iVOD / 163605

Field Value
IVOD_ID 163605
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/163605
日期 2025-08-25
會議資料.會議代碼 院會-11-3-26
會議資料.屆 11
會議資料.會期 3
會議資料.會次 26
會議資料.種類 院會
會議資料.標題 第11屆第3會期第26次會議
影片種類 Clip
開始時間 2025-08-25T12:28:28+08:00
結束時間 2025-08-25T12:43:54+08:00
影片長度 00:15:26
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/40cf74fb6f804adc8c9e7b790171cb37c0ac07f6ba1e1b090d65982d227f84aff5ff160f27f5ee205ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 高金素梅
委員發言時間 12:28:28 - 12:43:54
會議時間 2025-08-25T09:00:00+08:00
會議名稱 第11屆第3會期第26次會議(事由:一、行政院院長提出「臺美關稅談判之進程、方針、原則及臺灣產業可能遭受之衝擊影響評估」專案報告並備質詢(8月25日)。二、行政院院長、主計長、財政部部長及相關部會首長列席報告「114年度中央政府總預算追加預算案」編製經過並備質詢(8月26日上午)。三、行政院院長、主計長、財政部部長及相關部會首長列席報告「丹娜絲颱風及七二八豪雨災後復原重建特別預算案」編製經過並備質詢(8月26日下午)。四、8月22日上午9時至10時為國是論壇時間。)
transcript.pyannote[0].speaker SPEAKER_03
transcript.pyannote[0].start 0.40221875
transcript.pyannote[0].end 1.60034375
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 10.84784375
transcript.pyannote[1].end 11.53971875
transcript.pyannote[2].speaker SPEAKER_02
transcript.pyannote[2].start 11.69159375
transcript.pyannote[2].end 16.55159375
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 14.29034375
transcript.pyannote[3].end 15.43784375
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 15.89346875
transcript.pyannote[4].end 17.37846875
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 17.37846875
transcript.pyannote[5].end 20.26409375
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 20.02784375
transcript.pyannote[6].end 21.12471875
transcript.pyannote[7].speaker SPEAKER_02
transcript.pyannote[7].start 21.22596875
transcript.pyannote[7].end 26.55846875
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 27.13221875
transcript.pyannote[8].end 31.89096875
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 32.26221875
transcript.pyannote[9].end 35.09721875
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 35.53596875
transcript.pyannote[10].end 38.72534375
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 39.26534375
transcript.pyannote[11].end 61.20284375
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 61.42221875
transcript.pyannote[12].end 70.60221875
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 71.74971875
transcript.pyannote[13].end 76.77846875
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 78.09471875
transcript.pyannote[14].end 80.94659375
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 80.27159375
transcript.pyannote[15].end 82.46534375
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 81.85784375
transcript.pyannote[16].end 82.07721875
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 82.85346875
transcript.pyannote[17].end 82.87034375
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 82.87034375
transcript.pyannote[18].end 89.80596875
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 82.90409375
transcript.pyannote[19].end 84.25409375
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 88.74284375
transcript.pyannote[20].end 93.14721875
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 91.84784375
transcript.pyannote[21].end 103.08659375
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 101.92221875
transcript.pyannote[22].end 114.20721875
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 108.92534375
transcript.pyannote[23].end 109.51596875
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 109.51596875
transcript.pyannote[24].end 109.66784375
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 114.12284375
transcript.pyannote[25].end 120.19784375
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 118.22346875
transcript.pyannote[26].end 119.08409375
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 119.91096875
transcript.pyannote[27].end 125.37846875
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 126.27284375
transcript.pyannote[28].end 128.60159375
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 127.75784375
transcript.pyannote[29].end 138.33846875
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 133.12409375
transcript.pyannote[30].end 133.96784375
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 133.96784375
transcript.pyannote[31].end 134.05221875
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 138.74346875
transcript.pyannote[32].end 141.44346875
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 141.62909375
transcript.pyannote[33].end 142.23659375
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 142.45596875
transcript.pyannote[34].end 144.58221875
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 142.50659375
transcript.pyannote[35].end 143.19846875
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 144.95346875
transcript.pyannote[36].end 152.32784375
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 152.73284375
transcript.pyannote[37].end 175.68284375
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 160.84971875
transcript.pyannote[38].end 161.87909375
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 176.07096875
transcript.pyannote[39].end 184.91346875
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 185.13284375
transcript.pyannote[40].end 195.84846875
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 196.18596875
transcript.pyannote[41].end 219.45659375
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 219.50721875
transcript.pyannote[42].end 226.93221875
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 225.59909375
transcript.pyannote[43].end 226.86471875
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 226.93221875
transcript.pyannote[44].end 226.94909375
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 226.94909375
transcript.pyannote[45].end 226.96596875
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 226.96596875
transcript.pyannote[46].end 227.03346875
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 227.03346875
transcript.pyannote[47].end 227.05034375
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 227.05034375
transcript.pyannote[48].end 230.66159375
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 229.17659375
transcript.pyannote[49].end 230.54346875
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 231.10034375
transcript.pyannote[50].end 232.63596875
transcript.pyannote[51].speaker SPEAKER_02
transcript.pyannote[51].start 232.34909375
transcript.pyannote[51].end 237.10784375
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 236.43284375
transcript.pyannote[52].end 243.70596875
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 244.17846875
transcript.pyannote[53].end 245.05596875
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 244.75221875
transcript.pyannote[54].end 264.41159375
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 247.35096875
transcript.pyannote[55].end 248.27909375
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 250.64159375
transcript.pyannote[56].end 251.04659375
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 251.92409375
transcript.pyannote[57].end 254.89409375
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 258.28596875
transcript.pyannote[58].end 258.31971875
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 258.31971875
transcript.pyannote[59].end 258.94409375
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 258.94409375
transcript.pyannote[60].end 258.97784375
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 258.97784375
transcript.pyannote[61].end 259.92284375
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 259.92284375
transcript.pyannote[62].end 260.29409375
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 260.29409375
transcript.pyannote[63].end 262.94346875
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 264.95159375
transcript.pyannote[64].end 267.55034375
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 267.97221875
transcript.pyannote[65].end 272.57909375
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 272.59596875
transcript.pyannote[66].end 275.46471875
transcript.pyannote[67].speaker SPEAKER_02
transcript.pyannote[67].start 275.70096875
transcript.pyannote[67].end 284.88096875
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 285.03284375
transcript.pyannote[68].end 294.83721875
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 294.90471875
transcript.pyannote[69].end 296.30534375
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 296.35596875
transcript.pyannote[70].end 298.71846875
transcript.pyannote[71].speaker SPEAKER_02
transcript.pyannote[71].start 299.14034375
transcript.pyannote[71].end 303.03846875
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 303.37596875
transcript.pyannote[72].end 307.40909375
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 307.66221875
transcript.pyannote[73].end 325.07721875
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 325.24596875
transcript.pyannote[74].end 328.04721875
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 328.53659375
transcript.pyannote[75].end 353.86596875
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 348.90471875
transcript.pyannote[76].end 350.03534375
transcript.pyannote[77].speaker SPEAKER_03
transcript.pyannote[77].start 350.03534375
transcript.pyannote[77].end 350.15346875
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 350.15346875
transcript.pyannote[78].end 350.33909375
transcript.pyannote[79].speaker SPEAKER_03
transcript.pyannote[79].start 353.61284375
transcript.pyannote[79].end 365.44221875
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 360.98721875
transcript.pyannote[80].end 371.66909375
transcript.pyannote[81].speaker SPEAKER_03
transcript.pyannote[81].start 367.33221875
transcript.pyannote[81].end 368.51346875
transcript.pyannote[82].speaker SPEAKER_03
transcript.pyannote[82].start 370.23471875
transcript.pyannote[82].end 378.50346875
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 373.59284375
transcript.pyannote[83].end 376.22534375
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 377.17034375
transcript.pyannote[84].end 378.08159375
transcript.pyannote[85].speaker SPEAKER_03
transcript.pyannote[85].start 378.65534375
transcript.pyannote[85].end 384.03846875
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 380.08971875
transcript.pyannote[86].end 381.10221875
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 381.10221875
transcript.pyannote[87].end 381.89534375
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 383.75159375
transcript.pyannote[88].end 387.98721875
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 384.03846875
transcript.pyannote[89].end 384.51096875
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 385.96221875
transcript.pyannote[90].end 439.35471875
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 389.52284375
transcript.pyannote[91].end 389.57346875
transcript.pyannote[92].speaker SPEAKER_03
transcript.pyannote[92].start 389.57346875
transcript.pyannote[92].end 389.97846875
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 389.97846875
transcript.pyannote[93].end 390.78846875
transcript.pyannote[94].speaker SPEAKER_03
transcript.pyannote[94].start 402.46596875
transcript.pyannote[94].end 407.41034375
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 437.31284375
transcript.pyannote[95].end 440.24909375
transcript.pyannote[96].speaker SPEAKER_02
transcript.pyannote[96].start 439.75971875
transcript.pyannote[96].end 468.98721875
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 440.33346875
transcript.pyannote[97].end 446.17221875
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 469.27409375
transcript.pyannote[98].end 475.51784375
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 476.07471875
transcript.pyannote[99].end 483.19596875
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 483.61784375
transcript.pyannote[100].end 487.83659375
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 485.94659375
transcript.pyannote[101].end 512.28846875
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 488.35971875
transcript.pyannote[102].end 489.06846875
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 512.49096875
transcript.pyannote[103].end 512.52471875
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 512.52471875
transcript.pyannote[104].end 512.54159375
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 512.54159375
transcript.pyannote[105].end 515.34284375
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 512.91284375
transcript.pyannote[106].end 532.15034375
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 517.13159375
transcript.pyannote[107].end 520.79346875
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 532.23471875
transcript.pyannote[108].end 554.64471875
transcript.pyannote[109].speaker SPEAKER_02
transcript.pyannote[109].start 535.08659375
transcript.pyannote[109].end 536.75721875
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 537.73596875
transcript.pyannote[110].end 538.27596875
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 541.38096875
transcript.pyannote[111].end 544.13159375
transcript.pyannote[112].speaker SPEAKER_03
transcript.pyannote[112].start 545.12721875
transcript.pyannote[112].end 545.17784375
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 545.17784375
transcript.pyannote[113].end 545.53221875
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 545.63346875
transcript.pyannote[114].end 546.51096875
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 548.23221875
transcript.pyannote[115].end 553.51409375
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 554.57721875
transcript.pyannote[116].end 557.39534375
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 557.90159375
transcript.pyannote[117].end 563.62221875
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 564.07784375
transcript.pyannote[118].end 567.89159375
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 568.33034375
transcript.pyannote[119].end 600.76409375
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 601.43909375
transcript.pyannote[120].end 623.37659375
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 623.68034375
transcript.pyannote[121].end 642.59721875
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 642.78284375
transcript.pyannote[122].end 644.50409375
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 644.75721875
transcript.pyannote[123].end 648.57096875
transcript.pyannote[124].speaker SPEAKER_02
transcript.pyannote[124].start 648.87471875
transcript.pyannote[124].end 658.18971875
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 658.45971875
transcript.pyannote[125].end 659.50596875
transcript.pyannote[126].speaker SPEAKER_02
transcript.pyannote[126].start 660.07971875
transcript.pyannote[126].end 700.96784375
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 701.13659375
transcript.pyannote[127].end 704.86596875
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 702.48659375
transcript.pyannote[128].end 711.48096875
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 706.01346875
transcript.pyannote[129].end 707.58284375
transcript.pyannote[130].speaker SPEAKER_02
transcript.pyannote[130].start 708.17346875
transcript.pyannote[130].end 712.61159375
transcript.pyannote[131].speaker SPEAKER_02
transcript.pyannote[131].start 713.15159375
transcript.pyannote[131].end 715.29471875
transcript.pyannote[132].speaker SPEAKER_02
transcript.pyannote[132].start 715.56471875
transcript.pyannote[132].end 727.59659375
transcript.pyannote[133].speaker SPEAKER_02
transcript.pyannote[133].start 727.63034375
transcript.pyannote[133].end 733.55346875
transcript.pyannote[134].speaker SPEAKER_02
transcript.pyannote[134].start 733.85721875
transcript.pyannote[134].end 761.48159375
transcript.pyannote[135].speaker SPEAKER_02
transcript.pyannote[135].start 762.17346875
transcript.pyannote[135].end 786.84471875
transcript.pyannote[136].speaker SPEAKER_02
transcript.pyannote[136].start 787.11471875
transcript.pyannote[136].end 790.35471875
transcript.pyannote[137].speaker SPEAKER_02
transcript.pyannote[137].start 790.99596875
transcript.pyannote[137].end 793.74659375
transcript.pyannote[138].speaker SPEAKER_02
transcript.pyannote[138].start 794.30346875
transcript.pyannote[138].end 797.56034375
transcript.pyannote[139].speaker SPEAKER_02
transcript.pyannote[139].start 797.64471875
transcript.pyannote[139].end 798.55596875
transcript.pyannote[140].speaker SPEAKER_02
transcript.pyannote[140].start 799.18034375
transcript.pyannote[140].end 803.24721875
transcript.pyannote[141].speaker SPEAKER_02
transcript.pyannote[141].start 803.48346875
transcript.pyannote[141].end 805.84596875
transcript.pyannote[142].speaker SPEAKER_00
transcript.pyannote[142].start 806.36909375
transcript.pyannote[142].end 809.18721875
transcript.pyannote[143].speaker SPEAKER_00
transcript.pyannote[143].start 809.60909375
transcript.pyannote[143].end 810.06471875
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 810.36846875
transcript.pyannote[144].end 812.62971875
transcript.pyannote[145].speaker SPEAKER_00
transcript.pyannote[145].start 813.23721875
transcript.pyannote[145].end 814.51971875
transcript.pyannote[146].speaker SPEAKER_00
transcript.pyannote[146].start 814.67159375
transcript.pyannote[146].end 816.03846875
transcript.pyannote[147].speaker SPEAKER_00
transcript.pyannote[147].start 816.25784375
transcript.pyannote[147].end 817.50659375
transcript.pyannote[148].speaker SPEAKER_02
transcript.pyannote[148].start 818.08034375
transcript.pyannote[148].end 823.26096875
transcript.pyannote[149].speaker SPEAKER_02
transcript.pyannote[149].start 823.58159375
transcript.pyannote[149].end 825.25221875
transcript.pyannote[150].speaker SPEAKER_02
transcript.pyannote[150].start 825.85971875
transcript.pyannote[150].end 827.86784375
transcript.pyannote[151].speaker SPEAKER_01
transcript.pyannote[151].start 827.86784375
transcript.pyannote[151].end 830.06159375
transcript.pyannote[152].speaker SPEAKER_02
transcript.pyannote[152].start 830.53409375
transcript.pyannote[152].end 831.66471875
transcript.pyannote[153].speaker SPEAKER_02
transcript.pyannote[153].start 832.84596875
transcript.pyannote[153].end 836.33909375
transcript.pyannote[154].speaker SPEAKER_01
transcript.pyannote[154].start 834.71909375
transcript.pyannote[154].end 835.02284375
transcript.pyannote[155].speaker SPEAKER_01
transcript.pyannote[155].start 835.27596875
transcript.pyannote[155].end 839.32596875
transcript.pyannote[156].speaker SPEAKER_02
transcript.pyannote[156].start 838.63409375
transcript.pyannote[156].end 852.70784375
transcript.pyannote[157].speaker SPEAKER_03
transcript.pyannote[157].start 843.94971875
transcript.pyannote[157].end 844.06784375
transcript.pyannote[158].speaker SPEAKER_01
transcript.pyannote[158].start 844.06784375
transcript.pyannote[158].end 845.28284375
transcript.pyannote[159].speaker SPEAKER_03
transcript.pyannote[159].start 845.28284375
transcript.pyannote[159].end 845.40096875
transcript.pyannote[160].speaker SPEAKER_01
transcript.pyannote[160].start 846.36284375
transcript.pyannote[160].end 847.67909375
transcript.pyannote[161].speaker SPEAKER_01
transcript.pyannote[161].start 849.55221875
transcript.pyannote[161].end 850.81784375
transcript.pyannote[162].speaker SPEAKER_01
transcript.pyannote[162].start 851.76284375
transcript.pyannote[162].end 853.63596875
transcript.pyannote[163].speaker SPEAKER_02
transcript.pyannote[163].start 853.18034375
transcript.pyannote[163].end 855.23909375
transcript.pyannote[164].speaker SPEAKER_02
transcript.pyannote[164].start 856.09971875
transcript.pyannote[164].end 861.02721875
transcript.pyannote[165].speaker SPEAKER_02
transcript.pyannote[165].start 861.39846875
transcript.pyannote[165].end 864.87471875
transcript.pyannote[166].speaker SPEAKER_02
transcript.pyannote[166].start 865.16159375
transcript.pyannote[166].end 868.03034375
transcript.pyannote[167].speaker SPEAKER_02
transcript.pyannote[167].start 868.48596875
transcript.pyannote[167].end 873.66659375
transcript.pyannote[168].speaker SPEAKER_02
transcript.pyannote[168].start 874.59471875
transcript.pyannote[168].end 875.30346875
transcript.pyannote[169].speaker SPEAKER_01
transcript.pyannote[169].start 875.97846875
transcript.pyannote[169].end 881.64846875
transcript.pyannote[170].speaker SPEAKER_02
transcript.pyannote[170].start 881.76659375
transcript.pyannote[170].end 891.77346875
transcript.pyannote[171].speaker SPEAKER_02
transcript.pyannote[171].start 892.22909375
transcript.pyannote[171].end 895.19909375
transcript.pyannote[172].speaker SPEAKER_02
transcript.pyannote[172].start 895.53659375
transcript.pyannote[172].end 898.05096875
transcript.pyannote[173].speaker SPEAKER_02
transcript.pyannote[173].start 898.16909375
transcript.pyannote[173].end 905.50971875
transcript.pyannote[174].speaker SPEAKER_02
transcript.pyannote[174].start 905.81346875
transcript.pyannote[174].end 908.12534375
transcript.pyannote[175].speaker SPEAKER_02
transcript.pyannote[175].start 908.71596875
transcript.pyannote[175].end 911.16284375
transcript.pyannote[176].speaker SPEAKER_02
transcript.pyannote[176].start 911.56784375
transcript.pyannote[176].end 916.02284375
transcript.pyannote[177].speaker SPEAKER_01
transcript.pyannote[177].start 916.17471875
transcript.pyannote[177].end 916.19159375
transcript.pyannote[178].speaker SPEAKER_02
transcript.pyannote[178].start 916.19159375
transcript.pyannote[178].end 916.20846875
transcript.pyannote[179].speaker SPEAKER_01
transcript.pyannote[179].start 916.20846875
transcript.pyannote[179].end 918.14909375
transcript.pyannote[180].speaker SPEAKER_02
transcript.pyannote[180].start 917.08596875
transcript.pyannote[180].end 918.11534375
transcript.pyannote[181].speaker SPEAKER_02
transcript.pyannote[181].start 918.14909375
transcript.pyannote[181].end 918.38534375
transcript.pyannote[182].speaker SPEAKER_02
transcript.pyannote[182].start 919.53284375
transcript.pyannote[182].end 919.54971875
transcript.pyannote[183].speaker SPEAKER_03
transcript.pyannote[183].start 919.54971875
transcript.pyannote[183].end 919.56659375
transcript.pyannote[184].speaker SPEAKER_02
transcript.pyannote[184].start 919.56659375
transcript.pyannote[184].end 919.97159375
transcript.pyannote[185].speaker SPEAKER_03
transcript.pyannote[185].start 919.97159375
transcript.pyannote[185].end 920.64659375
transcript.pyannote[186].speaker SPEAKER_02
transcript.pyannote[186].start 920.64659375
transcript.pyannote[186].end 920.68034375
transcript.pyannote[187].speaker SPEAKER_03
transcript.pyannote[187].start 921.72659375
transcript.pyannote[187].end 925.38846875
transcript.pyannote[188].speaker SPEAKER_03
transcript.pyannote[188].start 925.84409375
transcript.pyannote[188].end 927.97034375
transcript.whisperx[0].start 0.78
transcript.whisperx[0].end 0.963
transcript.whisperx[0].text 請左院長備詢
transcript.whisperx[1].start 10.865
transcript.whisperx[1].end 20.45
transcript.whisperx[1].text 今天有非常多的委員問到就是媒體的獨家新聞公布台美談判的結果對美投資四年是2500億美元對美採購四年是1300億美元而十年之內再加上1700億美元
transcript.whisperx[2].start 40.141
transcript.whisperx[2].end 50.525
transcript.whisperx[2].text 採購加上投資等於5500億這其中有3800億4年之內要執行完畢1700億10年之內要執行完畢另外對於美國視為貿易障礙的項目台灣是全面棄守
transcript.whisperx[3].start 59.609
transcript.whisperx[3].end 76.592
transcript.whisperx[3].text 開放全面進口的雖然行政院你們在四個小時之內呢對於這個獨家新聞呢說傳播不實的訊息干擾談判造成了誤導請問一下院長您各位這個假新聞行政院有沒有提告
transcript.whisperx[4].start 78.16
transcript.whisperx[4].end 100.229
transcript.whisperx[4].text 我們不輕易對媒體做提告所以裡面有一些是真的還是全面是假的有些敘述的過程是真的但是很多的數字是不正確的所以裡面談的有些問題是真的談到了只是數字不一樣當然談判敘述的過程是對的但內容 數字 以及他寫出的那些條件很多都有所出入
transcript.whisperx[5].start 103.772
transcript.whisperx[5].end 125.132
transcript.whisperx[5].text 所謂的出入就是這個數字不一樣而已但是談的過程談的裡面甚至於所謂美國說的貿易障礙台灣全面棄守了這是真的嗎有談貿易障礙但我們沒有全面棄守我們有談市場准入但不至於全面准入如果沒有全面棄守那當然是好事如果全面棄守你要不要負責任
transcript.whisperx[6].start 127.732
transcript.whisperx[6].end 141.025
transcript.whisperx[6].text 是總統負責任還是您負責任還是談判的人要負責任好 我今天不是跟你談這則新聞我要講的是這一次的對等關稅可以說是動搖國本的大勢 對吧
transcript.whisperx[7].start 142.566
transcript.whisperx[7].end 160.322
transcript.whisperx[7].text 我們必須要非常嚴肅非常認真的來討論所以今天才會安排這樣子的一個國事論壇以及我們的質詢特別一直到現在民進黨政府你們都一直都還沒有公布對等關稅最終的結果是什麼
transcript.whisperx[8].start 161.042
transcript.whisperx[8].end 175.435
transcript.whisperx[8].text 還有我們怎麼樣兌買採購的金額還有我們到底會不會開放美國它所說的那些貿易障礙這些我們國人都不清楚所以我們是非常的焦慮我們回顧一下2017年的1月
transcript.whisperx[9].start 176.215
transcript.whisperx[9].end 195.028
transcript.whisperx[9].text 川普他就任的第一任總統也就是2018年他就對中國大陸發動了關稅戰2021年的1月川普下台之後從此所謂的貿易關稅戰就成為了大家口中的流行名詞
transcript.whisperx[10].start 196.289
transcript.whisperx[10].end 224.86
transcript.whisperx[10].text 一直到2023年川普他出馬競選第二任總統的時候他又公開的誓言說他要用關稅向全世界來宣戰所以其實呢川普他會用關稅發動貿易戰這都是大家知道的事情請問一下政府準備了什麼 前瞻了什麼尤其院長你還記得嗎公佈的前一個晚上你讓大家安心的睡覺
transcript.whisperx[11].start 226
transcript.whisperx[11].end 242.938
transcript.whisperx[11].text 現在安心了沒有我們說我們都沒有睡覺我當然希望國人安心我們一直在努力請問一下你們努力了什麼錢佔了什麼能不能花一點小的時間來跟大家說我們在川普總統大選之前我們在行政院裡面就成立了最美的經貿小組
transcript.whisperx[12].start 244.87
transcript.whisperx[12].end 264.131
transcript.whisperx[12].text 那你怎麼會讓我們安心睡覺呢然後第二天結果變成我們的關稅比日本跟韓國還高好啦 院長院長 不要在這邊再繼續回復我們知道的事情而且媒體都清楚知道這個過程大家心裡面都知道這十年來我也知道
transcript.whisperx[13].start 264.992
transcript.whisperx[13].end 283.599
transcript.whisperx[13].text 台灣的經濟貿易一直在調整看一下從蔡英文總統說雞蛋不要放在同一個籃子裡面然後馬上就推出了新南向政策一直到賴清德總統上台之後他喊出了脫中入北其實講白了就是脫中入美我們看一下這個統計圖
transcript.whisperx[14].start 286.021
transcript.whisperx[14].end 302.773
transcript.whisperx[14].text 這個統計圖呢它是從2015年到2024年兩岸貿易順差還有台美貿易順差的10年的比較圖看一下藍色的藍色的是兩岸貿易順差2015年是636.3億美元2024年是699.8億美元紅色的是台美貿易的順差2015年只有78.4億美元
transcript.whisperx[15].start 314.801
transcript.whisperx[15].end 343.082
transcript.whisperx[15].text 到了2024年就增加到649億美元看起來你們嘴巴說的托中陳金平平的看這個數據入美呢卻是火紅的大躍進而蔡英文總統說雞蛋不要放到同一個籃子我們很顯然蔡英文總那個賴清德他已經把大部分的雞蛋放到了美國這個大籃子喔而且今年上半年台美貿易的順差已經到了
transcript.whisperx[16].start 345.024
transcript.whisperx[16].end 357.041
transcript.whisperx[16].text 552億美元預估全年將會破千億院長 請問您這算不算好的成績報告委員 其實從2017年開始全球就歷經這個供應鏈的重組
transcript.whisperx[17].start 358.863
transcript.whisperx[17].end 377.389
transcript.whisperx[17].text 那台灣也在這個全球供應鏈存儲當中有所變化我再問你們這算不算好的成績副院長請你針對我的回答來回應就好了今天只有15分鐘的時間算不算好成績我們台美順差的這個成長來自於美國美國對我高科技的需求要成長
transcript.whisperx[18].start 381.11
transcript.whisperx[18].end 402.863
transcript.whisperx[18].text 好還是不好我們對歐盟對新南向的國家也有持續的交戰你們不願意說好或不好就表示你們內心清楚知道其實我們的政府眼光非常的短淺為什麼 因為就是因為這樣我們賺了美國太多的錢了所以川普現在對我們動手
transcript.whisperx[19].start 404.684
transcript.whisperx[19].end 430.298
transcript.whisperx[19].text 這十年的投票我看到了兩個結論第一個結論是民進黨你們執政之後你們一心想要改變馬英九的親美友日和中的戰略你們想要拉開兩岸緊密的經貿關係而民進黨你們的說辭是因為兩岸經貿如果太緊密的話哪一天大陸如果突然取消對台讓利取消了ECFA之後大陸會發動所謂的窮台
transcript.whisperx[20].start 432.899
transcript.whisperx[20].end 443.443
transcript.whisperx[20].text 現在看起來窮台的不是大陸窮台的是民進黨最親愛的美國是川普川普對台灣關稅的懲罰也勒索我們4000億的美元也連根拔走我們的台積電這恰恰戳破了民進黨你們說大陸會窮台的謊言
transcript.whisperx[21].start 457.148
transcript.whisperx[21].end 482.586
transcript.whisperx[21].text 而我看到的第二個結論是2023年川普他競選第二任總統的時候他誓言就要向全世界用關稅來宣戰其中他五度的公開點名台灣賺走了美國的很多錢他還指控台灣偷走了美國的半導體請問院長您接受這個指控嗎
transcript.whisperx[22].start 483.646
transcript.whisperx[22].end 511.495
transcript.whisperx[22].text 我們的半導體工業是我們自己在學習摸索你接受這個指控嗎不接受不接受好而這些恐嚇台灣的執政黨你們竟然毫無警覺今年對美貿易出操每個月就破紀錄而親美天美的代價是20%加N的疊加關稅必須要投資美國多少4000億美元這是你們的郭部長說的台積電也變成了美積電
transcript.whisperx[23].start 512.935
transcript.whisperx[23].end 531.561
transcript.whisperx[23].text 院長啊 我們親美親到失去理智親美親到完全不設防現在我們就必須要付出這樣的代價而到目前為止真正的協議的內容為什麼要蓋牌是不是因為我們付不起這個代價
transcript.whisperx[24].start 532.281
transcript.whisperx[24].end 543.93
transcript.whisperx[24].text 如果產業還繼續留在大陸 他們現在負擔會更大但是現在窮台的是誰現在窮台的是誰現在窮台的是誰現在要把台灣全窮殺隊的人是誰變成台灣成績是野光非常地長遠主席 請他們先停止好不好
transcript.whisperx[25].start 557.941
transcript.whisperx[25].end 581.08
transcript.whisperx[25].text 我覺得今天的這兩位你們講的太多了而且一再的反覆現在聽我講台灣曾經眼光非常的長遠也創造了台灣的經濟奇蹟今天我要花一點時間跟你們兩個講真實的前瞻故事希望您還有副院長你們不要再打擾我也希望民進黨你們可以反省一下
transcript.whisperx[26].start 582.522
transcript.whisperx[26].end 600.339
transcript.whisperx[26].text 1970年代初全球發生了石油危機台灣的油價暴漲物價也飛漲當時擔任行政院長的蔣經國他推動了十大建設因而擴大了台灣的內需市場為下一個階段的經濟發展奠定了非常穩定的基礎
transcript.whisperx[27].start 601.48
transcript.whisperx[27].end 622.529
transcript.whisperx[27].text 当时这个十大建设是在内外非常艰困的经济环境之下从1973年一直到1979年我们花了大概7年的时间推动完成的总共的花费是1947亿相当于1975年当时我们政府的总预算的2.5倍
transcript.whisperx[28].start 624.389
transcript.whisperx[28].end 647.816
transcript.whisperx[28].text 當時政府的資金也不足也借了外債今天我們回顧一下這段歷史我相信大家都會同意十大建設的經濟效益到現在仍然對台灣發揮著非常重大的影響我要講第二個前瞻是1970年代末李國鼎的政委他推動的科學園區
transcript.whisperx[29].start 648.976
transcript.whisperx[29].end 673.07
transcript.whisperx[29].text 他找回了張周謀先生成立的台積電當時連美國IBM公司老闆都說李國鼎啊你瘋了啊這個為台積電籌出這麼樣的巨額的經費但是現在我們十幾年之後回頭看一下如果沒有趙三哲李國鼎如果沒有護國神山台積電
transcript.whisperx[30].start 674.111
transcript.whisperx[30].end 699.671
transcript.whisperx[30].text 在那個經濟處於三次加工的年代裡面在那個我們國家財政根本都還沒有非常豐厚的年代這兩個非常有前瞻眼光的領導人他用投資台灣的具體行動把台灣帶起了經濟起飛的年代帶來了數十年的繁榮院長我想請問你你有沒有聽過世界簡易這個名詞
transcript.whisperx[31].start 701.232
transcript.whisperx[31].end 725.541
transcript.whisperx[31].text 那剛剛你有沒有聽過世界檢疫這個名詞你都同意嗎我問你有沒有聽過世界檢疫這個名詞有沒有聽過世界檢疫這個名詞如果沒有的話我現在告訴你世界檢疫現在全世界都是在討論就是說全世界的貿易是百分之百而全世界跟美國的貿易只有佔13.6%
transcript.whisperx[32].start 727.862
transcript.whisperx[32].end 746.342
transcript.whisperx[32].text 如果全世界我們不要了美國市場那麼還有86.4%的世界大市場我們為什麼要讓美國予取予求無盡的勒索我們如果拒絕川普的20%加n疊加的關稅我們拒絕跟美國貿易往來然後用川普勒索我們的4000億美金
transcript.whisperx[33].start 748.165
transcript.whisperx[33].end 761.184
transcript.whisperx[33].text 投资我们自己的台湾投资我们的下一代发挥四五十年前台湾中小企业的精神那个就是拉着一卡皮箱全世界闯荡的做贸易做订单
transcript.whisperx[34].start 762.256
transcript.whisperx[34].end 789.872
transcript.whisperx[34].text 那麼我們將會有世界簡易的聽好86.4%的大市場任由我們的企業家自由的揮灑而我們如果拒絕了美國我們還可以不要吃美國的毒豬毒牛我們的孩子也可以不要吃美國基改食品也不要進口美國的大米院長你不要跟我說你沒有你沒有聽過有人會這麼做我告訴你
transcript.whisperx[35].start 791.033
transcript.whisperx[35].end 817.288
transcript.whisperx[35].text 巴西印度現在就是這麼做還有院長你千萬不要再說我以美論看一下我過去懷疑美國的所有事情現在川普都在做現在請兩位看一下這段影片And don't let some of these politicians go around saying you knowcause I'm telling you these countries are calling us up kissing my ass kissing my ass kissing my ass
transcript.whisperx[36].start 818.171
transcript.whisperx[36].end 831.031
transcript.whisperx[36].text 川普笑你們這些親美的人排著對親他的那兩個字我都不好意思說了你不認為這是一個侮辱嗎院長這不是我們國家會做的事情這是不是一個侮辱
transcript.whisperx[37].start 833.058
transcript.whisperx[37].end 846.983
transcript.whisperx[37].text 親美貼美是不是我們現在正在做的事情我們是一個主權獨立的國家我們有我們自己的財政能量既然是這樣你同不同意我說拒絕跟美國做生意因為我們有86.4%的全世界大市場美國只有占13.4%而已最後我要提醒院長最後我要提醒院長
transcript.whisperx[38].start 856.141
transcript.whisperx[38].end 874.949
transcript.whisperx[38].text 美國公布台灣官會20%的時候呢我就主張這個協議必須要送到立法院來討論並且要經過公民覆決一直到現在這個時刻為止我都堅持這樣的主張你同意嗎
transcript.whisperx[39].start 876.001
transcript.whisperx[39].end 891.487
transcript.whisperx[39].text 依照條約締結法我們將談判的結果送交國會審議通過這是必要的好 人民絕對是你們最好的後盾學韓國一樣好好利用人民的拒絕的聲音給你們做談判最後的基準
transcript.whisperx[40].start 892.927
transcript.whisperx[40].end 915.742
transcript.whisperx[40].text 臺灣的經濟貿易的未來必須要由全民來決定聽好了不是由賴清德不是由您不是由副院長還有你們所謂的經貿小組也不是由民進黨政府來決定的臺灣的經貿的未來是要由全民來決定的謝謝謝謝高經貿委員
transcript.whisperx[41].start 923.002
transcript.whisperx[41].end 927.494
transcript.whisperx[41].text 謝謝卓院長還有副院長抱怨會上午質詢到此為止