iVOD / 163602

Field Value
IVOD_ID 163602
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/163602
日期 2025-08-25
會議資料.會議代碼 院會-11-3-26
會議資料.屆 11
會議資料.會期 3
會議資料.會次 26
會議資料.種類 院會
會議資料.標題 第11屆第3會期第26次會議
影片種類 Clip
開始時間 2025-08-25T11:40:22+08:00
結束時間 2025-08-25T11:56:31+08:00
影片長度 00:16:09
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/40cf74fb6f804adc88e3ad9a518d7ec9c0ac07f6ba1e1b090d65982d227f84afee9170943cc9f2f35ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 鍾佳濱
委員發言時間 11:40:22 - 11:56:31
會議時間 2025-08-25T09:00:00+08:00
會議名稱 第11屆第3會期第26次會議(事由:一、行政院院長提出「臺美關稅談判之進程、方針、原則及臺灣產業可能遭受之衝擊影響評估」專案報告並備質詢(8月25日)。二、行政院院長、主計長、財政部部長及相關部會首長列席報告「114年度中央政府總預算追加預算案」編製經過並備質詢(8月26日上午)。三、行政院院長、主計長、財政部部長及相關部會首長列席報告「丹娜絲颱風及七二八豪雨災後復原重建特別預算案」編製經過並備質詢(8月26日下午)。四、8月22日上午9時至10時為國是論壇時間。)
transcript.pyannote[0].speaker SPEAKER_05
transcript.pyannote[0].start 6.66284375
transcript.pyannote[0].end 7.27034375
transcript.pyannote[1].speaker SPEAKER_03
transcript.pyannote[1].start 24.43221875
transcript.pyannote[1].end 25.07346875
transcript.pyannote[2].speaker SPEAKER_03
transcript.pyannote[2].start 25.37721875
transcript.pyannote[2].end 26.55846875
transcript.pyannote[3].speaker SPEAKER_03
transcript.pyannote[3].start 26.77784375
transcript.pyannote[3].end 30.40596875
transcript.pyannote[4].speaker SPEAKER_03
transcript.pyannote[4].start 30.97971875
transcript.pyannote[4].end 33.27471875
transcript.pyannote[5].speaker SPEAKER_03
transcript.pyannote[5].start 33.39284375
transcript.pyannote[5].end 35.02971875
transcript.pyannote[6].speaker SPEAKER_03
transcript.pyannote[6].start 35.24909375
transcript.pyannote[6].end 37.07159375
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 35.35034375
transcript.pyannote[7].end 35.78909375
transcript.pyannote[8].speaker SPEAKER_03
transcript.pyannote[8].start 37.54409375
transcript.pyannote[8].end 38.25284375
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 38.25284375
transcript.pyannote[9].end 38.37096875
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 38.40471875
transcript.pyannote[10].end 39.48471875
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 39.67034375
transcript.pyannote[11].end 41.57721875
transcript.pyannote[12].speaker SPEAKER_03
transcript.pyannote[12].start 43.60221875
transcript.pyannote[12].end 45.01971875
transcript.pyannote[13].speaker SPEAKER_03
transcript.pyannote[13].start 45.66096875
transcript.pyannote[13].end 46.45409375
transcript.pyannote[14].speaker SPEAKER_03
transcript.pyannote[14].start 46.92659375
transcript.pyannote[14].end 48.05721875
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 47.06159375
transcript.pyannote[15].end 47.44971875
transcript.pyannote[16].speaker SPEAKER_03
transcript.pyannote[16].start 55.60034375
transcript.pyannote[16].end 56.17409375
transcript.pyannote[17].speaker SPEAKER_03
transcript.pyannote[17].start 56.78159375
transcript.pyannote[17].end 59.27909375
transcript.pyannote[18].speaker SPEAKER_03
transcript.pyannote[18].start 59.63346875
transcript.pyannote[18].end 62.48534375
transcript.pyannote[19].speaker SPEAKER_03
transcript.pyannote[19].start 62.89034375
transcript.pyannote[19].end 65.05034375
transcript.pyannote[20].speaker SPEAKER_03
transcript.pyannote[20].start 65.84346875
transcript.pyannote[20].end 69.72471875
transcript.pyannote[21].speaker SPEAKER_03
transcript.pyannote[21].start 70.02846875
transcript.pyannote[21].end 71.05784375
transcript.pyannote[22].speaker SPEAKER_03
transcript.pyannote[22].start 72.62721875
transcript.pyannote[22].end 74.95596875
transcript.pyannote[23].speaker SPEAKER_03
transcript.pyannote[23].start 75.32721875
transcript.pyannote[23].end 77.30159375
transcript.pyannote[24].speaker SPEAKER_03
transcript.pyannote[24].start 77.70659375
transcript.pyannote[24].end 79.71471875
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 80.32221875
transcript.pyannote[25].end 81.68909375
transcript.pyannote[26].speaker SPEAKER_03
transcript.pyannote[26].start 81.68909375
transcript.pyannote[26].end 86.05971875
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 81.70596875
transcript.pyannote[27].end 81.79034375
transcript.pyannote[28].speaker SPEAKER_03
transcript.pyannote[28].start 86.43096875
transcript.pyannote[28].end 89.09721875
transcript.pyannote[29].speaker SPEAKER_03
transcript.pyannote[29].start 89.58659375
transcript.pyannote[29].end 91.34159375
transcript.pyannote[30].speaker SPEAKER_03
transcript.pyannote[30].start 91.66221875
transcript.pyannote[30].end 96.03284375
transcript.pyannote[31].speaker SPEAKER_03
transcript.pyannote[31].start 96.42096875
transcript.pyannote[31].end 101.92221875
transcript.pyannote[32].speaker SPEAKER_03
transcript.pyannote[32].start 102.32721875
transcript.pyannote[32].end 104.82471875
transcript.pyannote[33].speaker SPEAKER_03
transcript.pyannote[33].start 105.02721875
transcript.pyannote[33].end 107.69346875
transcript.pyannote[34].speaker SPEAKER_03
transcript.pyannote[34].start 107.82846875
transcript.pyannote[34].end 109.17846875
transcript.pyannote[35].speaker SPEAKER_03
transcript.pyannote[35].start 109.87034375
transcript.pyannote[35].end 111.96284375
transcript.pyannote[36].speaker SPEAKER_03
transcript.pyannote[36].start 112.21596875
transcript.pyannote[36].end 113.97096875
transcript.pyannote[37].speaker SPEAKER_03
transcript.pyannote[37].start 114.20721875
transcript.pyannote[37].end 114.64596875
transcript.pyannote[38].speaker SPEAKER_03
transcript.pyannote[38].start 115.05096875
transcript.pyannote[38].end 116.89034375
transcript.pyannote[39].speaker SPEAKER_06
transcript.pyannote[39].start 117.46409375
transcript.pyannote[39].end 132.56721875
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 127.48784375
transcript.pyannote[40].end 127.52159375
transcript.pyannote[41].speaker SPEAKER_03
transcript.pyannote[41].start 127.52159375
transcript.pyannote[41].end 128.07846875
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 128.07846875
transcript.pyannote[42].end 128.11221875
transcript.pyannote[43].speaker SPEAKER_03
transcript.pyannote[43].start 131.90909375
transcript.pyannote[43].end 135.63846875
transcript.pyannote[44].speaker SPEAKER_03
transcript.pyannote[44].start 135.84096875
transcript.pyannote[44].end 137.05596875
transcript.pyannote[45].speaker SPEAKER_03
transcript.pyannote[45].start 137.29221875
transcript.pyannote[45].end 142.75971875
transcript.pyannote[46].speaker SPEAKER_03
transcript.pyannote[46].start 143.04659375
transcript.pyannote[46].end 147.33284375
transcript.pyannote[47].speaker SPEAKER_03
transcript.pyannote[47].start 147.61971875
transcript.pyannote[47].end 148.32846875
transcript.pyannote[48].speaker SPEAKER_03
transcript.pyannote[48].start 148.37909375
transcript.pyannote[48].end 158.53784375
transcript.pyannote[49].speaker SPEAKER_03
transcript.pyannote[49].start 158.90909375
transcript.pyannote[49].end 159.58409375
transcript.pyannote[50].speaker SPEAKER_03
transcript.pyannote[50].start 160.03971875
transcript.pyannote[50].end 161.10284375
transcript.pyannote[51].speaker SPEAKER_03
transcript.pyannote[51].start 161.79471875
transcript.pyannote[51].end 162.14909375
transcript.pyannote[52].speaker SPEAKER_03
transcript.pyannote[52].start 162.46971875
transcript.pyannote[52].end 165.49034375
transcript.pyannote[53].speaker SPEAKER_03
transcript.pyannote[53].start 165.82784375
transcript.pyannote[53].end 169.11846875
transcript.pyannote[54].speaker SPEAKER_05
transcript.pyannote[54].start 169.11846875
transcript.pyannote[54].end 177.45471875
transcript.pyannote[55].speaker SPEAKER_03
transcript.pyannote[55].start 176.42534375
transcript.pyannote[55].end 183.19221875
transcript.pyannote[56].speaker SPEAKER_03
transcript.pyannote[56].start 183.34409375
transcript.pyannote[56].end 184.35659375
transcript.pyannote[57].speaker SPEAKER_03
transcript.pyannote[57].start 184.79534375
transcript.pyannote[57].end 190.73534375
transcript.pyannote[58].speaker SPEAKER_03
transcript.pyannote[58].start 190.93784375
transcript.pyannote[58].end 194.05971875
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 194.98784375
transcript.pyannote[59].end 198.21096875
transcript.pyannote[60].speaker SPEAKER_03
transcript.pyannote[60].start 198.36284375
transcript.pyannote[60].end 213.41534375
transcript.pyannote[61].speaker SPEAKER_03
transcript.pyannote[61].start 213.75284375
transcript.pyannote[61].end 215.82846875
transcript.pyannote[62].speaker SPEAKER_03
transcript.pyannote[62].start 216.03096875
transcript.pyannote[62].end 219.11909375
transcript.pyannote[63].speaker SPEAKER_03
transcript.pyannote[63].start 219.38909375
transcript.pyannote[63].end 222.47721875
transcript.pyannote[64].speaker SPEAKER_03
transcript.pyannote[64].start 222.62909375
transcript.pyannote[64].end 224.40096875
transcript.pyannote[65].speaker SPEAKER_03
transcript.pyannote[65].start 224.51909375
transcript.pyannote[65].end 226.47659375
transcript.pyannote[66].speaker SPEAKER_03
transcript.pyannote[66].start 226.49346875
transcript.pyannote[66].end 230.79659375
transcript.pyannote[67].speaker SPEAKER_03
transcript.pyannote[67].start 231.80909375
transcript.pyannote[67].end 231.82596875
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 231.82596875
transcript.pyannote[68].end 232.66971875
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 232.83846875
transcript.pyannote[69].end 240.29721875
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 240.60096875
transcript.pyannote[70].end 246.72659375
transcript.pyannote[71].speaker SPEAKER_03
transcript.pyannote[71].start 246.81096875
transcript.pyannote[71].end 249.89909375
transcript.pyannote[72].speaker SPEAKER_03
transcript.pyannote[72].start 250.20284375
transcript.pyannote[72].end 252.41346875
transcript.pyannote[73].speaker SPEAKER_03
transcript.pyannote[73].start 252.58221875
transcript.pyannote[73].end 254.57346875
transcript.pyannote[74].speaker SPEAKER_03
transcript.pyannote[74].start 255.18096875
transcript.pyannote[74].end 257.67846875
transcript.pyannote[75].speaker SPEAKER_03
transcript.pyannote[75].start 260.73284375
transcript.pyannote[75].end 261.05346875
transcript.pyannote[76].speaker SPEAKER_03
transcript.pyannote[76].start 261.47534375
transcript.pyannote[76].end 262.25159375
transcript.pyannote[77].speaker SPEAKER_03
transcript.pyannote[77].start 262.55534375
transcript.pyannote[77].end 263.83784375
transcript.pyannote[78].speaker SPEAKER_03
transcript.pyannote[78].start 263.97284375
transcript.pyannote[78].end 265.44096875
transcript.pyannote[79].speaker SPEAKER_03
transcript.pyannote[79].start 265.71096875
transcript.pyannote[79].end 271.54971875
transcript.pyannote[80].speaker SPEAKER_03
transcript.pyannote[80].start 271.58346875
transcript.pyannote[80].end 300.43971875
transcript.pyannote[81].speaker SPEAKER_06
transcript.pyannote[81].start 300.82784375
transcript.pyannote[81].end 318.81659375
transcript.pyannote[82].speaker SPEAKER_03
transcript.pyannote[82].start 318.95159375
transcript.pyannote[82].end 321.43221875
transcript.pyannote[83].speaker SPEAKER_06
transcript.pyannote[83].start 321.76971875
transcript.pyannote[83].end 321.97221875
transcript.pyannote[84].speaker SPEAKER_04
transcript.pyannote[84].start 321.97221875
transcript.pyannote[84].end 332.16471875
transcript.pyannote[85].speaker SPEAKER_03
transcript.pyannote[85].start 332.24909375
transcript.pyannote[85].end 332.73846875
transcript.pyannote[86].speaker SPEAKER_03
transcript.pyannote[86].start 333.19409375
transcript.pyannote[86].end 335.37096875
transcript.pyannote[87].speaker SPEAKER_03
transcript.pyannote[87].start 335.55659375
transcript.pyannote[87].end 339.45471875
transcript.pyannote[88].speaker SPEAKER_03
transcript.pyannote[88].start 339.67409375
transcript.pyannote[88].end 340.38284375
transcript.pyannote[89].speaker SPEAKER_03
transcript.pyannote[89].start 340.58534375
transcript.pyannote[89].end 342.39096875
transcript.pyannote[90].speaker SPEAKER_03
transcript.pyannote[90].start 342.61034375
transcript.pyannote[90].end 343.75784375
transcript.pyannote[91].speaker SPEAKER_03
transcript.pyannote[91].start 343.87596875
transcript.pyannote[91].end 346.12034375
transcript.pyannote[92].speaker SPEAKER_03
transcript.pyannote[92].start 346.27221875
transcript.pyannote[92].end 347.38596875
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 347.53784375
transcript.pyannote[93].end 349.36034375
transcript.pyannote[94].speaker SPEAKER_02
transcript.pyannote[94].start 349.44471875
transcript.pyannote[94].end 353.42721875
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 353.68034375
transcript.pyannote[95].end 356.86971875
transcript.pyannote[96].speaker SPEAKER_02
transcript.pyannote[96].start 357.19034375
transcript.pyannote[96].end 357.83159375
transcript.pyannote[97].speaker SPEAKER_02
transcript.pyannote[97].start 358.08471875
transcript.pyannote[97].end 360.16034375
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 360.32909375
transcript.pyannote[98].end 361.32471875
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 361.57784375
transcript.pyannote[99].end 363.83909375
transcript.pyannote[100].speaker SPEAKER_03
transcript.pyannote[100].start 363.83909375
transcript.pyannote[100].end 363.87284375
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 364.19346875
transcript.pyannote[101].end 364.22721875
transcript.pyannote[102].speaker SPEAKER_03
transcript.pyannote[102].start 364.22721875
transcript.pyannote[102].end 367.92284375
transcript.pyannote[103].speaker SPEAKER_03
transcript.pyannote[103].start 368.29409375
transcript.pyannote[103].end 368.71596875
transcript.pyannote[104].speaker SPEAKER_03
transcript.pyannote[104].start 368.96909375
transcript.pyannote[104].end 370.42034375
transcript.pyannote[105].speaker SPEAKER_03
transcript.pyannote[105].start 370.79159375
transcript.pyannote[105].end 375.07784375
transcript.pyannote[106].speaker SPEAKER_03
transcript.pyannote[106].start 375.43221875
transcript.pyannote[106].end 378.63846875
transcript.pyannote[107].speaker SPEAKER_03
transcript.pyannote[107].start 378.87471875
transcript.pyannote[107].end 380.61284375
transcript.pyannote[108].speaker SPEAKER_03
transcript.pyannote[108].start 380.78159375
transcript.pyannote[108].end 391.91909375
transcript.pyannote[109].speaker SPEAKER_03
transcript.pyannote[109].start 392.32409375
transcript.pyannote[109].end 396.03659375
transcript.pyannote[110].speaker SPEAKER_03
transcript.pyannote[110].start 396.23909375
transcript.pyannote[110].end 396.47534375
transcript.pyannote[111].speaker SPEAKER_03
transcript.pyannote[111].start 396.72846875
transcript.pyannote[111].end 399.36096875
transcript.pyannote[112].speaker SPEAKER_03
transcript.pyannote[112].start 399.95159375
transcript.pyannote[112].end 400.45784375
transcript.pyannote[113].speaker SPEAKER_03
transcript.pyannote[113].start 400.66034375
transcript.pyannote[113].end 401.58846875
transcript.pyannote[114].speaker SPEAKER_03
transcript.pyannote[114].start 402.58409375
transcript.pyannote[114].end 403.95096875
transcript.pyannote[115].speaker SPEAKER_03
transcript.pyannote[115].start 404.42346875
transcript.pyannote[115].end 405.84096875
transcript.pyannote[116].speaker SPEAKER_04
transcript.pyannote[116].start 405.99284375
transcript.pyannote[116].end 406.46534375
transcript.pyannote[117].speaker SPEAKER_04
transcript.pyannote[117].start 407.00534375
transcript.pyannote[117].end 407.30909375
transcript.pyannote[118].speaker SPEAKER_03
transcript.pyannote[118].start 407.30909375
transcript.pyannote[118].end 407.32596875
transcript.pyannote[119].speaker SPEAKER_03
transcript.pyannote[119].start 407.42721875
transcript.pyannote[119].end 411.07221875
transcript.pyannote[120].speaker SPEAKER_03
transcript.pyannote[120].start 411.20721875
transcript.pyannote[120].end 412.92846875
transcript.pyannote[121].speaker SPEAKER_03
transcript.pyannote[121].start 413.18159375
transcript.pyannote[121].end 416.55659375
transcript.pyannote[122].speaker SPEAKER_03
transcript.pyannote[122].start 416.69159375
transcript.pyannote[122].end 418.00784375
transcript.pyannote[123].speaker SPEAKER_03
transcript.pyannote[123].start 418.48034375
transcript.pyannote[123].end 421.12971875
transcript.pyannote[124].speaker SPEAKER_03
transcript.pyannote[124].start 421.46721875
transcript.pyannote[124].end 430.64721875
transcript.pyannote[125].speaker SPEAKER_03
transcript.pyannote[125].start 430.73159375
transcript.pyannote[125].end 432.63846875
transcript.pyannote[126].speaker SPEAKER_03
transcript.pyannote[126].start 432.84096875
transcript.pyannote[126].end 434.17409375
transcript.pyannote[127].speaker SPEAKER_03
transcript.pyannote[127].start 434.69721875
transcript.pyannote[127].end 439.21971875
transcript.pyannote[128].speaker SPEAKER_03
transcript.pyannote[128].start 439.79346875
transcript.pyannote[128].end 442.76346875
transcript.pyannote[129].speaker SPEAKER_03
transcript.pyannote[129].start 442.83096875
transcript.pyannote[129].end 444.09659375
transcript.pyannote[130].speaker SPEAKER_03
transcript.pyannote[130].start 444.60284375
transcript.pyannote[130].end 449.56409375
transcript.pyannote[131].speaker SPEAKER_03
transcript.pyannote[131].start 449.59784375
transcript.pyannote[131].end 450.89721875
transcript.pyannote[132].speaker SPEAKER_03
transcript.pyannote[132].start 451.18409375
transcript.pyannote[132].end 452.29784375
transcript.pyannote[133].speaker SPEAKER_02
transcript.pyannote[133].start 452.29784375
transcript.pyannote[133].end 452.33159375
transcript.pyannote[134].speaker SPEAKER_03
transcript.pyannote[134].start 452.71971875
transcript.pyannote[134].end 452.97284375
transcript.pyannote[135].speaker SPEAKER_02
transcript.pyannote[135].start 452.97284375
transcript.pyannote[135].end 453.02346875
transcript.pyannote[136].speaker SPEAKER_03
transcript.pyannote[136].start 453.02346875
transcript.pyannote[136].end 453.49596875
transcript.pyannote[137].speaker SPEAKER_02
transcript.pyannote[137].start 453.49596875
transcript.pyannote[137].end 454.25534375
transcript.pyannote[138].speaker SPEAKER_02
transcript.pyannote[138].start 454.82909375
transcript.pyannote[138].end 456.76971875
transcript.pyannote[139].speaker SPEAKER_02
transcript.pyannote[139].start 456.93846875
transcript.pyannote[139].end 458.33909375
transcript.pyannote[140].speaker SPEAKER_02
transcript.pyannote[140].start 458.67659375
transcript.pyannote[140].end 462.03471875
transcript.pyannote[141].speaker SPEAKER_03
transcript.pyannote[141].start 462.03471875
transcript.pyannote[141].end 466.15221875
transcript.pyannote[142].speaker SPEAKER_02
transcript.pyannote[142].start 465.19034375
transcript.pyannote[142].end 465.88221875
transcript.pyannote[143].speaker SPEAKER_03
transcript.pyannote[143].start 466.50659375
transcript.pyannote[143].end 468.43034375
transcript.pyannote[144].speaker SPEAKER_03
transcript.pyannote[144].start 468.68346875
transcript.pyannote[144].end 469.52721875
transcript.pyannote[145].speaker SPEAKER_03
transcript.pyannote[145].start 469.93221875
transcript.pyannote[145].end 471.78846875
transcript.pyannote[146].speaker SPEAKER_03
transcript.pyannote[146].start 471.99096875
transcript.pyannote[146].end 474.62346875
transcript.pyannote[147].speaker SPEAKER_03
transcript.pyannote[147].start 475.53471875
transcript.pyannote[147].end 476.44596875
transcript.pyannote[148].speaker SPEAKER_04
transcript.pyannote[148].start 477.20534375
transcript.pyannote[148].end 477.67784375
transcript.pyannote[149].speaker SPEAKER_03
transcript.pyannote[149].start 477.86346875
transcript.pyannote[149].end 480.04034375
transcript.pyannote[150].speaker SPEAKER_03
transcript.pyannote[150].start 480.54659375
transcript.pyannote[150].end 483.43221875
transcript.pyannote[151].speaker SPEAKER_03
transcript.pyannote[151].start 483.85409375
transcript.pyannote[151].end 485.96346875
transcript.pyannote[152].speaker SPEAKER_03
transcript.pyannote[152].start 486.30096875
transcript.pyannote[152].end 491.31284375
transcript.pyannote[153].speaker SPEAKER_03
transcript.pyannote[153].start 491.68409375
transcript.pyannote[153].end 493.03409375
transcript.pyannote[154].speaker SPEAKER_03
transcript.pyannote[154].start 493.08471875
transcript.pyannote[154].end 495.71721875
transcript.pyannote[155].speaker SPEAKER_03
transcript.pyannote[155].start 495.98721875
transcript.pyannote[155].end 497.72534375
transcript.pyannote[156].speaker SPEAKER_03
transcript.pyannote[156].start 498.53534375
transcript.pyannote[156].end 501.57284375
transcript.pyannote[157].speaker SPEAKER_03
transcript.pyannote[157].start 501.97784375
transcript.pyannote[157].end 503.61471875
transcript.pyannote[158].speaker SPEAKER_03
transcript.pyannote[158].start 503.93534375
transcript.pyannote[158].end 504.30659375
transcript.pyannote[159].speaker SPEAKER_02
transcript.pyannote[159].start 504.47534375
transcript.pyannote[159].end 505.21784375
transcript.pyannote[160].speaker SPEAKER_03
transcript.pyannote[160].start 505.50471875
transcript.pyannote[160].end 509.25096875
transcript.pyannote[161].speaker SPEAKER_00
transcript.pyannote[161].start 510.88784375
transcript.pyannote[161].end 518.31284375
transcript.pyannote[162].speaker SPEAKER_03
transcript.pyannote[162].start 511.14096875
transcript.pyannote[162].end 511.74846875
transcript.pyannote[163].speaker SPEAKER_03
transcript.pyannote[163].start 518.31284375
transcript.pyannote[163].end 520.03409375
transcript.pyannote[164].speaker SPEAKER_00
transcript.pyannote[164].start 518.32971875
transcript.pyannote[164].end 518.38034375
transcript.pyannote[165].speaker SPEAKER_03
transcript.pyannote[165].start 520.25346875
transcript.pyannote[165].end 523.45971875
transcript.pyannote[166].speaker SPEAKER_03
transcript.pyannote[166].start 523.86471875
transcript.pyannote[166].end 524.74221875
transcript.pyannote[167].speaker SPEAKER_03
transcript.pyannote[167].start 525.01221875
transcript.pyannote[167].end 526.76721875
transcript.pyannote[168].speaker SPEAKER_03
transcript.pyannote[168].start 527.00346875
transcript.pyannote[168].end 529.80471875
transcript.pyannote[169].speaker SPEAKER_03
transcript.pyannote[169].start 529.99034375
transcript.pyannote[169].end 530.81721875
transcript.pyannote[170].speaker SPEAKER_03
transcript.pyannote[170].start 531.15471875
transcript.pyannote[170].end 536.08221875
transcript.pyannote[171].speaker SPEAKER_03
transcript.pyannote[171].start 536.75721875
transcript.pyannote[171].end 537.61784375
transcript.pyannote[172].speaker SPEAKER_02
transcript.pyannote[172].start 537.76971875
transcript.pyannote[172].end 541.49909375
transcript.pyannote[173].speaker SPEAKER_03
transcript.pyannote[173].start 540.23346875
transcript.pyannote[173].end 540.62159375
transcript.pyannote[174].speaker SPEAKER_03
transcript.pyannote[174].start 540.94221875
transcript.pyannote[174].end 546.49409375
transcript.pyannote[175].speaker SPEAKER_03
transcript.pyannote[175].start 547.00034375
transcript.pyannote[175].end 550.45971875
transcript.pyannote[176].speaker SPEAKER_03
transcript.pyannote[176].start 550.67909375
transcript.pyannote[176].end 551.86034375
transcript.pyannote[177].speaker SPEAKER_03
transcript.pyannote[177].start 552.11346875
transcript.pyannote[177].end 555.64034375
transcript.pyannote[178].speaker SPEAKER_03
transcript.pyannote[178].start 556.12971875
transcript.pyannote[178].end 556.87221875
transcript.pyannote[179].speaker SPEAKER_03
transcript.pyannote[179].start 557.22659375
transcript.pyannote[179].end 559.80846875
transcript.pyannote[180].speaker SPEAKER_03
transcript.pyannote[180].start 560.11221875
transcript.pyannote[180].end 563.50409375
transcript.pyannote[181].speaker SPEAKER_03
transcript.pyannote[181].start 563.77409375
transcript.pyannote[181].end 565.78221875
transcript.pyannote[182].speaker SPEAKER_03
transcript.pyannote[182].start 566.18721875
transcript.pyannote[182].end 567.50346875
transcript.pyannote[183].speaker SPEAKER_03
transcript.pyannote[183].start 567.68909375
transcript.pyannote[183].end 568.66784375
transcript.pyannote[184].speaker SPEAKER_03
transcript.pyannote[184].start 568.85346875
transcript.pyannote[184].end 570.20346875
transcript.pyannote[185].speaker SPEAKER_00
transcript.pyannote[185].start 571.16534375
transcript.pyannote[185].end 584.17596875
transcript.pyannote[186].speaker SPEAKER_03
transcript.pyannote[186].start 582.55596875
transcript.pyannote[186].end 584.64846875
transcript.pyannote[187].speaker SPEAKER_00
transcript.pyannote[187].start 584.64846875
transcript.pyannote[187].end 592.15784375
transcript.pyannote[188].speaker SPEAKER_03
transcript.pyannote[188].start 593.33909375
transcript.pyannote[188].end 596.19096875
transcript.pyannote[189].speaker SPEAKER_03
transcript.pyannote[189].start 596.84909375
transcript.pyannote[189].end 601.70909375
transcript.pyannote[190].speaker SPEAKER_03
transcript.pyannote[190].start 602.31659375
transcript.pyannote[190].end 602.56971875
transcript.pyannote[191].speaker SPEAKER_03
transcript.pyannote[191].start 602.75534375
transcript.pyannote[191].end 604.62846875
transcript.pyannote[192].speaker SPEAKER_03
transcript.pyannote[192].start 605.10096875
transcript.pyannote[192].end 605.79284375
transcript.pyannote[193].speaker SPEAKER_03
transcript.pyannote[193].start 606.16409375
transcript.pyannote[193].end 606.82221875
transcript.pyannote[194].speaker SPEAKER_03
transcript.pyannote[194].start 607.10909375
transcript.pyannote[194].end 610.78784375
transcript.pyannote[195].speaker SPEAKER_03
transcript.pyannote[195].start 611.19284375
transcript.pyannote[195].end 615.02346875
transcript.pyannote[196].speaker SPEAKER_03
transcript.pyannote[196].start 615.14159375
transcript.pyannote[196].end 616.98096875
transcript.pyannote[197].speaker SPEAKER_03
transcript.pyannote[197].start 617.41971875
transcript.pyannote[197].end 619.74846875
transcript.pyannote[198].speaker SPEAKER_03
transcript.pyannote[198].start 620.15346875
transcript.pyannote[198].end 622.61721875
transcript.pyannote[199].speaker SPEAKER_03
transcript.pyannote[199].start 622.78596875
transcript.pyannote[199].end 624.55784375
transcript.pyannote[200].speaker SPEAKER_03
transcript.pyannote[200].start 624.84471875
transcript.pyannote[200].end 626.41409375
transcript.pyannote[201].speaker SPEAKER_03
transcript.pyannote[201].start 626.88659375
transcript.pyannote[201].end 627.39284375
transcript.pyannote[202].speaker SPEAKER_03
transcript.pyannote[202].start 627.94971875
transcript.pyannote[202].end 631.20659375
transcript.pyannote[203].speaker SPEAKER_03
transcript.pyannote[203].start 631.66221875
transcript.pyannote[203].end 634.36221875
transcript.pyannote[204].speaker SPEAKER_03
transcript.pyannote[204].start 634.63221875
transcript.pyannote[204].end 638.39534375
transcript.pyannote[205].speaker SPEAKER_03
transcript.pyannote[205].start 638.68221875
transcript.pyannote[205].end 640.47096875
transcript.pyannote[206].speaker SPEAKER_03
transcript.pyannote[206].start 640.65659375
transcript.pyannote[206].end 643.91346875
transcript.pyannote[207].speaker SPEAKER_03
transcript.pyannote[207].start 644.45346875
transcript.pyannote[207].end 645.70221875
transcript.pyannote[208].speaker SPEAKER_03
transcript.pyannote[208].start 646.02284375
transcript.pyannote[208].end 649.24596875
transcript.pyannote[209].speaker SPEAKER_03
transcript.pyannote[209].start 650.73096875
transcript.pyannote[209].end 651.59159375
transcript.pyannote[210].speaker SPEAKER_03
transcript.pyannote[210].start 652.11471875
transcript.pyannote[210].end 653.85284375
transcript.pyannote[211].speaker SPEAKER_03
transcript.pyannote[211].start 654.12284375
transcript.pyannote[211].end 655.05096875
transcript.pyannote[212].speaker SPEAKER_03
transcript.pyannote[212].start 655.20284375
transcript.pyannote[212].end 660.40034375
transcript.pyannote[213].speaker SPEAKER_03
transcript.pyannote[213].start 660.72096875
transcript.pyannote[213].end 661.83471875
transcript.pyannote[214].speaker SPEAKER_03
transcript.pyannote[214].start 661.96971875
transcript.pyannote[214].end 665.31096875
transcript.pyannote[215].speaker SPEAKER_03
transcript.pyannote[215].start 665.61471875
transcript.pyannote[215].end 667.08284375
transcript.pyannote[216].speaker SPEAKER_03
transcript.pyannote[216].start 667.33596875
transcript.pyannote[216].end 668.93909375
transcript.pyannote[217].speaker SPEAKER_03
transcript.pyannote[217].start 669.24284375
transcript.pyannote[217].end 670.08659375
transcript.pyannote[218].speaker SPEAKER_03
transcript.pyannote[218].start 670.52534375
transcript.pyannote[218].end 678.18659375
transcript.pyannote[219].speaker SPEAKER_03
transcript.pyannote[219].start 678.74346875
transcript.pyannote[219].end 681.32534375
transcript.pyannote[220].speaker SPEAKER_03
transcript.pyannote[220].start 681.83159375
transcript.pyannote[220].end 684.46409375
transcript.pyannote[221].speaker SPEAKER_03
transcript.pyannote[221].start 684.59909375
transcript.pyannote[221].end 688.24409375
transcript.pyannote[222].speaker SPEAKER_03
transcript.pyannote[222].start 688.29471875
transcript.pyannote[222].end 693.52596875
transcript.pyannote[223].speaker SPEAKER_03
transcript.pyannote[223].start 693.74534375
transcript.pyannote[223].end 698.47034375
transcript.pyannote[224].speaker SPEAKER_03
transcript.pyannote[224].start 698.87534375
transcript.pyannote[224].end 700.39409375
transcript.pyannote[225].speaker SPEAKER_03
transcript.pyannote[225].start 700.56284375
transcript.pyannote[225].end 701.89596875
transcript.pyannote[226].speaker SPEAKER_03
transcript.pyannote[226].start 702.21659375
transcript.pyannote[226].end 704.07284375
transcript.pyannote[227].speaker SPEAKER_00
transcript.pyannote[227].start 704.07284375
transcript.pyannote[227].end 704.08971875
transcript.pyannote[228].speaker SPEAKER_03
transcript.pyannote[228].start 704.61284375
transcript.pyannote[228].end 706.03034375
transcript.pyannote[229].speaker SPEAKER_00
transcript.pyannote[229].start 706.03034375
transcript.pyannote[229].end 706.18221875
transcript.pyannote[230].speaker SPEAKER_03
transcript.pyannote[230].start 706.18221875
transcript.pyannote[230].end 706.19909375
transcript.pyannote[231].speaker SPEAKER_00
transcript.pyannote[231].start 706.19909375
transcript.pyannote[231].end 707.07659375
transcript.pyannote[232].speaker SPEAKER_00
transcript.pyannote[232].start 707.88659375
transcript.pyannote[232].end 712.42596875
transcript.pyannote[233].speaker SPEAKER_00
transcript.pyannote[233].start 712.45971875
transcript.pyannote[233].end 717.94409375
transcript.pyannote[234].speaker SPEAKER_00
transcript.pyannote[234].start 718.16346875
transcript.pyannote[234].end 723.83346875
transcript.pyannote[235].speaker SPEAKER_00
transcript.pyannote[235].start 724.05284375
transcript.pyannote[235].end 729.73971875
transcript.pyannote[236].speaker SPEAKER_03
transcript.pyannote[236].start 729.73971875
transcript.pyannote[236].end 733.60409375
transcript.pyannote[237].speaker SPEAKER_03
transcript.pyannote[237].start 733.67159375
transcript.pyannote[237].end 736.57409375
transcript.pyannote[238].speaker SPEAKER_03
transcript.pyannote[238].start 736.89471875
transcript.pyannote[238].end 737.92409375
transcript.pyannote[239].speaker SPEAKER_03
transcript.pyannote[239].start 738.54846875
transcript.pyannote[239].end 740.70846875
transcript.pyannote[240].speaker SPEAKER_03
transcript.pyannote[240].start 741.01221875
transcript.pyannote[240].end 745.02846875
transcript.pyannote[241].speaker SPEAKER_03
transcript.pyannote[241].start 745.14659375
transcript.pyannote[241].end 747.27284375
transcript.pyannote[242].speaker SPEAKER_03
transcript.pyannote[242].start 747.42471875
transcript.pyannote[242].end 749.97284375
transcript.pyannote[243].speaker SPEAKER_03
transcript.pyannote[243].start 750.47909375
transcript.pyannote[243].end 753.66846875
transcript.pyannote[244].speaker SPEAKER_03
transcript.pyannote[244].start 753.87096875
transcript.pyannote[244].end 755.92971875
transcript.pyannote[245].speaker SPEAKER_03
transcript.pyannote[245].start 756.23346875
transcript.pyannote[245].end 760.67159375
transcript.pyannote[246].speaker SPEAKER_03
transcript.pyannote[246].start 761.04284375
transcript.pyannote[246].end 762.61221875
transcript.pyannote[247].speaker SPEAKER_03
transcript.pyannote[247].start 762.94971875
transcript.pyannote[247].end 786.81096875
transcript.pyannote[248].speaker SPEAKER_03
transcript.pyannote[248].start 787.06409375
transcript.pyannote[248].end 790.54034375
transcript.pyannote[249].speaker SPEAKER_02
transcript.pyannote[249].start 790.54034375
transcript.pyannote[249].end 791.28284375
transcript.pyannote[250].speaker SPEAKER_01
transcript.pyannote[250].start 791.28284375
transcript.pyannote[250].end 791.29971875
transcript.pyannote[251].speaker SPEAKER_01
transcript.pyannote[251].start 791.87346875
transcript.pyannote[251].end 795.23159375
transcript.pyannote[252].speaker SPEAKER_01
transcript.pyannote[252].start 795.53534375
transcript.pyannote[252].end 802.52159375
transcript.pyannote[253].speaker SPEAKER_01
transcript.pyannote[253].start 802.85909375
transcript.pyannote[253].end 807.09471875
transcript.pyannote[254].speaker SPEAKER_03
transcript.pyannote[254].start 806.67284375
transcript.pyannote[254].end 811.51596875
transcript.pyannote[255].speaker SPEAKER_03
transcript.pyannote[255].start 811.56659375
transcript.pyannote[255].end 815.05971875
transcript.pyannote[256].speaker SPEAKER_03
transcript.pyannote[256].start 815.38034375
transcript.pyannote[256].end 821.23596875
transcript.pyannote[257].speaker SPEAKER_03
transcript.pyannote[257].start 821.53971875
transcript.pyannote[257].end 822.80534375
transcript.pyannote[258].speaker SPEAKER_03
transcript.pyannote[258].start 823.02471875
transcript.pyannote[258].end 824.77971875
transcript.pyannote[259].speaker SPEAKER_03
transcript.pyannote[259].start 825.21846875
transcript.pyannote[259].end 828.76221875
transcript.pyannote[260].speaker SPEAKER_03
transcript.pyannote[260].start 829.16721875
transcript.pyannote[260].end 830.78721875
transcript.pyannote[261].speaker SPEAKER_03
transcript.pyannote[261].start 830.97284375
transcript.pyannote[261].end 834.80346875
transcript.pyannote[262].speaker SPEAKER_03
transcript.pyannote[262].start 834.90471875
transcript.pyannote[262].end 838.46534375
transcript.pyannote[263].speaker SPEAKER_03
transcript.pyannote[263].start 838.63409375
transcript.pyannote[263].end 839.78159375
transcript.pyannote[264].speaker SPEAKER_03
transcript.pyannote[264].start 840.11909375
transcript.pyannote[264].end 842.07659375
transcript.pyannote[265].speaker SPEAKER_03
transcript.pyannote[265].start 842.38034375
transcript.pyannote[265].end 844.23659375
transcript.pyannote[266].speaker SPEAKER_03
transcript.pyannote[266].start 844.54034375
transcript.pyannote[266].end 846.46409375
transcript.pyannote[267].speaker SPEAKER_03
transcript.pyannote[267].start 847.13909375
transcript.pyannote[267].end 850.44659375
transcript.pyannote[268].speaker SPEAKER_03
transcript.pyannote[268].start 850.68284375
transcript.pyannote[268].end 855.01971875
transcript.pyannote[269].speaker SPEAKER_03
transcript.pyannote[269].start 855.10409375
transcript.pyannote[269].end 855.91409375
transcript.pyannote[270].speaker SPEAKER_03
transcript.pyannote[270].start 856.35284375
transcript.pyannote[270].end 857.12909375
transcript.pyannote[271].speaker SPEAKER_03
transcript.pyannote[271].start 857.56784375
transcript.pyannote[271].end 858.34409375
transcript.pyannote[272].speaker SPEAKER_03
transcript.pyannote[272].start 858.81659375
transcript.pyannote[272].end 869.29596875
transcript.pyannote[273].speaker SPEAKER_03
transcript.pyannote[273].start 869.46471875
transcript.pyannote[273].end 873.88596875
transcript.pyannote[274].speaker SPEAKER_03
transcript.pyannote[274].start 873.97034375
transcript.pyannote[274].end 881.51346875
transcript.pyannote[275].speaker SPEAKER_03
transcript.pyannote[275].start 881.81721875
transcript.pyannote[275].end 883.97721875
transcript.pyannote[276].speaker SPEAKER_03
transcript.pyannote[276].start 884.17971875
transcript.pyannote[276].end 886.01909375
transcript.pyannote[277].speaker SPEAKER_03
transcript.pyannote[277].start 886.18784375
transcript.pyannote[277].end 887.23409375
transcript.pyannote[278].speaker SPEAKER_03
transcript.pyannote[278].start 888.06096875
transcript.pyannote[278].end 890.25471875
transcript.pyannote[279].speaker SPEAKER_03
transcript.pyannote[279].start 890.86221875
transcript.pyannote[279].end 894.32159375
transcript.pyannote[280].speaker SPEAKER_03
transcript.pyannote[280].start 894.91221875
transcript.pyannote[280].end 900.26159375
transcript.pyannote[281].speaker SPEAKER_03
transcript.pyannote[281].start 900.37971875
transcript.pyannote[281].end 904.41284375
transcript.pyannote[282].speaker SPEAKER_00
transcript.pyannote[282].start 904.64909375
transcript.pyannote[282].end 909.62721875
transcript.pyannote[283].speaker SPEAKER_03
transcript.pyannote[283].start 908.71596875
transcript.pyannote[283].end 909.52596875
transcript.pyannote[284].speaker SPEAKER_03
transcript.pyannote[284].start 909.62721875
transcript.pyannote[284].end 909.64409375
transcript.pyannote[285].speaker SPEAKER_00
transcript.pyannote[285].start 909.64409375
transcript.pyannote[285].end 910.42034375
transcript.pyannote[286].speaker SPEAKER_03
transcript.pyannote[286].start 909.96471875
transcript.pyannote[286].end 910.21784375
transcript.pyannote[287].speaker SPEAKER_03
transcript.pyannote[287].start 910.42034375
transcript.pyannote[287].end 911.33159375
transcript.pyannote[288].speaker SPEAKER_03
transcript.pyannote[288].start 912.98534375
transcript.pyannote[288].end 915.29721875
transcript.pyannote[289].speaker SPEAKER_03
transcript.pyannote[289].start 915.34784375
transcript.pyannote[289].end 920.68034375
transcript.pyannote[290].speaker SPEAKER_03
transcript.pyannote[290].start 921.03471875
transcript.pyannote[290].end 922.51971875
transcript.pyannote[291].speaker SPEAKER_03
transcript.pyannote[291].start 922.90784375
transcript.pyannote[291].end 926.04659375
transcript.pyannote[292].speaker SPEAKER_03
transcript.pyannote[292].start 926.40096875
transcript.pyannote[292].end 927.26159375
transcript.pyannote[293].speaker SPEAKER_03
transcript.pyannote[293].start 927.88596875
transcript.pyannote[293].end 930.13034375
transcript.pyannote[294].speaker SPEAKER_03
transcript.pyannote[294].start 930.41721875
transcript.pyannote[294].end 934.77096875
transcript.pyannote[295].speaker SPEAKER_03
transcript.pyannote[295].start 935.19284375
transcript.pyannote[295].end 937.67346875
transcript.pyannote[296].speaker SPEAKER_03
transcript.pyannote[296].start 937.97721875
transcript.pyannote[296].end 955.76346875
transcript.pyannote[297].speaker SPEAKER_03
transcript.pyannote[297].start 956.40471875
transcript.pyannote[297].end 956.89409375
transcript.pyannote[298].speaker SPEAKER_03
transcript.pyannote[298].start 957.06284375
transcript.pyannote[298].end 958.22721875
transcript.pyannote[299].speaker SPEAKER_03
transcript.pyannote[299].start 958.51409375
transcript.pyannote[299].end 959.59409375
transcript.pyannote[300].speaker SPEAKER_03
transcript.pyannote[300].start 959.81346875
transcript.pyannote[300].end 960.57284375
transcript.pyannote[301].speaker SPEAKER_05
transcript.pyannote[301].start 966.07409375
transcript.pyannote[301].end 967.60971875
transcript.pyannote[302].speaker SPEAKER_03
transcript.pyannote[302].start 969.63471875
transcript.pyannote[302].end 969.97221875
transcript.pyannote[303].speaker SPEAKER_05
transcript.pyannote[303].start 969.97221875
transcript.pyannote[303].end 969.98909375
transcript.pyannote[304].speaker SPEAKER_05
transcript.pyannote[304].start 970.57971875
transcript.pyannote[304].end 970.71471875
transcript.whisperx[0].start 6.705
transcript.whisperx[0].end 6.99
transcript.whisperx[0].text 好好好
transcript.whisperx[1].start 24.608
transcript.whisperx[1].end 47.637
transcript.whisperx[1].text 主席 在場的委員先進列席政務機關首長 官員 會長 工作夥伴媒體記者女士先生有請卓院長以及國發會劉主委和財政部莊部長卓院長 還有劉主委 還有莊副主委副主委今天請假 今天是副主委副主委代理
transcript.whisperx[2].start 55.752
transcript.whisperx[2].end 79.406
transcript.whisperx[2].text 總委員好 院長好 部長好 副主委好我的標題是產業退稅有需求 調配勞力有方法緩對等關稅衝擊 政府應盡速執行好 請教院長外傳我們財經首長都留任 顯然他們的表現得到肯定院長是不是支持會做事的格遠
transcript.whisperx[3].start 80.336
transcript.whisperx[3].end 108.912
transcript.whisperx[3].text 我需要會做事的支持是的不只是肯定而且是需要而且會支持很好來我們來看一下就在一個星期前我上次問到了還稅給中小企業財政部主動出擊還記得嗎8月12號我請教過院長說這些受到美國關稅影響他的市場是因為是美國的他受到的關稅衝擊我們把他過去這個產業進口在台灣的關稅我們退還給他院長是全力支持嗎
transcript.whisperx[4].start 110.189
transcript.whisperx[4].end 136.73
transcript.whisperx[4].text 謝謝委員當地有提出這樣的建議來好 那麼財政部也主動出席了嘛 對不對也開始去進行規劃了嘛 是不是 部長是 跟委員報告我們知道委員很關切這個問題我們也跟經濟部來聯繫對於相關這樣因為受到美國對等關稅政策影響而受到衝擊的產業以及廠商它的一個狀況那以什麼樣的方式來給他們支持好 那我現在也要考一考我們國發會這是副主委
transcript.whisperx[5].start 137.406
transcript.whisperx[5].end 160.875
transcript.whisperx[5].text 其實我們要做這個政策呢國發也很重要你看我們要精準的找到受衝擊的企業首先這個產業他應該是以美國市場為主剛剛就說了而且呢他在他的主要競爭對手關稅又相對比我們低比如說不是所有的企業出口企業都是我們的對象是不是這樣我要找出他出口市場是美國為主的其次我們要把他跟
transcript.whisperx[6].start 161.837
transcript.whisperx[6].end 184.14
transcript.whisperx[6].text 他的美國的他的主要對手美國對他的關稅是如何副主委是不是這樣子我們要盤點哪些產業受衝擊是不是應該從這兩個方法目前我們所有對受衝擊產業的一些支持其實基本上都是對著剛剛委員說的好那我們來看一下舉例來講大家都說工具機手工具水五金重電跟塑膠製品那我們來看一下
transcript.whisperx[7].start 184.841
transcript.whisperx[7].end 193.789
transcript.whisperx[7].text 工具機我們對美關稅24%我們的主要對手德國日本韓國都是15%顯然的工具機受到嚴重衝擊 卓院長是不是這樣
transcript.whisperx[8].start 195.243
transcript.whisperx[8].end 218.803
transcript.whisperx[8].text 這個在我們評估當中確實是把它列為衝擊性大的產業另外我們來看一下手工具我們雖然是23.3但是越南跟我們一樣主要競爭對手中國比我們還高可能手工具沒那麼嚴重再來看水五金我們是22.6越南也是22.6中國也是比我們高或許水五金的壓力沒那麼大重電我們是22越南是15中國是57比我們高一個比我們低我們可能有影響
transcript.whisperx[9].start 219.503
transcript.whisperx[9].end 246.229
transcript.whisperx[9].text 塑膠製品我們的主要競爭對手是中國59可是墨西哥跟我們差不多所以從這樣的看法來看是不是像工具機這樣的產業是我們優先要幫助的對象尤其是如果高階的可能我們的競爭力會更弱一點如果中階的我們還有個很好的競爭力如果我們對手是德國日本以外的國家的話我相信我們的產品優越性一定是可以有辦法跟他競爭的
transcript.whisperx[10].start 246.854
transcript.whisperx[10].end 256.823
transcript.whisperx[10].text 好謝謝副主委考試過關我們請經濟部次長來補來接下來我們要問到一下沖退原料稅的政府分工副主委可以請為我們請次長好
transcript.whisperx[11].start 261.79
transcript.whisperx[11].end 289.942
transcript.whisperx[11].text 那麼莊部長之前呢我們要財政部來處理這個事情但是報告院長前面呢要有產業別要有產發所先告訴我們說是哪些產業受到影響然後這些產業要國貿署去抓出說他這幾年來銷售美國的需求量是多少然後鎖定這些廠商之後以公司別我們再請財政部官務署去計算這個公司為單位他過去
transcript.whisperx[12].start 291.002
transcript.whisperx[12].end 318.014
transcript.whisperx[12].text 這三年五年甚至十年台灣的政府跟他扣了多少進口關稅是不是用這個方式才能夠趕快的把這個事情執行莊部長是不是這樣委員報告就是說對於受影響的廠商確實是如剛剛產業署跟國貿署我們會把他會提資料給我們至於是不是從這個關稅的部分來退或者是以其他補助或支持方案來做那這個部分我們後續會再來做處理
transcript.whisperx[13].start 319.008
transcript.whisperx[13].end 347.106
transcript.whisperx[13].text 那現在進入到哪裡了是不是已經調查出來了這個部分跟我們報告一下我們在8月21號已經把相關的這些資訊已經給財政部那我想財政部他們現在正在核算當中總院長8月21號求在財政部這邊了財政部也說要等到大院我們行政院做出最後的決定所以請院長趕快決定你說權力支持資料在財政部這邊是不是趕快可以核定這樣的一個出口退稅的一個
transcript.whisperx[14].start 348.567
transcript.whisperx[14].end 363.582
transcript.whisperx[14].text 請莊部長能夠請同仁能夠儘速的 詳實的來將內容與檢查如果符合到所有的條件 規則 標準的話那行政院依照支持產業的這樣的原則跟委員日前的建議我們全盤的來考量實施
transcript.whisperx[15].start 364.226
transcript.whisperx[15].end 382.237
transcript.whisperx[15].text 好 謝謝 那麼莊部長請回我現在請農業部陳部長好 那麼繼續 卓院長我們剛剛說沖退原料稅以製造業為對象我們看到這個圖很清楚其實製造業大概在這一波受到衝擊最大的除了受到美國關稅影響我們是不是還可以看到
transcript.whisperx[16].start 383.037
transcript.whisperx[16].end 405.309
transcript.whisperx[16].text 還會造成他減班勞動力的閒置我們來看一下我們看到報紙說每對台客20%的關稅中部產業有減單減班裁員那這裡訂單下滑減班休息的包括電子資訊產業包括運輸工具包括機械包括鋼鐵金屬經濟部次長是不是這樣子這些產業是可能會遇到減班休息的衝擊
transcript.whisperx[17].start 407.005
transcript.whisperx[17].end 433.413
transcript.whisperx[17].text 好來那麼這種情況之下呢我要跟院長說那遇到的減班衝擊其實勞動部長要起來的其實我想他坐在台下我要誇獎他比較不會尷尬來製造業減班休息勞工生計怎麼辦我們看到了如果是本土勞工勞動部推出了強化雇用安定措施這也是過去疫情期間我們所說到的這幾個產業如果說原來的本土勞工他如果是月領4萬
transcript.whisperx[18].start 434.733
transcript.whisperx[18].end 454.102
transcript.whisperx[18].text 他因為呢 減班休息他只能領最低工資28,590但是他這就念了薪資差額28,000跟40,000這差額的12,000勞動部呢 用目前的就業安定給他七成的補貼他可以補多少12,000的七成就是8,400院長支持勞動部這樣做吧
transcript.whisperx[19].start 454.861
transcript.whisperx[19].end 483.126
transcript.whisperx[19].text 是勞動部一直這樣對於勞工安定就業一貫有的方式那我希望他徹底的去執行是的 為什麼沒有請勞動部長來起來因為他都做好了 都做對了所以就不勞他上來了好 但是外籍廠工沒有這個優待外籍廠工如果減班休息他最多就是領28,590元經濟部是不是這樣子是 你說了知道嗎那這樣會什麼情況呢這些外籍的移工廠工他可能會怎樣
transcript.whisperx[20].start 483.902
transcript.whisperx[20].end 508.971
transcript.whisperx[20].text 他會因為他來台灣就要賺錢嘛他賺不到4萬塊賺不到3萬5只能領2萬8他就另外找地方去嘛好那另一方面這個勞動力他出現了一個不穩定但是反過來看我們看看移工會跟寶桃串聯落跑打工院長你知道什麼是寶桃嗎部長 寶石桃的人對寶石桃的人寶石桃你剛才說什麼叫做我們增開寶桃
transcript.whisperx[21].start 511.599
transcript.whisperx[21].end 534.927
transcript.whisperx[21].text 有時候一些失聯的移工他會透過特定的人然後去安排他做一些事情你說的失聯的移工啦就是工廠 他進來工廠他不愛做啦他就漏跑啦 老闆把這些人扣扣的現在中部 南島在採茶 他就去搬茶葉茶葉搬完之後 他就要來 要來幫他種西瓜 幫他採 摘鳳梨
transcript.whisperx[22].start 536.786
transcript.whisperx[22].end 554.883
transcript.whisperx[22].text 院長知道吧農務的這些移工有它的季節性跟收產的這個我們看到過去在2025年就是今年移工一到機場就整個被接走另外有的是怎樣在2018年甚至發生的整個都不見了好 那我們來看一下可是這些移工投入的這些產業
transcript.whisperx[23].start 556.144
transcript.whisperx[23].end 569.837
transcript.whisperx[23].text 不只是農業可是農業有沒有需求部長你們可以告訴我們院長我們農業目前雖然有農業移工的作為但是實質上使用的移工都是合法引進的嗎
transcript.whisperx[24].start 571.389
transcript.whisperx[24].end 596.024
transcript.whisperx[24].text 我跟委員報告就是謝謝勞動部的一個協助我們農業的移工大概有兩萬名然後合法的移工進來就是合配有兩萬名大概現在目前用了一萬六千多名那你覺得農業部門只有用合法的移工嗎不可諱言的還有部分的這些失聯的移工投入到農業領域做這些季節性的這些打工其實沒有失聯的移工也在打黑工啦
transcript.whisperx[25].start 596.929
transcript.whisperx[25].end 626.024
transcript.whisperx[25].text 我們屏東農村喔 很多工廠喔他移工喔 下班之後呢 他要去打工啦我們 民房喔 在吃米啦米是歐 米農啦 米農都要摘去五六點不停耕 米多兩兩就去歐啦都是附近工廠 種植附近工廠的移工喔 他們就去五點五就去歐啊歐到七點五 早上吃菜 回去上班有的是晚上 下班後 再來拍工有的是白天禮拜再來拍工農業部部長 你知道這個情況嗎
transcript.whisperx[26].start 628.324
transcript.whisperx[26].end 649.054
transcript.whisperx[26].text 為什麼這個情況一直存在著因為有需要我們往下看其實不只是災後的復原我們還往下看其實現在談的是全職轉廠跟就近兼差其實依照目前我們的勞動法令我這個廠商合法引進的移工只能夠使用我不能說我現在工廠停班休息 減班休息我就給別人用
transcript.whisperx[27].start 650.856
transcript.whisperx[27].end 669.926
transcript.whisperx[27].text 市長你知道我不能因為我的產業我現在訂單少了嘛我引進的移工不適途者嘛我就稍後把人家去加班可以嗎 不可以產業是不可以的 為什麼因為你全職移轉未來會成什麼情況等到我訂單回來了我就要人借 覺得借的回來他就浪費了嘛
transcript.whisperx[28].start 670.606
transcript.whisperx[28].end 680.555
transcript.whisperx[28].text 所以目前我們工業部門 製造部門最擔心什麼我減單休息之後 減班休息之後我的移工跑掉了等到我的訂單回來了 我要再訂車
transcript.whisperx[29].start 681.857
transcript.whisperx[29].end 706.442
transcript.whisperx[29].text 正常的時候 勞動部也要給他啊但是這裡已經漏跑的這個移工他就轉入黑市變成是台灣我們撒不掉 摸不掉的一個移工這是我們不希望的所以怎麼做呢其實如果說不要讓他整場移轉讓他就近兼差他就是附近的農場他沒有上班的時間 他去打工我請教一下 農家部長你覺得這樣可以嗎
transcript.whisperx[30].start 707.955
transcript.whisperx[30].end 736.401
transcript.whisperx[30].text 我們曾經就這個議題就正常的曾經問了幾個企業就是他們週休二是希望他們的員工休息如果他來打工的時候他們也擔心他們打工的時候如果太累的時候第二天上班可能會精神不濟這第一個第二個部分就是說如果要合法去做這些休息的話那相對的相關的規定也要做修正很好就是後面如果要合法的話就規定要修正為什麼我覺得農業部門可以這樣來做呢
transcript.whisperx[31].start 736.957
transcript.whisperx[31].end 749.236
transcript.whisperx[31].text 因為他不是full time不是每天8小時的他是什麼 藍山的工程你一天來我一小時 兩小時 累輸加班不然就是你每個禮拜你不出去玩你來我們家幫我們弄一些做sheet
transcript.whisperx[32].start 750.489
transcript.whisperx[32].end 773.484
transcript.whisperx[32].text 他因為農場的工作呢是零工有季節性有小規模有地點分散他很難申請完整的像工廠工人這樣的農業移工來做所以這種情況在我們往下看所以呢如果原僱主受到官司衝擊影響他減班休息你與其讓這些移工跑掉跑去其他沒有資格引進移工的工廠做非法的工作全職的移轉
transcript.whisperx[33].start 774.204
transcript.whisperx[33].end 789.464
transcript.whisperx[33].text 不如你是不是讓他本來週休兩天週工作五天他現在週工作兩天另外的三天他可以透過一些機制到附近的農盲去幫忙院長你覺得這樣的方法有沒有一個可以考慮的評估
transcript.whisperx[34].start 791.949
transcript.whisperx[34].end 810.889
transcript.whisperx[34].text 那個跟周委員報告因為確實這個移工如果要跨雇主或跨業來去工作那尤其是他本身他不是一個合意的解約的狀況的話這涉及到的制度上面的面向就比較因為勞動部現在我要打斷就是勞動部他的思維還是製造業工業的思維
transcript.whisperx[35].start 812.11
transcript.whisperx[35].end 828.601
transcript.whisperx[35].text 農業要請全職的移工的需求量不高除非你是農場、牧場我請五個、我請四個我整天一年三百六十五天都需要很多是季節性的所以為什麼農業移工不太好用但是這種兼差來打工的很好他有沒有轉移雇主 沒有
transcript.whisperx[36].start 829.461
transcript.whisperx[36].end 856.619
transcript.whisperx[36].text 僱主還是原來工廠的僱主僱主同意之下他到鄰近的去兼差打工這個是有討論空間的而且如果你不給他一個合法的管道他就只能繞跑直接去打黑工這反而不是我們樂見的我現在已經請農業部去評估是不是可以用農會來出面農會過去是扮演農業移工的引進單位但是農會不好用但是如果你說原僱主因為減班休息他的移工他還是讓大工
transcript.whisperx[37].start 857.64
transcript.whisperx[37].end 871.644
transcript.whisperx[37].text 吃頭雞啊所有的負擔都工廠來負擔他現在去把旁邊的農場做一些洗頭是不是這個行政成本你這農場你要做分拓要什麼人來做農民沒辦法做行政要從農會來協助這個行政工程把這工廠因為用不到釋出的這個勞動力他要分拓保險費要分拓大學吃飯這個你構思你不是新的構思你建的這個農場你來分拓農會來衝動
transcript.whisperx[38].start 888.3
transcript.whisperx[38].end 911.127
transcript.whisperx[38].text 農業部如果這個方法你們有沒有把握可以做到把這些停班 減班休息的工廠移工在他們休息的期間讓農業部門來做適當的使用你們有沒有辦法做好管理我跟委員報告現在農會的部分就有從事我們農業部門他是全職的農業移工 沒好用啦
transcript.whisperx[39].start 912.947
transcript.whisperx[39].end 915.169
transcript.whisperx[39].text 所以你們要很清楚這我告訴院長最後我告訴你這問題這些法令是勞動部遇到的救護法的規範
transcript.whisperx[40].start 930.464
transcript.whisperx[40].end 954.744
transcript.whisperx[40].text 他是原則禁止例外許可例外許可要行政部門開放再往下看全職移工沒有僱主轉換的問題只是原僱主同意他的移工去兼工兼差往下看那麼救福法的第7條這些條件都是可以去強化的所以最後的結論請院長承諾我們針對有需求的農業部門的需求我們用方法讓這些受產業衝擊的
transcript.whisperx[41].start 956.605
transcript.whisperx[41].end 960.489
transcript.whisperx[41].text 義工可以趕快的去執行院長可不可以給個承諾來研究辦理