker SPEAKER_02
transcript.pyannote[325].start 904.53096875
transcript.pyannote[325].end 906.23534375
transcript.pyannote[326].speaker SPEAKER_00
transcript.pyannote[326].start 906.23534375
transcript.pyannote[326].end 907.53471875
transcript.pyannote[327].speaker SPEAKER_02
transcript.pyannote[327].start 907.53471875
transcript.pyannote[327].end 908.05784375
transcript.pyannote[328].speaker SPEAKER_00
transcript.pyannote[328].start 908.05784375
transcript.pyannote[328].end 909.28971875
transcript.pyannote[329].speaker SPEAKER_02
transcript.pyannote[329].start 909.28971875
transcript.pyannote[329].end 914.38596875
transcript.pyannote[330].speaker SPEAKER_00
transcript.pyannote[330].start 912.64784375
transcript.pyannote[330].end 912.71534375
transcript.pyannote[331].speaker SPEAKER_03
transcript.pyannote[331].start 912.71534375
transcript.pyannote[331].end 914.35221875
transcript.pyannote[332].speaker SPEAKER_03
transcript.pyannote[332].start 914.38596875
transcript.pyannote[332].end 914.53784375
transcript.pyannote[333].speaker SPEAKER_02
transcript.pyannote[333].start 914.53784375
transcript.pyannote[333].end 916.78221875
transcript.pyannote[334].speaker SPEAKER_03
transcript.pyannote[334].start 914.77409375
transcript.pyannote[334].end 914.92596875
transcript.pyannote[335].speaker SPEAKER_03
transcript.pyannote[335].start 916.19159375
transcript.pyannote[335].end 919.66784375
transcript.pyannote[336].speaker SPEAKER_02
transcript.pyannote[336].start 919.26284375
transcript.pyannote[336].end 920.64659375
transcript.pyannote[337].speaker SPEAKER_00
transcript.pyannote[337].start 919.66784375
transcript.pyannote[337].end 920.15721875
transcript.pyannote[338].speaker SPEAKER_03
transcript.pyannote[338].start 920.15721875
transcript.pyannote[338].end 926.62034375
transcript.pyannote[339].speaker SPEAKER_02
transcript.pyannote[339].start 921.40596875
transcript.pyannote[339].end 922.72221875
transcript.pyannote[340].speaker SPEAKER_02
transcript.pyannote[340].start 925.21971875
transcript.pyannote[340].end 927.73409375
transcript.pyannote[341].speaker SPEAKER_00
transcript.pyannote[341].start 926.62034375
transcript.pyannote[341].end 928.07159375
transcript.pyannote[342].speaker SPEAKER_03
transcript.pyannote[342].start 928.07159375
transcript.pyannote[342].end 931.17659375
transcript.pyannote[343].speaker SPEAKER_00
transcript.pyannote[343].start 928.66221875
transcript.pyannote[343].end 928.88159375
transcript.pyannote[344].speaker SPEAKER_00
transcript.pyannote[344].start 929.97846875
transcript.pyannote[344].end 934.61909375
transcript.pyannote[345].speaker SPEAKER_00
transcript.pyannote[345].start 935.00721875
transcript.pyannote[345].end 935.95221875
transcript.pyannote[346].speaker SPEAKER_02
transcript.pyannote[346].start 935.49659375
transcript.pyannote[346].end 936.52596875
transcript.pyannote[347].speaker SPEAKER_01
transcript.pyannote[347].start 943.57971875
transcript.pyannote[347].end 948.57471875
transcript.pyannote[348].speaker SPEAKER_01
transcript.pyannote[348].start 949.97534375
transcript.pyannote[348].end 950.59971875
transcript.whisperx[0].start 0.029
transcript.whisperx[0].end 21.1
transcript.whisperx[0].text 接下來我們請賴世保委員質詢翁曉琳委員請準備謝謝主席韓院長 卓院長以及各位先進那麼有請這個卓院長以及財政部的莊部長麻煩請卓院長財政部備詢
transcript.whisperx[1].start 31.977
transcript.whisperx[1].end 58.897
transcript.whisperx[1].text 兩位長官好最新的一個外媒報導說川普要對全世界國家對美國的高科技公司課數位稅他要用增加關稅來反制我就請教莊部長我們有沒有課數位稅
transcript.whisperx[2].start 60.491
transcript.whisperx[2].end 80.878
transcript.whisperx[2].text 目前為止我們並沒有所謂的課數位他這裡面數位是這樣子你要不要仔細弄清楚他是線上就是說比如說Meta他的線上廣告的服務數位的媒介服務平台服務都有在台灣都有做你們不是要課稅嗎
transcript.whisperx[3].start 82.138
transcript.whisperx[3].end 107.595
transcript.whisperx[3].text 這不是數位稅嗎我們目前對於境外的電商確實有課相關的稅有啊但數位服務稅是沒有課數位服務稅沒有課是境外電商相關稅不有課所以台灣要請院長交代副院長如果川普講這個事情的時候說台灣是沒有課數位稅否則他要報復了好 那個莊部長請回啦
transcript.whisperx[4].start 111.584
transcript.whisperx[4].end 123.44
transcript.whisperx[4].text 我要提到這一次的追加預算追加預算我們看到追加預算其實就是借私還魂
transcript.whisperx[5].start 124.929
transcript.whisperx[5].end 153.917
transcript.whisperx[5].text 把我們原來立法院刪掉的經過刪讀的你一個一個藉這個機會把它要回來所以老實講這個立法院也讓你進來然後也跟你討論其實立法院展現善意的謝謝我希望我們能夠理性討論給個mercy但是你不能夠這個藉機啊就這樣子卡油不好啦那個卓院長來我給你算一個算清楚啦
transcript.whisperx[6].start 155.509
transcript.whisperx[6].end 176.456
transcript.whisperx[6].text 我們來看我們去年總共刪減了2075億扣掉台電1000億只有1075億1075億你要878億如果通融給你就剩下197億所以你送進來3.1兆等於0.63%史上最低的
transcript.whisperx[7].start 180.478
transcript.whisperx[7].end 198.984
transcript.whisperx[7].text 那裡面有幾項新增預算經委員要算進去史上過去10年最低的就是去年1%所以我給1%來做標準的話應該要3.314億
transcript.whisperx[8].start 201.93
transcript.whisperx[8].end 221.009
transcript.whisperx[8].text 310億以現在來講的話我們現在來講的話已經剩下197所以310億減掉197你這一次的878億我們最少要算113億才符合才符合1%那我告訴你院長你先不要急
transcript.whisperx[9].start 222.27
transcript.whisperx[9].end 246.456
transcript.whisperx[9].text 我們因為審理的追加預算特別幫我們時間我們這個朝野協商幫我們排到排到好感我就一天 禮拜四我當召委我要排質詢 還有質詢完畢以後 詢答完畢以後審查一般預算 審查機密預算 又要詢答 又要審查
transcript.whisperx[10].start 247.506
transcript.whisperx[10].end 271.073
transcript.whisperx[10].text 一天我那天可能把他回家刷掉沒有 我跟你講我們這樣用心在處理可是院長 老實講你這個吃立法院夠不夠這不是好的補充模式來 你聽我講因為老實講 我們回過來第二章因為636億我跟你講 我這樣審已經被外面學者罵臭頭
transcript.whisperx[11].start 277.452
transcript.whisperx[11].end 305.239
transcript.whisperx[11].text 被學者罵臭頭被輿論罵臭頭為什麼這樣子他說你們在外黨大贏代表你們砍預算社會是支持的啊為什麼你們完全配合這個民進黨呼嚕呼嚕呼嚕呼嚕開快車都沒好好審查外界質疑外界罵我啊學者罵我啊打電話來罵我啊政大教授打電話來罵我台大教授打電話來罵我你是怎麼啦
transcript.whisperx[12].start 306.314
transcript.whisperx[12].end 333.069
transcript.whisperx[12].text 怎麼會怎麼會你們照理講你們是銀方啊怎麼會完全的因為國家還是要我們合作國家往前走為什麼Police 我不知道為什麼為什麼把時間定的這麼窄我就一天的時間要巡打然後要處理沒有人這麼好沒有人這麼好所以我們只能拜託大家委員我現在就告訴你我現在就告訴你我們就很簡單
transcript.whisperx[13].start 334.611
transcript.whisperx[13].end 349.305
transcript.whisperx[13].text 大科目處理 黨團大科目處理什麼錢該給你 回到第一章什麼 我實在是講過了喔什麼錢可以給你636億可以給你其他我也是不同意的喔因為636是你們刪掉 不應該刪
transcript.whisperx[14].start 353.018
transcript.whisperx[14].end 374.997
transcript.whisperx[14].text 啊 你們刪掉了然後呢 我們現在給你代表你們刪的對那就我們不對啦 代表我們不對啦我們共同來解決問題 謝謝委員代表我們不對啦來 我先跟你講 我們整個來看的話呢就是什麼 就是636億軍人加薪60億 要給金髮補償23.4億 要給公投10億 要給
transcript.whisperx[15].start 379.764
transcript.whisperx[15].end 389.351
transcript.whisperx[15].text 其他剩下145億照理講要全部砍那我還客氣一點外交的部分我請委員再斟酌外交的部分你們也不需要了
transcript.whisperx[16].start 390.506
transcript.whisperx[16].end 418.854
transcript.whisperx[16].text 因為有些 他這裡面有一些場館設備啊確實是需要整建的外交的設備啊 我只有砍兩我只有砍七億多啦我們有委員等一下要私訊他全部砍掉 二十一億全部砍掉我都支持他 他砍得比我更準我就砍七億 他砍二十一億等一下下一位委員就要指引這個請委員再審慎的看看內容對於外交人員以及一些硬體設備現在我就告訴你 我堅持
transcript.whisperx[17].start 420.424
transcript.whisperx[17].end 441.444
transcript.whisperx[17].text 我們不能夠立法院出去以後被人家吐口水說你現在都贏了還要這樣百般的好像奉承立行政院怎麼會這個樣子呢照理講我們這樣可以抬頭行兇我們都贏了怎麼變成一個小綿羊不敢動你這個不敢動你那個我就主張最少3113億
transcript.whisperx[18].start 443.286
transcript.whisperx[18].end 462.582
transcript.whisperx[18].text 這樣才有一趴而已喔 這樣我才一趴而已所以 院長你回去認真去思考 處紀長什麼地方可以刪 113億 113億好不好因為我們當初本來刪了400多億嘛那如果減掉133億這個部分沒有刪 因為我們這次提報
transcript.whisperx[19].start 466.565
transcript.whisperx[19].end 488.039
transcript.whisperx[19].text 恢復的部分就是133億那這133億大部分都是指定刪減譬如說出國經費他指定刪60億那很多單位他是覺得執行有困難那所以這個部分需要恢復的部分所以這是細節的部分但是133億縱使你把他恢復他也是達到3.1%的1%
transcript.whisperx[20].start 491.261
transcript.whisperx[20].end 504.626
transcript.whisperx[20].text 我們立法院有預算中心他就噴起立法院的委員我覺得很丟臉他說你們現在只有30.6億如果你全部給他你們實質
transcript.whisperx[21].start 506.868
transcript.whisperx[21].end 532.586
transcript.whisperx[21].text 現在只有0.61我們過去10年最少3.1%現在只有0.61我們本來是39啦 扣掉133如果沒3那就是1%啦但是其他都是新增加的啦聽說精華補償調息是新增加的部分這133億當中有道路交通的
transcript.whisperx[22].start 533.506
transcript.whisperx[22].end 554.142
transcript.whisperx[22].text 這個建設 還有農業部的防洪智山防洪的消費請他們先不要講話讓我講完可以嗎讓我講完好不好我都仔細看了謝謝讓我講完喔到現在為止878億如果都給你 一毛錢沒刪那就是0.63立法院的預算中心
transcript.whisperx[23].start 559.37
transcript.whisperx[23].end 573.928
transcript.whisperx[23].text 噴起啊 學者噴起啊 媒體噴起啊在野黨失職在野黨贏了 本來贏了怎麼被小民養軟趴趴的我看了好難過 我在野黨的意願而且第二個 時間把我壓縮得這麼緊
transcript.whisperx[24].start 577.311
transcript.whisperx[24].end 601.242
transcript.whisperx[24].text 時間包也要說一天可以處理我是召委還要我自身我知道怎麼處理我可以handle我願意幫忙但是院長不可以吃人夠夠為什麼吃人夠夠我們再看下一張你知道嗎你們追加一項怎麼編的居然有編100萬以下有77個單位編就是我上次跟你講的
transcript.whisperx[25].start 602.951
transcript.whisperx[25].end 630.506
transcript.whisperx[25].text 難怪人家會講啊 就到處你家每個部會都隨便提啊第一個高檢署 法務部的高檢署最佳2.3萬 笑死人了再來勞動基金運用局最佳6.1億民用航空局最佳8億國家圖書館最佳10億再來智慧財產商院的法院最佳10億
transcript.whisperx[26].start 632.107
transcript.whisperx[26].end 659.152
transcript.whisperx[26].text 笑死人啦這個一百萬元以下你們可以追加都沒錢這樣這個就是什麼就是因為你要求他們編我被編了這還要更離譜來來來你再看好 報告委員可以聰明一下不要急主席拜託讓他們先不要講話來還有什麼一萬塊以下的追加多少衛福部增加四千塊啊
transcript.whisperx[27].start 661.161
transcript.whisperx[27].end 687.051
transcript.whisperx[27].text 追加四千塊也在追加經濟部追加四千勞動部增加四千國發會增加六千入委會 你別急入委會增加八千農業部增加一萬你怎麼好意思追加預算五千塊六千塊也在追加然後還看衛福部我們這次審查預算讓你們增加306億
transcript.whisperx[28].start 689.338
transcript.whisperx[28].end 706.486
transcript.whisperx[28].text 讓你增加306億結果你要增加4千塊然後勞動部給你增加57億結果你要增加4千塊結果國發會增加8.76億你要增加6千塊農業部增加63億總預算你增加1萬各位
transcript.whisperx[29].start 709.906
transcript.whisperx[29].end 736.615
transcript.whisperx[29].text 我們這樣子追加拿得出來嗎 卓院長 幹笑啊你這個幾千塊要追加 我都不好意思刪啦這個不只要是指定刪減 而且禁止流用那這個不照常 四千塊 也不要來不是 那但是有一些是屬於主管的一個特別會的不怕經濟就不大 丟臉丟屎啦我們限制他 副機長 丟臉丟屎啦我們只能限制他 丟臉丟屎啦增加百分之十二點五啦對不對 你看 一個衛護部增加四千塊
transcript.whisperx[30].start 739.729
transcript.whisperx[30].end 754.863
transcript.whisperx[30].text 請委員在未來審查的時候詳細的看一下也請各部會能提出說明他們依照現在被刪減之後所造成的困難予以著補回來而已那如果委員認為哪一項不合理
transcript.whisperx[31].start 755.143
transcript.whisperx[31].end 771.742
transcript.whisperx[31].text 我們當然接受 但是請容許 容許各部會 容許不要定這個數字來刪啦 是要用政策來刪除不是 不要用定數字來刪除
transcript.whisperx[32].start 773.463
transcript.whisperx[32].end 799.701
transcript.whisperx[32].text 預算中心一直在罵你訂一個數字那一定要刪到那個程度這樣不好 我說用政策政策的推動來刪除 合理的刪除你當過立委你也知道我們不會去訂一個數字再來刪我們跟老柯就先講好一個總額大概都是1%左右 有時候1.2% 有時候1.1%那這次比較特殊 這次沒有先框起來以前就是老柯跟我們先框起來
transcript.whisperx[33].start 800.862
transcript.whisperx[33].end 822.836
transcript.whisperx[33].text 就不會有那種老哥後來排骨開天亂鬧一通鬧得整個新台會都是亂七八糟的他就是盤過開天開始講起他這一次沒有狂起來但是以前我在這裡這麼久以前每年預算審查我都在他都先框一個總額大家再來談細項
transcript.whisperx[34].start 824.857
transcript.whisperx[34].end 850.195
transcript.whisperx[34].text 總額談都是1%起跳沒有沒有1%的 到現在為止878億給你 就是剩0.63不可能通通給你 那要刪多少 最少113起來1%而已 1%是史上最低的史上最低就1% 如果今天通通878都給你的話那就0.63 那史上最低的最低的最低的最低的
transcript.whisperx[35].start 850.935
transcript.whisperx[35].end 875.221
transcript.whisperx[35].text 這樣子丟臉丟屎了以前都可以自行調整那現在都限定不准流用所以這就是因為它有限制不能流用所以就是你指定三整的項目就會變成有它的調整的一個困難而且還指定項目我的目標就是最少113最好是120到130最好130的話可以到1.1%然後然後客戶讓你自行調整
transcript.whisperx[36].start 879.562
transcript.whisperx[36].end 893.592
transcript.whisperx[36].text 我還是建議委員不要用設定數字我們看他的政策推動的需要與否這樣會比較真實因為你這個追加預算完全就是就像行政院多了多少把它拿回來的你多了31億
transcript.whisperx[37].start 895.009
transcript.whisperx[37].end 913.935
transcript.whisperx[37].text 外交部多了幾億啊 還有媒體多了4億多 剛才委員都提到了那個都是 我約了三年一塊錢 你要五塊錢回來沒有 我們並沒有增加啊都增加了 有啊 行政院增加30億我們只是增加133億 扣掉行政院增加了30億
transcript.whisperx[38].start 914.835
transcript.whisperx[38].end 935.791
transcript.whisperx[38].text 我們還是三減 應該兩百多億行政院主管有包括中選會 有包括園民會所以他們就會變成有一些相關的經費增加我們說行政院主管的範圍相當大行政院增加了最多三十億但是院本部裡面沒有增加這麼多我講的增加是增加跟減掉扣掉的 是淨增加好不好 這個
transcript.whisperx[39].start 943.629
transcript.whisperx[39].end 946.318
transcript.whisperx[39].text 好 謝謝賴世保委員的質詢也謝謝卓院長相關部會所長備詢 謝謝
gazette.lineno 846
gazette.blocks[0][0] 賴委員士葆:(11時22分)謝謝主席、韓院長、卓院長以及各位先進,有請卓院長以及財政部莊部長。
gazette.blocks[1][0] 主席:麻煩請卓院長、財政部備詢。
gazette.blocks[2][0] 卓院長榮泰:賴委員好。
gazette.blocks[3][0] 賴委員士葆:兩位長官好。
gazette.blocks[4][0] 卓院長榮泰:不敢。
gazette.blocks[5][0] 賴委員士葆:最新的一個外媒報導說,川普要對全世界國家針對美國高科技公司課數位稅者,他要用增加關稅來反制,請教莊部長,我們有沒有課數位稅?
gazette.blocks[6][0] 莊部長翠雲:目前為止,我們並沒有所謂的課數位稅。
gazette.blocks[7][0] 賴委員士葆:這裡面的數位稅是這樣子喔!你要把它仔細弄清楚喔!就是線上,比如說Meta的線上廣告服務、數位媒介服務、平臺服務等都有,在臺灣都有做啊!這個你們不是要課稅嗎?這不是數位稅嗎?
gazette.blocks[8][0] 卓院長榮泰:沒有,沒有課稅。
gazette.blocks[9][0] 莊部長翠雲:我們目前對於境外的電商確實有課相關的稅。
gazette.blocks[10][0] 賴委員士葆:有啊!
gazette.blocks[11][0] 莊部長翠雲:但是數位服務稅是沒有課,數位服務稅目前是沒有課。
gazette.blocks[12][0] 卓院長榮泰:沒有數位稅。
gazette.blocks[13][0] 賴委員士葆:數位服務稅沒有課?
gazette.blocks[14][0] 莊部長翠雲:對,境外電商相關稅賦有課。
gazette.blocks[15][0] 賴委員士葆:所以臺灣……要請院長交代副院長,如果川普講這個事情的時候,要說臺灣並沒有課數位稅,否則他又要報復了。好,莊部長請回。
gazette.blocks[15][1] 提到這一次的追加預算,我們看到追加預算其實就是借屍還魂啦!把原來立法院刪掉經過三讀的,你一個一個藉這個機會把它要回來,老實講,立法院也讓你進來,然後也跟你討論,其實立法院也展現善意了。
gazette.blocks[16][0] 卓院長榮泰:謝謝,也希望我們能夠理性討論。
gazette.blocks[17][0] 賴委員士葆:這個我們給個mercy,但是你不能夠藉機就這樣子揩油,不好啦!卓院長,我跟你算個清楚啦!去年總共刪減2,075億,扣掉台電1,000億,只有1,075億;然後你要878億,如果通通給你,就剩197億,除以你送進來的3.1兆,等於是0.63%,史上最低的……
gazette.blocks[18][0] 卓院長榮泰:裡面有幾項新增預算,請委員要算進去。
gazette.blocks[19][0] 賴委員士葆:來!來!你先不要講,讓我講完,讓我把意見表達完。史上、過去10年最低的就是去年的1%,如果以1%為標準的話,應該要刪減310億,以現在來講,已經剩下197億,所以310億減掉197億,這一次的878億,我們最少要刪113億,這樣才符合1%。我告訴院長,你先不要急,因為要審你的追加預算,朝野協商把我們的時間排的好趕,就只有一天,禮拜四我當召委,要排質詢,詢答完畢以後,審查一般預算、審查機密預算,又要詢答,又要審查,只有一天,我那天可能要搞到晚上12點……
gazette.blocks[20][0] 卓院長榮泰:謝謝委員,再次表示感謝。
gazette.blocks[21][0] 賴委員士葆:沒有,沒有,我跟你講,我們這樣用心在處理,可是老實講,院長,你這是吃立法院夠夠,這不是好的互動模式……
gazette.blocks[22][0] 卓院長榮泰:沒有,沒有。
gazette.blocks[23][0] 賴委員士葆:來!你聽我講,我們回過來看第二張,我跟你講,我這樣審已經被外面學者罵臭頭、被輿論罵臭頭,為什麼?他們說:你們在野黨大贏,代表你們砍預算社會是支持的,為什麼你們要完全配合民進黨,呼嚕呼嚕開快車,都沒有好好審查!外界質疑、外界罵我、學者罵我啊!打電話來罵我,政大教授打電話罵我、臺大教授打電話罵我,質疑我們怎麼啦!照理講,我們是贏方,怎麼會完全please你們……
gazette.blocks[24][0] 卓院長榮泰:因為還是要大家合作讓國家往前走。
gazette.blocks[25][0] 賴委員士葆:為什麼完全please你們?我不知道為什麼?為什麼把時間訂得這麼窄,我只有一天的時間,要詢答,然後要處理,沒有人這麼厲害啦!沒有人這麼厲害啦!所以我們只能拜託委員少講點話……
gazette.blocks[26][0] 卓院長榮泰:謝謝委員,謝謝委員的辛苦,拜託委員。
gazette.blocks[27][0] 賴委員士葆:我現在就告訴你,很簡單,黨團大科目處理,什麼錢該給你?我上一次講過了,什麼錢可以給你,636億可以給你……
gazette.blocks[28][0] 卓院長榮泰:謝謝。
gazette.blocks[29][0] 賴委員士葆:其他我也是不同意的喔!因為636億是你們刪掉的,不應該刪而刪掉了,然後我們現在給你,代表你們刪的對,那就我們不對啦!
gazette.blocks[30][0] 卓院長榮泰:沒有、沒有,沒有對錯,我們共同來解決問題,謝謝委員。
gazette.blocks[31][0] 賴委員士葆:代表我們不對啦!來,我現在跟你講,整個來看就是636億要給,軍人加薪60億要給,禁伐補償23.4億要給,公投11億要給,其他剩下145億,照理講要全部砍,那我還客氣一點……
gazette.blocks[32][0] 卓院長榮泰:外交的部分,我請委員再斟酌。
gazette.blocks[33][0] 賴委員士葆:外交的部分你們也不需要啦!外交部分我很客氣……
gazette.blocks[34][0] 卓院長榮泰:這裡面有一些場館設備,確實是需要整建。
gazette.blocks[35][0] 賴委員士葆:外交的設備,我只有砍七億多,我們有委員等一下要質詢,他全部砍掉,21億全部砍掉,我都支持他,他砍得比我更準,我只有砍7億,他砍21億,等一下下一位委員就……
gazette.blocks[36][0] 卓院長榮泰:請委員再審慎的看看內容,對於外交人員以及一些硬體設備……
gazette.blocks[37][0] 賴委員士葆:現在我就告訴你,我堅持我們立法院不能夠出去以後被人家吐口水,說現在都贏了,怎麼還要這樣百般的奉承行政院?怎麼會這樣呢?照理講,我們可以抬頭挺胸,我們都贏了,怎麼會變成一隻小綿羊,不敢動你這個、不敢動你那個,我就主張最少刪113億,這樣才1%而已,所以院長、主計長,你們回去認真思考,什麼地方可以刪?113億,好不好?
gazette.blocks[38][0] 陳主計長淑姿:報告委員,讓我說明一下,好不好?因為我們當初本來刪了四百多億,如果減掉133億這一個部分沒有刪……
gazette.blocks[39][0] 賴委員士葆:113!
gazette.blocks[40][0] 陳主計長淑姿:因為我們這次提報恢復的部分就是133億,那這133億大部分都是指定刪減,譬如說出國經費指定刪60億,那很多單位覺得執行有困難,所以這個部分需要回復的部分……
gazette.blocks[41][0] 賴委員士葆:這個細節就不談了。
gazette.blocks[42][0] 陳主計長淑姿:這是細節的部分,但是縱使把133億恢復,它也是達到刪減1%。
gazette.blocks[43][0] 賴委員士葆:來,請你們兩位仔細讀一讀立法院……我們立法院有預算中心,它就抨擊立法院的委員,我覺得很丟臉,它說你們現在只有刪0.61%,如果你全部給它,你們實質只有刪0.61%,我們過去十年最少刪1%!
gazette.blocks[44][0] 陳主計長淑姿:沒有、沒有,1%,已經有1%!
gazette.blocks[45][0] 賴委員士葆:現在只有0.61%。
gazette.blocks[46][0] 陳主計長淑姿:不是……
gazette.blocks[47][0] 賴委員士葆:你不要講話,讓我講好不好?
gazette.blocks[48][0] 陳主計長淑姿:這個400……我們本來是39億,扣掉133億如果沒刪,那就是1%啦。
gazette.blocks[49][0] 賴委員士葆:沒有、沒有!
gazette.blocks[50][0] 陳主計長淑姿:但是其他都是新增加的,譬如說禁伐補償、調薪都是新增加的部分……
gazette.blocks[51][0] 賴委員士葆:現在只有0.61%!
gazette.blocks[52][0] 卓院長榮泰:這133億當中有道路交通建設,還有農業部的治山防洪的經費……
gazette.blocks[53][0] 賴委員士葆:你不要跟我比其他的,請他們先不要講話,讓我講完可以嗎?讓我講完好不好?
gazette.blocks[54][0] 卓院長榮泰:詳細看一下再刪、詳細看一下再刪!
gazette.blocks[55][0] 賴委員士葆:我都仔細看、我都仔細看了。
gazette.blocks[56][0] 主席:謝謝,賴委員請繼續。
gazette.blocks[57][0] 賴委員士葆:讓我講、讓我講完!到現在為止,878億如果都給你、一毛錢沒刪,那就是0.63%,立法院的預算中心抨擊、學者抨擊、媒體抨擊在野黨失職,在野黨本來贏了怎麼變小綿羊軟趴趴的!我看了好難過,我是在野黨的議員。而且第二個,時間把我壓縮得這麼緊,時間把我壓縮的只有一天可以處理,我是召委,還好我資深,我知道要怎麼處理,我可以handle、我願意幫忙,但是院長不可以「吃人夠夠」啦!
gazette.blocks[57][1] 為什麼「吃人夠夠」?我們再看下一張,你知道你們追加預算怎麼編的嗎?編100萬以下的居然有77個單位,就是我上次跟你講的,這難怪人家會講啊,就到處……你叫每個部會都隨便提啊。第一個,法務部高檢署追加2.3萬,笑死人囉!再來,勞動基金運用局追加6.1萬、民用航空局追加8萬、國家圖書館追加10萬、智慧財產及商業法院追加10萬,笑死人啦!100萬元以下你們也在追加,都沒錢了,是這樣嗎?這個就是什麼?就是因為你要求他們編,所以都「黑白」編啦!
gazette.blocks[58][0] 卓院長榮泰:不是。
gazette.blocks[59][0] 陳主計長淑姿:沒有!
gazette.blocks[60][0] 賴委員士葆:再來還有更離譜的,來、來、來,你再看!
gazette.blocks[61][0] 陳主計長淑姿:報告委員,我可以說明一下……
gazette.blocks[62][0] 賴委員士葆:不要急、不要急!主席拜託,讓他們先不要講話。來,還有什麼?1萬塊以下的追加多少?衛福部追加4,000塊啊,追加4,000塊也在追加!經濟部追加4,000、勞動部增加4,000、國發會增加6,000……
gazette.blocks[63][0] 卓院長榮泰:報告委員……
gazette.blocks[64][0] 賴委員士葆:不要急、不要急!陸委會增加8,000、農業部增加1萬,你們怎麼好意思,那個追加預算就這樣5,000塊、6,000塊也在追加。然後還有喔,我們這次審查衛福部預算讓你們增加306億,結果你要追加4,000塊;勞動部給你增加57億,結果你要增加4,000塊;國發會增加8.76億,你要增加6,000塊;農業部增加63億總預算,你增加1萬。各位,這樣子的追加拿得出來嗎?卓院長,丟臉啊!你這個幾千塊也要追加,我都不好意思刪啊!
gazette.blocks[65][0] 陳主計長淑姿:委員,我說明一下,這個部分主要是指定刪減而且禁止流用,那這個部分造成……
gazette.blocks[66][0] 賴委員士葆:4,000塊也要!
gazette.blocks[67][0] 陳主計長淑姿:不是,但是有一些是屬於主管特別費的部分,那金額就不大……
gazette.blocks[68][0] 賴委員士葆:丟臉丟死了!
gazette.blocks[69][0] 陳主計長淑姿:我們限制它只能……
gazette.blocks[70][0] 賴委員士葆:主計長,丟臉丟死了!
gazette.blocks[71][0] 陳主計長淑姿:我們限制它只能追加12.5%……
gazette.blocks[72][0] 賴委員士葆:丟臉丟死了!你看一個衛福部增加4,000塊、經濟部增加4,000塊、勞動部增加4,000塊……
gazette.blocks[73][0] 卓院長榮泰:請委員未來在審查的時候詳細的看一下,也請各部會能提出說明……
gazette.blocks[74][0] 賴委員士葆:沒有,不用他們說明,就是這樣子啊!
gazette.blocks[75][0] 卓院長榮泰:這是他們依照現在被刪減之後所造成的困難,予以酌補回來而已……
gazette.blocks[76][0] 賴委員士葆:沒有,這個……
gazette.blocks[77][0] 卓院長榮泰:如果委員認為哪一項不合理,我們當然接受,但是請容許各部會……
gazette.blocks[78][0] 賴委員士葆:都不合理,我剛剛說過了,要刪113億,這是我的底線,最少113億!否則我們在野黨……
gazette.blocks[79][0] 卓院長榮泰:你不要定這個數字來刪,是要用政策來刪除。
gazette.blocks[80][0] 賴委員士葆:外界已經在罵了,學者在罵……
gazette.blocks[81][0] 卓院長榮泰:不是,不要用定數字來刪除……
gazette.blocks[82][0] 賴委員士葆:預算中心一直在罵……
gazette.blocks[83][0] 卓院長榮泰:你定一個數字,一定要刪到那個程度,這樣不好,要用政策的推動來刪除、合理的刪除。
gazette.blocks[84][0] 賴委員士葆:什麼不好?你當過立委,你也知道,過去……
gazette.blocks[85][0] 卓院長榮泰:對啊,我們不會去定一個數字再來刪……
gazette.blocks[86][0] 賴委員士葆:過去的數字,我們就是跟老柯先講好一個總額,大概都是1%左右,有時候1.2%,有時候1.1%,這一次比較特殊,這一次沒有先框起來,以前都是老柯跟我們先框起來,就不會有老柯後來這樣盤古開天、亂鬧一通,鬧得整個協調會都亂七八糟的,他就是盤古開天開始講起,對不對?他這一次沒有框起來,但是我在這裡這麼久,以前每一年預算審查我都在,他都先框一個總額,大家再談細項,談總額都是1%起跳,沒有不到1%的,到現在為止,878億給你,就是剩0.63%,不可能通通給你,那要刪多少?最少113億,才1%而已,1%是史上最低的,史上最低就1%,如果今天878億通通都給你的話,那就是0.63%,是史上最低、最低、最低、最低的,這樣子丟臉丟死了。
gazette.blocks[87][0] 陳主計長淑姿:報告委員,以前都可以自行調整,現在都限定,不准流用,所以這就是……
gazette.blocks[88][0] 賴委員士葆:現在可以流用,我們可以流用……
gazette.blocks[89][0] 卓院長榮泰:很多不能……
gazette.blocks[90][0] 陳主計長淑姿:因為它有限制不能流用,所以你指定刪除的項目就會變成……有它調整的困難,而且還指定項目……
gazette.blocks[91][0] 賴委員士葆:好,我禮拜四當主席,我的目標就是最少113億,最好是120億到130億,130億的話,可以到1.1%……
gazette.blocks[92][0] 卓院長榮泰:我還是希望委員不要用設定數字來刪預算。
gazette.blocks[93][0] 賴委員士葆:沒有,然後科目讓你自行調整,這樣子就可以。
gazette.blocks[94][0] 卓院長榮泰:我還是建議委員不要用設定數字……
gazette.blocks[95][0] 賴委員士葆:當然要設定啦!
gazette.blocks[96][0] 卓院長榮泰:我們看它的政策推動的需要與否,這樣會比較真實。
gazette.blocks[97][0] 賴委員士葆:因為這個追加預算完全就是……就像行政院多了多少?把它拿回來了,你多了31億,外交部多了幾億、還有媒體多了四億多,剛才委員都提到了,那個都是我原來刪你1塊錢,你要5塊錢回來……
gazette.blocks[98][0] 卓院長榮泰:沒有,我們並沒有增加。
gazette.blocks[99][0] 賴委員士葆:有啊!都增加了,行政院增加31億。
gazette.blocks[100][0] 卓院長榮泰:我們這次只增加133億,扣掉新增的部分之外,我們應該還刪減了兩百多億……
gazette.blocks[101][0] 賴委員士葆:行政院增加了31億……
gazette.blocks[102][0] 陳主計長淑姿:行政院主管有包括中選會、有包括原民會……
gazette.blocks[103][0] 賴委員士葆:有,有增加了31億……
gazette.blocks[104][0] 卓院長榮泰:包括了很多啊!
gazette.blocks[105][0] 陳主計長淑姿:所以他們就會有一些相關經費的增加。
gazette.blocks[106][0] 卓院長榮泰:行政院主管的範圍相當大。
gazette.blocks[107][0] 賴委員士葆:行政院增加了最多,31億。
gazette.blocks[108][0] 陳主計長淑姿:但是院本部裡面沒有增加這麼多。
gazette.blocks[109][0] 賴委員士葆:我講的是增加跟減掉、扣掉的是淨增加,好不好?這個113億請你們自行去調整,最好科目……
gazette.blocks[110][0] 卓院長榮泰:要看它裡面包含的項目跟科別,謝謝。
gazette.blocks[111][0] 主席:謝謝賴士葆委員的質詢,也謝謝卓院長及相關部會首長備詢,謝謝。
gazette.blocks[111][1] 接下來登記第九位賴惠員委員之質詢以書面提出,請行政院書面答復,並列入紀錄,刊登公報。
gazette.blocks[112][0] 委員賴惠員書面質詢:
gazette.blocks[112][1] 今年1月21日,立法院由在野黨主導,草率三讀通過2025年中央政府總預算案,甚至沒有宣讀刪減後的歲出總額,行政院主計總處和立法院議事處花了快一個月的時間,才確認最後通過的預算金額和刪減項目。這次預算刪減金額2,076億元,占總預算的6.6%,不僅是史上新高,其中636億甚至沒有明定刪減項目,反而要求行政院自行刪減。
gazette.blocks[112][2] 許多部會預算被砍到見底、政務沒辦法推動,例如備受針對的監察院,今年預算約11億元,包括:8億多的人事費和2億多的業務費,業務費卻整整被刪達96%,幾乎完全被癱瘓──像是去年10月底,監察院好不容易有重大外交進展,於今年成為伊比利美洲監察使聯盟(FIO)區域外正式會員,突破20多年來的觀察員身分,赴祕魯出席年會的旅費、機票費用卻都被刪光。
gazette.blocks[112][3] 此外,後疫情時代下,有關各種傳染病的預防宣導仍然相當重要,像是今年5月時,新冠疫情再度升溫,近期屈公病也令人心惶惶,遑論丹娜絲風災後,亟需加強宣導防範登革熱、類鼻疽等疫病,衛福部疾管署的媒宣費卻早已被大砍六成。還有,約聘公務員的聘僱,還有工友、司機的加班費都受到嚴重影響,在在凸顯藍白所謂的「合理監督預算」,不過是不經大腦、毀憲亂政的藉口。
gazette.blocks[112][4] 行政團隊苦撐3季後,最後一季經費已經嚴重不足,行政院依據《預算法》第79條規定,因所辦事業因重大事故經費超過法定預算,於8/14(四)通過「114年度中央政府總預算追加預算案」,編列878.4億元經費,送交立法院審議。
gazette.blocks[112][5] 就像前面所舉的例子,這每一筆追加預算都有其必要與急迫性,而且是以「原預算收支賸餘」支應,不至於讓國家新增債務,在野黨實在沒有理由再繼續反對、妨礙行政運作。
gazette.blocks[112][6] 本席強烈呼籲同樣身為立法委員的朝野同事,一起來支持這次追加預算案,讓我們的政府能夠良好地運作下去,不要再影響國家、社會重要的公共服務,危害百姓福祉!
gazette.blocks[113][0] 主席:再接下來我們請登記第十號翁曉玲委員質詢。伍麗華委員請準備。
gazette.agenda.page_end 215
gazette.agenda.meet_id 院會-11-3-26
gazette.agenda.speakers[0] 韓國瑜
gazette.agenda.speakers[1] 王鴻薇
gazette.agenda.speakers[2] 張啓楷
gazette.agenda.speakers[3] 吳思瑤
gazette.agenda.speakers[4] 洪孟楷
gazette.agenda.speakers[5] 鍾佳濱
gazette.agenda.speakers[6] 許宇甄
gazette.agenda.speakers[7] 陳亭妃
gazette.agenda.speakers[8] 賴士葆
gazette.agenda.speakers[9] 賴惠員
gazette.agenda.speakers[10] 翁曉玲
gazette.agenda.speakers[11] 伍麗華Saidhai‧Tahovecahe
gazette.agenda.page_start 159
gazette.agenda.meetingDate[0] 2025-08-26
gazette.agenda.gazette_id 1147401
gazette.agenda.agenda_lcidc_ids[0] 1147401_00005
gazette.agenda.meet_name 立法院第11屆第3會期第26次會議紀錄
gazette.agenda.content 行政院院長、主計長、財政部部長及相關部會首長列席報告「114年度中央政府總預算追加預算 案」編製經過並備質詢─詢答完畢─
gazette.agenda.agenda_id 1147401_00004