iVOD / 163599

Field Value
IVOD_ID 163599
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/163599
日期 2025-08-25
會議資料.會議代碼 院會-11-3-26
會議資料.屆 11
會議資料.會期 3
會議資料.會次 26
會議資料.種類 院會
會議資料.標題 第11屆第3會期第26次會議
影片種類 Clip
開始時間 2025-08-25T10:42:36+08:00
結束時間 2025-08-25T10:58:23+08:00
影片長度 00:15:47
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/40cf74fb6f804adcb52f217d3013b01ac0ac07f6ba1e1b090d65982d227f84af3729683f6b16f89a5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 王定宇
委員發言時間 10:42:36 - 10:58:23
會議時間 2025-08-25T09:00:00+08:00
會議名稱 第11屆第3會期第26次會議(事由:一、行政院院長提出「臺美關稅談判之進程、方針、原則及臺灣產業可能遭受之衝擊影響評估」專案報告並備質詢(8月25日)。二、行政院院長、主計長、財政部部長及相關部會首長列席報告「114年度中央政府總預算追加預算案」編製經過並備質詢(8月26日上午)。三、行政院院長、主計長、財政部部長及相關部會首長列席報告「丹娜絲颱風及七二八豪雨災後復原重建特別預算案」編製經過並備質詢(8月26日下午)。四、8月22日上午9時至10時為國是論壇時間。)
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 5.61659375
transcript.pyannote[0].end 7.96221875
transcript.pyannote[1].speaker SPEAKER_04
transcript.pyannote[1].start 16.16346875
transcript.pyannote[1].end 21.25971875
transcript.pyannote[2].speaker SPEAKER_04
transcript.pyannote[2].start 24.04409375
transcript.pyannote[2].end 25.69784375
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 25.47846875
transcript.pyannote[3].end 26.57534375
transcript.pyannote[4].speaker SPEAKER_04
transcript.pyannote[4].start 31.53659375
transcript.pyannote[4].end 32.90346875
transcript.pyannote[5].speaker SPEAKER_03
transcript.pyannote[5].start 33.20721875
transcript.pyannote[5].end 33.24096875
transcript.pyannote[6].speaker SPEAKER_04
transcript.pyannote[6].start 33.24096875
transcript.pyannote[6].end 36.27846875
transcript.pyannote[7].speaker SPEAKER_04
transcript.pyannote[7].start 36.73409375
transcript.pyannote[7].end 39.63659375
transcript.pyannote[8].speaker SPEAKER_04
transcript.pyannote[8].start 39.97409375
transcript.pyannote[8].end 41.37471875
transcript.pyannote[9].speaker SPEAKER_04
transcript.pyannote[9].start 41.64471875
transcript.pyannote[9].end 47.68596875
transcript.pyannote[10].speaker SPEAKER_04
transcript.pyannote[10].start 48.12471875
transcript.pyannote[10].end 52.29284375
transcript.pyannote[11].speaker SPEAKER_04
transcript.pyannote[11].start 52.86659375
transcript.pyannote[11].end 55.49909375
transcript.pyannote[12].speaker SPEAKER_04
transcript.pyannote[12].start 56.02221875
transcript.pyannote[12].end 66.36659375
transcript.pyannote[13].speaker SPEAKER_04
transcript.pyannote[13].start 66.83909375
transcript.pyannote[13].end 72.72846875
transcript.pyannote[14].speaker SPEAKER_04
transcript.pyannote[14].start 73.04909375
transcript.pyannote[14].end 87.96659375
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 88.08471875
transcript.pyannote[15].end 94.78409375
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 94.96971875
transcript.pyannote[16].end 97.02846875
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 97.36596875
transcript.pyannote[17].end 102.31034375
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 102.59721875
transcript.pyannote[18].end 103.74471875
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 103.96409375
transcript.pyannote[19].end 107.65971875
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 107.86221875
transcript.pyannote[20].end 110.17409375
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 110.46096875
transcript.pyannote[21].end 113.76846875
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 114.05534375
transcript.pyannote[22].end 115.30409375
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 115.47284375
transcript.pyannote[23].end 117.41346875
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 117.56534375
transcript.pyannote[24].end 127.25159375
transcript.pyannote[25].speaker SPEAKER_04
transcript.pyannote[25].start 124.23096875
transcript.pyannote[25].end 127.82534375
transcript.pyannote[26].speaker SPEAKER_04
transcript.pyannote[26].start 128.01096875
transcript.pyannote[26].end 130.35659375
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 128.29784375
transcript.pyannote[27].end 129.54659375
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 130.25534375
transcript.pyannote[28].end 141.35909375
transcript.pyannote[29].speaker SPEAKER_04
transcript.pyannote[29].start 139.46909375
transcript.pyannote[29].end 144.05909375
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 144.12659375
transcript.pyannote[30].end 144.81846875
transcript.pyannote[31].speaker SPEAKER_04
transcript.pyannote[31].start 144.81846875
transcript.pyannote[31].end 148.44659375
transcript.pyannote[32].speaker SPEAKER_04
transcript.pyannote[32].start 148.98659375
transcript.pyannote[32].end 150.38721875
transcript.pyannote[33].speaker SPEAKER_04
transcript.pyannote[33].start 150.99471875
transcript.pyannote[33].end 152.05784375
transcript.pyannote[34].speaker SPEAKER_04
transcript.pyannote[34].start 152.54721875
transcript.pyannote[34].end 153.34034375
transcript.pyannote[35].speaker SPEAKER_04
transcript.pyannote[35].start 153.69471875
transcript.pyannote[35].end 155.50034375
transcript.pyannote[36].speaker SPEAKER_04
transcript.pyannote[36].start 155.88846875
transcript.pyannote[36].end 159.09471875
transcript.pyannote[37].speaker SPEAKER_04
transcript.pyannote[37].start 159.49971875
transcript.pyannote[37].end 165.91221875
transcript.pyannote[38].speaker SPEAKER_04
transcript.pyannote[38].start 166.30034375
transcript.pyannote[38].end 168.57846875
transcript.pyannote[39].speaker SPEAKER_04
transcript.pyannote[39].start 169.10159375
transcript.pyannote[39].end 173.28659375
transcript.pyannote[40].speaker SPEAKER_04
transcript.pyannote[40].start 173.65784375
transcript.pyannote[40].end 179.32784375
transcript.pyannote[41].speaker SPEAKER_04
transcript.pyannote[41].start 180.07034375
transcript.pyannote[41].end 188.27159375
transcript.pyannote[42].speaker SPEAKER_04
transcript.pyannote[42].start 188.71034375
transcript.pyannote[42].end 191.59596875
transcript.pyannote[43].speaker SPEAKER_04
transcript.pyannote[43].start 191.95034375
transcript.pyannote[43].end 193.70534375
transcript.pyannote[44].speaker SPEAKER_04
transcript.pyannote[44].start 193.95846875
transcript.pyannote[44].end 195.71346875
transcript.pyannote[45].speaker SPEAKER_04
transcript.pyannote[45].start 196.25346875
transcript.pyannote[45].end 200.16846875
transcript.pyannote[46].speaker SPEAKER_04
transcript.pyannote[46].start 200.70846875
transcript.pyannote[46].end 205.70346875
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 205.04534375
transcript.pyannote[47].end 209.51721875
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 209.78721875
transcript.pyannote[48].end 216.75659375
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 216.92534375
transcript.pyannote[49].end 239.38596875
transcript.pyannote[50].speaker SPEAKER_04
transcript.pyannote[50].start 230.39159375
transcript.pyannote[50].end 233.36159375
transcript.pyannote[51].speaker SPEAKER_04
transcript.pyannote[51].start 238.30596875
transcript.pyannote[51].end 241.12409375
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 239.87534375
transcript.pyannote[52].end 253.93221875
transcript.pyannote[53].speaker SPEAKER_04
transcript.pyannote[53].start 242.96346875
transcript.pyannote[53].end 243.70596875
transcript.pyannote[54].speaker SPEAKER_04
transcript.pyannote[54].start 252.51471875
transcript.pyannote[54].end 255.40034375
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 254.79284375
transcript.pyannote[55].end 255.68721875
transcript.pyannote[56].speaker SPEAKER_04
transcript.pyannote[56].start 255.68721875
transcript.pyannote[56].end 267.98909375
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 264.32721875
transcript.pyannote[57].end 265.79534375
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 267.83721875
transcript.pyannote[58].end 283.07534375
transcript.pyannote[59].speaker SPEAKER_04
transcript.pyannote[59].start 274.58721875
transcript.pyannote[59].end 275.97096875
transcript.pyannote[60].speaker SPEAKER_04
transcript.pyannote[60].start 282.11346875
transcript.pyannote[60].end 282.31596875
transcript.pyannote[61].speaker SPEAKER_04
transcript.pyannote[61].start 282.67034375
transcript.pyannote[61].end 284.20596875
transcript.pyannote[62].speaker SPEAKER_04
transcript.pyannote[62].start 284.72909375
transcript.pyannote[62].end 285.99471875
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 285.99471875
transcript.pyannote[63].end 293.87534375
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 294.11159375
transcript.pyannote[64].end 295.59659375
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 295.66409375
transcript.pyannote[65].end 297.08159375
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 297.19971875
transcript.pyannote[66].end 314.20971875
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 305.23221875
transcript.pyannote[67].end 305.24909375
transcript.pyannote[68].speaker SPEAKER_04
transcript.pyannote[68].start 305.24909375
transcript.pyannote[68].end 305.63721875
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 305.63721875
transcript.pyannote[69].end 305.75534375
transcript.pyannote[70].speaker SPEAKER_04
transcript.pyannote[70].start 312.58971875
transcript.pyannote[70].end 321.82034375
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 316.75784375
transcript.pyannote[71].end 318.15846875
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 318.73221875
transcript.pyannote[72].end 318.83346875
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 319.23846875
transcript.pyannote[73].end 320.11596875
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 321.21284375
transcript.pyannote[74].end 322.74846875
transcript.pyannote[75].speaker SPEAKER_04
transcript.pyannote[75].start 321.98909375
transcript.pyannote[75].end 323.74409375
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 323.20409375
transcript.pyannote[76].end 331.25346875
transcript.pyannote[77].speaker SPEAKER_04
transcript.pyannote[77].start 329.97096875
transcript.pyannote[77].end 333.61596875
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 332.65409375
transcript.pyannote[78].end 334.20659375
transcript.pyannote[79].speaker SPEAKER_04
transcript.pyannote[79].start 334.20659375
transcript.pyannote[79].end 335.25284375
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 334.94909375
transcript.pyannote[80].end 345.19221875
transcript.pyannote[81].speaker SPEAKER_04
transcript.pyannote[81].start 342.94784375
transcript.pyannote[81].end 352.26284375
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 352.81971875
transcript.pyannote[82].end 357.27471875
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 357.56159375
transcript.pyannote[83].end 360.59909375
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 360.90284375
transcript.pyannote[84].end 380.03909375
transcript.pyannote[85].speaker SPEAKER_04
transcript.pyannote[85].start 371.71971875
transcript.pyannote[85].end 374.45346875
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 380.34284375
transcript.pyannote[86].end 385.25346875
transcript.pyannote[87].speaker SPEAKER_04
transcript.pyannote[87].start 382.78971875
transcript.pyannote[87].end 384.54471875
transcript.pyannote[88].speaker SPEAKER_04
transcript.pyannote[88].start 385.25346875
transcript.pyannote[88].end 386.45159375
transcript.pyannote[89].speaker SPEAKER_04
transcript.pyannote[89].start 387.05909375
transcript.pyannote[89].end 388.66221875
transcript.pyannote[90].speaker SPEAKER_04
transcript.pyannote[90].start 389.53971875
transcript.pyannote[90].end 390.80534375
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 391.39596875
transcript.pyannote[91].end 397.45409375
transcript.pyannote[92].speaker SPEAKER_04
transcript.pyannote[92].start 394.56846875
transcript.pyannote[92].end 399.95159375
transcript.pyannote[93].speaker SPEAKER_04
transcript.pyannote[93].start 399.96846875
transcript.pyannote[93].end 402.51659375
transcript.pyannote[94].speaker SPEAKER_04
transcript.pyannote[94].start 402.82034375
transcript.pyannote[94].end 405.94221875
transcript.pyannote[95].speaker SPEAKER_04
transcript.pyannote[95].start 406.27971875
transcript.pyannote[95].end 411.76409375
transcript.pyannote[96].speaker SPEAKER_04
transcript.pyannote[96].start 411.96659375
transcript.pyannote[96].end 413.60346875
transcript.pyannote[97].speaker SPEAKER_04
transcript.pyannote[97].start 413.99159375
transcript.pyannote[97].end 417.13034375
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 416.13471875
transcript.pyannote[98].end 417.90659375
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 418.34534375
transcript.pyannote[99].end 420.08346875
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 420.18471875
transcript.pyannote[100].end 424.65659375
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 424.89284375
transcript.pyannote[101].end 449.76659375
transcript.pyannote[102].speaker SPEAKER_04
transcript.pyannote[102].start 442.05471875
transcript.pyannote[102].end 450.67784375
transcript.pyannote[103].speaker SPEAKER_04
transcript.pyannote[103].start 451.67346875
transcript.pyannote[103].end 455.21721875
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 454.94721875
transcript.pyannote[104].end 455.16659375
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 455.21721875
transcript.pyannote[105].end 455.28471875
transcript.pyannote[106].speaker SPEAKER_04
transcript.pyannote[106].start 455.28471875
transcript.pyannote[106].end 461.54534375
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 462.06846875
transcript.pyannote[107].end 482.01471875
transcript.pyannote[108].speaker SPEAKER_04
transcript.pyannote[108].start 465.49409375
transcript.pyannote[108].end 467.24909375
transcript.pyannote[109].speaker SPEAKER_04
transcript.pyannote[109].start 482.53784375
transcript.pyannote[109].end 486.13221875
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 486.11534375
transcript.pyannote[110].end 486.65534375
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 486.82409375
transcript.pyannote[111].end 500.89784375
transcript.pyannote[112].speaker SPEAKER_04
transcript.pyannote[112].start 500.79659375
transcript.pyannote[112].end 503.12534375
transcript.pyannote[113].speaker SPEAKER_04
transcript.pyannote[113].start 503.19284375
transcript.pyannote[113].end 519.47721875
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 504.28971875
transcript.pyannote[114].end 504.72846875
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 505.80846875
transcript.pyannote[115].end 505.92659375
transcript.pyannote[116].speaker SPEAKER_04
transcript.pyannote[116].start 519.94971875
transcript.pyannote[116].end 523.79721875
transcript.pyannote[117].speaker SPEAKER_04
transcript.pyannote[117].start 524.55659375
transcript.pyannote[117].end 526.58159375
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 526.31159375
transcript.pyannote[118].end 528.28596875
transcript.pyannote[119].speaker SPEAKER_04
transcript.pyannote[119].start 528.48846875
transcript.pyannote[119].end 532.23471875
transcript.pyannote[120].speaker SPEAKER_04
transcript.pyannote[120].start 532.63971875
transcript.pyannote[120].end 534.86721875
transcript.pyannote[121].speaker SPEAKER_04
transcript.pyannote[121].start 535.17096875
transcript.pyannote[121].end 535.66034375
transcript.pyannote[122].speaker SPEAKER_04
transcript.pyannote[122].start 536.30159375
transcript.pyannote[122].end 537.26346875
transcript.pyannote[123].speaker SPEAKER_04
transcript.pyannote[123].start 537.63471875
transcript.pyannote[123].end 538.00596875
transcript.pyannote[124].speaker SPEAKER_04
transcript.pyannote[124].start 538.42784375
transcript.pyannote[124].end 542.37659375
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 542.20784375
transcript.pyannote[125].end 550.76346875
transcript.pyannote[126].speaker SPEAKER_04
transcript.pyannote[126].start 548.70471875
transcript.pyannote[126].end 548.99159375
transcript.pyannote[127].speaker SPEAKER_04
transcript.pyannote[127].start 549.46409375
transcript.pyannote[127].end 558.35721875
transcript.pyannote[128].speaker SPEAKER_04
transcript.pyannote[128].start 558.81284375
transcript.pyannote[128].end 566.22096875
transcript.pyannote[129].speaker SPEAKER_04
transcript.pyannote[129].start 566.72721875
transcript.pyannote[129].end 605.01659375
transcript.pyannote[130].speaker SPEAKER_03
transcript.pyannote[130].start 605.32034375
transcript.pyannote[130].end 608.15534375
transcript.pyannote[131].speaker SPEAKER_03
transcript.pyannote[131].start 608.52659375
transcript.pyannote[131].end 610.93971875
transcript.pyannote[132].speaker SPEAKER_03
transcript.pyannote[132].start 611.19284375
transcript.pyannote[132].end 612.54284375
transcript.pyannote[133].speaker SPEAKER_03
transcript.pyannote[133].start 612.72846875
transcript.pyannote[133].end 616.08659375
transcript.pyannote[134].speaker SPEAKER_03
transcript.pyannote[134].start 616.42409375
transcript.pyannote[134].end 616.84596875
transcript.pyannote[135].speaker SPEAKER_03
transcript.pyannote[135].start 617.06534375
transcript.pyannote[135].end 618.68534375
transcript.pyannote[136].speaker SPEAKER_03
transcript.pyannote[136].start 618.82034375
transcript.pyannote[136].end 621.23346875
transcript.pyannote[137].speaker SPEAKER_03
transcript.pyannote[137].start 621.30096875
transcript.pyannote[137].end 622.61721875
transcript.pyannote[138].speaker SPEAKER_03
transcript.pyannote[138].start 622.73534375
transcript.pyannote[138].end 624.00096875
transcript.pyannote[139].speaker SPEAKER_03
transcript.pyannote[139].start 624.15284375
transcript.pyannote[139].end 624.97971875
transcript.pyannote[140].speaker SPEAKER_03
transcript.pyannote[140].start 625.16534375
transcript.pyannote[140].end 626.07659375
transcript.pyannote[141].speaker SPEAKER_03
transcript.pyannote[141].start 626.53221875
transcript.pyannote[141].end 631.30784375
transcript.pyannote[142].speaker SPEAKER_04
transcript.pyannote[142].start 631.30784375
transcript.pyannote[142].end 633.29909375
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 633.06284375
transcript.pyannote[143].end 641.31471875
transcript.pyannote[144].speaker SPEAKER_03
transcript.pyannote[144].start 633.29909375
transcript.pyannote[144].end 633.36659375
transcript.pyannote[145].speaker SPEAKER_04
transcript.pyannote[145].start 640.97721875
transcript.pyannote[145].end 642.25971875
transcript.pyannote[146].speaker SPEAKER_01
transcript.pyannote[146].start 641.65221875
transcript.pyannote[146].end 642.58034375
transcript.pyannote[147].speaker SPEAKER_04
transcript.pyannote[147].start 642.58034375
transcript.pyannote[147].end 653.09346875
transcript.pyannote[148].speaker SPEAKER_01
transcript.pyannote[148].start 642.74909375
transcript.pyannote[148].end 642.83346875
transcript.pyannote[149].speaker SPEAKER_03
transcript.pyannote[149].start 653.09346875
transcript.pyannote[149].end 653.38034375
transcript.pyannote[150].speaker SPEAKER_04
transcript.pyannote[150].start 653.38034375
transcript.pyannote[150].end 653.46471875
transcript.pyannote[151].speaker SPEAKER_03
transcript.pyannote[151].start 653.46471875
transcript.pyannote[151].end 656.90721875
transcript.pyannote[152].speaker SPEAKER_04
transcript.pyannote[152].start 653.54909375
transcript.pyannote[152].end 654.02159375
transcript.pyannote[153].speaker SPEAKER_03
transcript.pyannote[153].start 657.21096875
transcript.pyannote[153].end 664.95659375
transcript.pyannote[154].speaker SPEAKER_04
transcript.pyannote[154].start 658.79721875
transcript.pyannote[154].end 659.37096875
transcript.pyannote[155].speaker SPEAKER_04
transcript.pyannote[155].start 659.67471875
transcript.pyannote[155].end 660.67034375
transcript.pyannote[156].speaker SPEAKER_04
transcript.pyannote[156].start 664.50096875
transcript.pyannote[156].end 668.98971875
transcript.pyannote[157].speaker SPEAKER_04
transcript.pyannote[157].start 669.44534375
transcript.pyannote[157].end 670.96409375
transcript.pyannote[158].speaker SPEAKER_04
transcript.pyannote[158].start 671.33534375
transcript.pyannote[158].end 675.41909375
transcript.pyannote[159].speaker SPEAKER_04
transcript.pyannote[159].start 675.63846875
transcript.pyannote[159].end 686.60721875
transcript.pyannote[160].speaker SPEAKER_03
transcript.pyannote[160].start 685.44284375
transcript.pyannote[160].end 686.01659375
transcript.pyannote[161].speaker SPEAKER_03
transcript.pyannote[161].start 686.60721875
transcript.pyannote[161].end 687.41721875
transcript.pyannote[162].speaker SPEAKER_04
transcript.pyannote[162].start 687.41721875
transcript.pyannote[162].end 687.50159375
transcript.pyannote[163].speaker SPEAKER_04
transcript.pyannote[163].start 687.58596875
transcript.pyannote[163].end 695.75346875
transcript.pyannote[164].speaker SPEAKER_04
transcript.pyannote[164].start 696.51284375
transcript.pyannote[164].end 714.24846875
transcript.pyannote[165].speaker SPEAKER_04
transcript.pyannote[165].start 714.73784375
transcript.pyannote[165].end 716.99909375
transcript.pyannote[166].speaker SPEAKER_04
transcript.pyannote[166].start 717.20159375
transcript.pyannote[166].end 719.36159375
transcript.pyannote[167].speaker SPEAKER_04
transcript.pyannote[167].start 719.93534375
transcript.pyannote[167].end 725.11596875
transcript.pyannote[168].speaker SPEAKER_02
transcript.pyannote[168].start 725.11596875
transcript.pyannote[168].end 734.71784375
transcript.pyannote[169].speaker SPEAKER_02
transcript.pyannote[169].start 735.19034375
transcript.pyannote[169].end 738.95346875
transcript.pyannote[170].speaker SPEAKER_02
transcript.pyannote[170].start 739.17284375
transcript.pyannote[170].end 743.96534375
transcript.pyannote[171].speaker SPEAKER_04
transcript.pyannote[171].start 742.96971875
transcript.pyannote[171].end 759.47346875
transcript.pyannote[172].speaker SPEAKER_02
transcript.pyannote[172].start 750.90096875
transcript.pyannote[172].end 751.20471875
transcript.pyannote[173].speaker SPEAKER_04
transcript.pyannote[173].start 759.52409375
transcript.pyannote[173].end 763.77659375
transcript.pyannote[174].speaker SPEAKER_04
transcript.pyannote[174].start 764.31659375
transcript.pyannote[174].end 765.76784375
transcript.pyannote[175].speaker SPEAKER_04
transcript.pyannote[175].start 766.35846875
transcript.pyannote[175].end 783.45284375
transcript.pyannote[176].speaker SPEAKER_02
transcript.pyannote[176].start 779.01471875
transcript.pyannote[176].end 779.11596875
transcript.pyannote[177].speaker SPEAKER_04
transcript.pyannote[177].start 783.90846875
transcript.pyannote[177].end 784.60034375
transcript.pyannote[178].speaker SPEAKER_04
transcript.pyannote[178].start 784.90409375
transcript.pyannote[178].end 786.06846875
transcript.pyannote[179].speaker SPEAKER_04
transcript.pyannote[179].start 786.23721875
transcript.pyannote[179].end 791.77221875
transcript.pyannote[180].speaker SPEAKER_02
transcript.pyannote[180].start 791.77221875
transcript.pyannote[180].end 791.78909375
transcript.pyannote[181].speaker SPEAKER_04
transcript.pyannote[181].start 792.34596875
transcript.pyannote[181].end 793.03784375
transcript.pyannote[182].speaker SPEAKER_02
transcript.pyannote[182].start 793.03784375
transcript.pyannote[182].end 793.94909375
transcript.pyannote[183].speaker SPEAKER_02
transcript.pyannote[183].start 795.31596875
transcript.pyannote[183].end 803.66909375
transcript.pyannote[184].speaker SPEAKER_02
transcript.pyannote[184].start 803.85471875
transcript.pyannote[184].end 806.65596875
transcript.pyannote[185].speaker SPEAKER_02
transcript.pyannote[185].start 806.89221875
transcript.pyannote[185].end 807.85409375
transcript.pyannote[186].speaker SPEAKER_02
transcript.pyannote[186].start 808.17471875
transcript.pyannote[186].end 814.50284375
transcript.pyannote[187].speaker SPEAKER_03
transcript.pyannote[187].start 814.50284375
transcript.pyannote[187].end 814.57034375
transcript.pyannote[188].speaker SPEAKER_04
transcript.pyannote[188].start 814.57034375
transcript.pyannote[188].end 814.63784375
transcript.pyannote[189].speaker SPEAKER_02
transcript.pyannote[189].start 814.63784375
transcript.pyannote[189].end 818.19846875
transcript.pyannote[190].speaker SPEAKER_04
transcript.pyannote[190].start 814.65471875
transcript.pyannote[190].end 814.97534375
transcript.pyannote[191].speaker SPEAKER_03
transcript.pyannote[191].start 814.97534375
transcript.pyannote[191].end 815.02596875
transcript.pyannote[192].speaker SPEAKER_04
transcript.pyannote[192].start 815.02596875
transcript.pyannote[192].end 815.22846875
transcript.pyannote[193].speaker SPEAKER_04
transcript.pyannote[193].start 817.33784375
transcript.pyannote[193].end 831.02346875
transcript.pyannote[194].speaker SPEAKER_04
transcript.pyannote[194].start 831.59721875
transcript.pyannote[194].end 833.03159375
transcript.pyannote[195].speaker SPEAKER_02
transcript.pyannote[195].start 833.03159375
transcript.pyannote[195].end 835.20846875
transcript.pyannote[196].speaker SPEAKER_02
transcript.pyannote[196].start 835.74846875
transcript.pyannote[196].end 852.37034375
transcript.pyannote[197].speaker SPEAKER_04
transcript.pyannote[197].start 852.37034375
transcript.pyannote[197].end 858.47909375
transcript.pyannote[198].speaker SPEAKER_02
transcript.pyannote[198].start 854.54721875
transcript.pyannote[198].end 855.89721875
transcript.pyannote[199].speaker SPEAKER_02
transcript.pyannote[199].start 858.47909375
transcript.pyannote[199].end 858.90096875
transcript.pyannote[200].speaker SPEAKER_04
transcript.pyannote[200].start 858.83346875
transcript.pyannote[200].end 862.15784375
transcript.pyannote[201].speaker SPEAKER_04
transcript.pyannote[201].start 862.46159375
transcript.pyannote[201].end 867.70971875
transcript.pyannote[202].speaker SPEAKER_02
transcript.pyannote[202].start 867.70971875
transcript.pyannote[202].end 867.72659375
transcript.pyannote[203].speaker SPEAKER_04
transcript.pyannote[203].start 867.72659375
transcript.pyannote[203].end 868.03034375
transcript.pyannote[204].speaker SPEAKER_04
transcript.pyannote[204].start 868.16534375
transcript.pyannote[204].end 870.37596875
transcript.pyannote[205].speaker SPEAKER_02
transcript.pyannote[205].start 870.96659375
transcript.pyannote[205].end 874.13909375
transcript.pyannote[206].speaker SPEAKER_04
transcript.pyannote[206].start 872.92409375
transcript.pyannote[206].end 873.16034375
transcript.pyannote[207].speaker SPEAKER_02
transcript.pyannote[207].start 874.45971875
transcript.pyannote[207].end 876.50159375
transcript.pyannote[208].speaker SPEAKER_04
transcript.pyannote[208].start 876.50159375
transcript.pyannote[208].end 876.55221875
transcript.pyannote[209].speaker SPEAKER_02
transcript.pyannote[209].start 876.55221875
transcript.pyannote[209].end 876.58596875
transcript.pyannote[210].speaker SPEAKER_04
transcript.pyannote[210].start 876.58596875
transcript.pyannote[210].end 876.68721875
transcript.pyannote[211].speaker SPEAKER_02
transcript.pyannote[211].start 876.68721875
transcript.pyannote[211].end 876.72096875
transcript.pyannote[212].speaker SPEAKER_04
transcript.pyannote[212].start 876.72096875
transcript.pyannote[212].end 881.04096875
transcript.pyannote[213].speaker SPEAKER_02
transcript.pyannote[213].start 876.77159375
transcript.pyannote[213].end 877.32846875
transcript.pyannote[214].speaker SPEAKER_02
transcript.pyannote[214].start 878.56034375
transcript.pyannote[214].end 879.11721875
transcript.pyannote[215].speaker SPEAKER_04
transcript.pyannote[215].start 881.32784375
transcript.pyannote[215].end 888.34784375
transcript.pyannote[216].speaker SPEAKER_04
transcript.pyannote[216].start 888.92159375
transcript.pyannote[216].end 890.17034375
transcript.pyannote[217].speaker SPEAKER_04
transcript.pyannote[217].start 890.64284375
transcript.pyannote[217].end 892.75221875
transcript.pyannote[218].speaker SPEAKER_00
transcript.pyannote[218].start 890.82846875
transcript.pyannote[218].end 890.89596875
transcript.pyannote[219].speaker SPEAKER_04
transcript.pyannote[219].start 893.46096875
transcript.pyannote[219].end 897.96659375
transcript.pyannote[220].speaker SPEAKER_02
transcript.pyannote[220].start 893.62971875
transcript.pyannote[220].end 893.86596875
transcript.pyannote[221].speaker SPEAKER_02
transcript.pyannote[221].start 898.40534375
transcript.pyannote[221].end 899.82284375
transcript.pyannote[222].speaker SPEAKER_04
transcript.pyannote[222].start 898.54034375
transcript.pyannote[222].end 899.87346875
transcript.pyannote[223].speaker SPEAKER_02
transcript.pyannote[223].start 899.87346875
transcript.pyannote[223].end 899.89034375
transcript.pyannote[224].speaker SPEAKER_04
transcript.pyannote[224].start 899.89034375
transcript.pyannote[224].end 899.90721875
transcript.pyannote[225].speaker SPEAKER_02
transcript.pyannote[225].start 899.90721875
transcript.pyannote[225].end 903.72096875
transcript.pyannote[226].speaker SPEAKER_04
transcript.pyannote[226].start 899.94096875
transcript.pyannote[226].end 899.95784375
transcript.pyannote[227].speaker SPEAKER_02
transcript.pyannote[227].start 904.09221875
transcript.pyannote[227].end 909.42471875
transcript.pyannote[228].speaker SPEAKER_04
transcript.pyannote[228].start 908.83409375
transcript.pyannote[228].end 911.97284375
transcript.pyannote[229].speaker SPEAKER_02
transcript.pyannote[229].start 909.79596875
transcript.pyannote[229].end 909.96471875
transcript.pyannote[230].speaker SPEAKER_04
transcript.pyannote[230].start 912.46221875
transcript.pyannote[230].end 914.36909375
transcript.pyannote[231].speaker SPEAKER_04
transcript.pyannote[231].start 914.63909375
transcript.pyannote[231].end 915.14534375
transcript.pyannote[232].speaker SPEAKER_04
transcript.pyannote[232].start 915.31409375
transcript.pyannote[232].end 920.12346875
transcript.pyannote[233].speaker SPEAKER_04
transcript.pyannote[233].start 920.37659375
transcript.pyannote[233].end 921.40596875
transcript.pyannote[234].speaker SPEAKER_04
transcript.pyannote[234].start 921.47346875
transcript.pyannote[234].end 925.38846875
transcript.pyannote[235].speaker SPEAKER_04
transcript.pyannote[235].start 925.74284375
transcript.pyannote[235].end 932.35784375
transcript.pyannote[236].speaker SPEAKER_04
transcript.pyannote[236].start 932.71221875
transcript.pyannote[236].end 935.98596875
transcript.pyannote[237].speaker SPEAKER_01
transcript.pyannote[237].start 942.43221875
transcript.pyannote[237].end 945.82409375
transcript.whisperx[0].start 5.826
transcript.whisperx[0].end 32.507
transcript.whisperx[0].text 黃委員 質詢完畢後我們休息十分鐘謝謝副院長 麻煩院長請左院長備詢另外鄭麗君副院長也請正副院長備詢一定要刑控
transcript.whisperx[1].start 33.36
transcript.whisperx[1].end 47
transcript.whisperx[1].text 國務委員好 國務委員謝謝 大家都辛苦政府院長也是 因為談判的事情很繁重你還欠我一次約定 但是國事為重我現在請教幾個大家比較關心的議題
transcript.whisperx[2].start 48.208
transcript.whisperx[2].end 72.265
transcript.whisperx[2].text 那我覺得在努力的談判過程當中我們常常因為保密或者是還在過程當中不便透露因為這樣導致被誤解我覺得這個是最為冤枉的所以在可以透明的情形下盡量透明讓民眾了解現在遇到什麼狀況我第一題要問的比較簡單大家一直在傳聞說美國希望台灣開放整車的市場全車的市場
transcript.whisperx[3].start 73.146
transcript.whisperx[3].end 99.791
transcript.whisperx[3].text 那有關美國整車免稅來到台灣這件事情到底在談判有沒有觸及它在未來有沒有可能發生你方便回答到什麼程度我都尊重了是不是請政府院長回答一下謝謝委員我想整個談判過程我們每一次的實體談判其實有向社會來說明我們談判的進程那我們也說明說我們談判的議題觸及關稅非關稅貿易障礙
transcript.whisperx[4].start 102.839
transcript.whisperx[4].end 108.971
transcript.whisperx[4].text 貿易便捷化 經濟安全數位貿易以及投資採購等商業機會我們也有向社會來說明相關的範疇
transcript.whisperx[5].start 114.127
transcript.whisperx[5].end 143.69
transcript.whisperx[5].text 那这里面当然随着谈判的进展那美方会持续性的提出他的期待那尤其美方在各国谈判的过程当中那一如大家也会要求美方也会期待各国要提供这个市场开放所以就有关关税非关税贸易障碍部分的确我方也会磋商不过我们都会我把命题说精准因为时间有限
transcript.whisperx[6].start 144.27
transcript.whisperx[6].end 167.886
transcript.whisperx[6].text 因為賴總統也曾經宣示過我們願意在某一些產業上把我們市場開放那對消費者是加惠的坦白講台灣我們主要的產業是在做汽車零組件整車的那一家公司扶植了那麼多年該成材找成材了現在還在進口中國車所以對消費者或台灣民眾來講
transcript.whisperx[7].start 169.187
transcript.whisperx[7].end 178.877
transcript.whisperx[7].text 整車零關稅我可以降低我的採購的負擔啊對美方來講日本也有要求對韓國也有要求日本是汽車大國
transcript.whisperx[8].start 180.131
transcript.whisperx[8].end 196.516
transcript.whisperx[8].text 他還是要開放所以我覺得這個命題太明顯了那我該問的就是說因為我發現這兩天有一些有一些在評論這個事情的人因為這個點有一些誤會那產生了一些怨言我的題目很簡單針對美國整車免稅來台就是開放市場
transcript.whisperx[9].start 200.757
transcript.whisperx[9].end 225.732
transcript.whisperx[9].text 我們在談判當中這一點到底有沒有觸及未來的可能性是大還是小向委員報告美方的確會期待市場開放那當然我們也會基於產業利益然後國民健康糧食安全來均與討論所以我們也會就這個部分來研商那這當中美車的部分其實除了關稅也有非關稅貿易障礙
transcript.whisperx[10].start 226.588
transcript.whisperx[10].end 253.442
transcript.whisperx[10].text 因為每規車要進來也會涉及相關的安全 空無造影等相相關的標準雙方的制度性的如何的對接所以這個都在談判的範圍裡面在談判的範圍裡面可以跟委員說在談判的範圍裡面那等到我們所有談判抵定之後我們所有的細節一定會向國會跟社會完整的來說明所以這個是有在談判的範圍內
transcript.whisperx[11].start 255.823
transcript.whisperx[11].end 282.602
transcript.whisperx[11].text 因為這先到測案的規範 驗證的標準等等那個是技術問題所以如果有在談判的範圍內也就在總結談判結論出來的時候它就會出現了目前因為我們都在技術性磋商過程大致因為技術性磋商我們才能夠堆疊出最後整個談判的結論總結談判大致上我們在這些範疇都有進行研商但我方還沒達成協議最重要是還沒有進行總結性的會議總結性的會議
transcript.whisperx[12].start 284.764
transcript.whisperx[12].end 305.919
transcript.whisperx[12].text 有沒有預計什麼時候要開目前從8月1號回來之後我們經過三次視訊那我們這個視訊現在接下來談判目標第一個再降對等關稅第二爭取不疊加第三因為台灣我們有九成的逆差來自ICT跟半導體這個聯動美方現在正在制定的232關稅的政策所以一併戳傷232
transcript.whisperx[13].start 307.18
transcript.whisperx[13].end 319.631
transcript.whisperx[13].text 那我們這個三次達成一定的共識之後 美方會安排總結性會議所以從8月1號 台灣被放在NXI在NX1裡面之後你們開過三次視訊會議所以這個三次視訊會議就是在朝著總結性會議的進度邁進然後把對等關稅跟232相關的項目有關不疊加以及把對等關稅往下降
transcript.whisperx[14].start 334.284
transcript.whisperx[14].end 360.397
transcript.whisperx[14].text 目前有没有方向我们已经表达了争取但是因为要到这个总结性会议在协商最终的税率的时候才会有一个定案那通常我们在视讯会议是give and take我们表达这样的期望那他一定会提出条件来要怎么样子才能往那个方向迈进谈判是这样因为我们的对口有贸易代表署然后我们会就刚刚我所提的这些范畴
transcript.whisperx[15].start 361.056
transcript.whisperx[15].end 386.208
transcript.whisperx[15].text 還有未來可能雙方要達成協議的這個框架協議逐條逐項的討論那我們也同步的跟商務部來持續就供應鏈的合作因為你是談判的總負責所有的議題都談判完了之後就會來進行總結的會議總結會議就會來議定最後的這個稅率跟所有的條件一併成立所以我在請教你議際這個總結會議
transcript.whisperx[16].start 389.568
transcript.whisperx[16].end 417.682
transcript.whisperx[16].text 会落在九月份吗我们当然希望越快越好就是落在这些你不赶快越快越好那个暂时性的20%冲击就会越大你这边越快不管是232不管是我们的对等关税或者什么东西开放市场要进到台湾你越早厘清我们离圣诞节那个季节很近了他很多东西在这个时候pending在那里其实是对中小企业我想跟委员报告第一个当然
transcript.whisperx[17].start 418.422
transcript.whisperx[17].end 436.653
transcript.whisperx[17].text 我們積極推進談判但談判取決於雙方但我們仍然全力努力希望越快越好那我們希望說能夠爭取稅率再降那第二點是因為談判裡面相關的細節我現在無法逐一的回應也是因為為了維繫最好的談判的結果
transcript.whisperx[18].start 437.153
transcript.whisperx[18].end 461.098
transcript.whisperx[18].text 因為如果說過度揭露相關的條件在最後整體在進行溝通的時候我們國會在監督我國會在監督我都尊重談判的節奏但我現在要問的是我要請教副院長的是你們現在已經從8月1號以後有三次的視訊會議那接下來還會有視訊會議還是接下來就是把各自的文件擬妥準備到下個階段的會議
transcript.whisperx[19].start 462.345
transcript.whisperx[19].end 481.626
transcript.whisperx[19].text 我們三次視訊會是有一定的進度我可以跟委員講那還會再有多的視訊會議嗎然後我們隨時有在聯繫那我們也希望能夠盡快的來進行進入最關鍵的總結會議的階段目前都在持續的延長中那我們也跟美方表達了我們三項的談判的這個目標
transcript.whisperx[20].start 482.914
transcript.whisperx[20].end 502.817
transcript.whisperx[20].text 我們能期望在九月份看到更進一步的訊息嗎時程的確取決於雙方不過美國財政部長Besant他也曾經有對外表達說希望尚未完成談判的國家在十月底前可以完成但是我方希望能夠在此之前越快越好對 因為Besant提十月底嘛
transcript.whisperx[21].start 503.317
transcript.whisperx[21].end 523.105
transcript.whisperx[21].text 那我們希望早一點 只剩9月份嘛因為這個談判還是要花時間的所以從這個時間的落點來看不管這個暫停我們暫時的這個稅率要維持90天或多少天從8月1號開始你們有做了一些進度了那10月份Basin希望都達到結論那大概落點在9月份這個預測
transcript.whisperx[22].start 524.668
transcript.whisperx[22].end 545.794
transcript.whisperx[22].text 希望啦 我只能講期望啦我們希望越快越好我剛才講到整車這塊我覺得這個牽涉到市場秩序如果這一個日本已經是零韓國是零那台灣如果有預計要往這邊邁進的話我覺得要讓消費者當然整個談判過程我們都會參考社會各界的意見
transcript.whisperx[23].start 546.814
transcript.whisperx[23].end 565.874
transcript.whisperx[23].text 然後我們相關部會也有跟相關的產業進行溝通觀望跟期待心理是總體經濟裡面有這兩個變數其實影響很大我希望行政要注意這一點那我也要提醒院長這裡比亞迪或中國其他的電動車輛是不可能讓他來這邊洗產地或者傾銷因為他賣不出去了他倉庫堆了一堆
transcript.whisperx[24].start 566.775
transcript.whisperx[24].end 595.551
transcript.whisperx[24].text 不管是經由泰國或任何第三國要洗進來台灣這個是萬萬不可這個不僅是會影響到談判因為洗產地也會影響到我們國家的國安跟治安我希望經濟部或者我們行政院這一點要很明確的態度我比亞迪不管你要改成任何名字從哪裡來或者其他中國電車你中國的倉庫堆滿碼頭銷不出去台灣絕對不讓你請銷我們基於國安治安也不讓你進來我更不容許你來這邊洗產地
transcript.whisperx[25].start 596.971
transcript.whisperx[25].end 615.785
transcript.whisperx[25].text 這個席產地是川普這一次對等關稅裡面主要的目標之一嘛所以我不曉得我們院長跟經濟部這邊有沒有明確的態度經濟部答覆之前兩個原則第一個在台灣生產的一定要符合我們逐年加嚴的在本地化的這個製造率 自治率本地化的是逐年加嚴
transcript.whisperx[26].start 616.485
transcript.whisperx[26].end 638.216
transcript.whisperx[26].text 第二個無論他中國的產品如何繞道貼牌換牌過來我們都嚴格的管制我們希望這維持的是台灣的產業經濟的安全以及我們在這整個供應鏈上能夠維持現在的地位來經濟部是不是簡單說明一下跟委員報告就是說中國的品牌車不管是從哪一個地方其實我們就是
transcript.whisperx[27].start 639.056
transcript.whisperx[27].end 656.635
transcript.whisperx[27].text 全力的防堵他進到台灣來所以我們是不准他進來的是是是因為人家以前特洛伊木馬還要放一些香檳美酒拐你拖進去我們沒有到你自己花錢買了一堆小木馬進來啦這一點要守住所以我也希望公開呼籲很多的業者現在還在做一些廣告
transcript.whisperx[28].start 657.556
transcript.whisperx[28].end 675.243
transcript.whisperx[28].text 對社會會產生不實的狀況還在置入啦我已經要求經濟部能夠跟業者之談不要做這些誤導性的廣告甚至於有些在遊說在搞置入行銷置入新聞的 揭露來讓社會大眾知道誰在收錢辦事幫忙做遊說我覺得這個透明化
transcript.whisperx[29].start 675.763
transcript.whisperx[29].end 695.303
transcript.whisperx[29].text 大家看得清楚那到底是廣告還是新聞到底是廣告還是遊說背後的力量我覺得行政院這一塊可以印起來把它做揭露資訊的透明揭露嚴格執行我接下來請教院長其他可以請回有關這一次對等關稅談判的農業開放的議題我只提一點
transcript.whisperx[30].start 696.604
transcript.whisperx[30].end 719.112
transcript.whisperx[30].text 我們現在台灣的公糧收購其實我們在立法院常常提到公糧收購都講到本土農業一公斤9塊多或幾塊那這個在農業的議題上公糧收購的價格定太高會影響到自由市場反而對農業不利啦這個我今天不討論這一塊我今天要講的是就我們了解我們的公糧收購除了像台灣的農民收購以外
transcript.whisperx[31].start 719.952
transcript.whisperx[31].end 731.849
transcript.whisperx[31].text 我們也有跟國外買有跟泰國跟美國買是不是農業部部長這邊可以說明我跟委員報告就是在稻米部分當初在加入WTO以後有所謂的配額制那配額是一年是144,720噸
transcript.whisperx[32].start 735.494
transcript.whisperx[32].end 763.577
transcript.whisperx[32].text 這個配額裡面又分一個是政府配額 一個是民間的那政府的部分就是由政府來採購就是您剛才講的由公糧進來我現在講說我們都以前大家國外人都以為公糧收購就是我們這裡正在檢查的稍微放在倉庫裡面都以為是買本產的米其實我們有一塊是因為當年世貿組織加入之後要求是對國外買那我們看到川普總統要求日本開放他的米
transcript.whisperx[33].start 764.538
transcript.whisperx[33].end 793.49
transcript.whisperx[33].text 讓美國米可以賣過去對日本來講米雖然產值不大可是他們本來說是神聖不可侵犯的領域他也開放了就我們現在看起來台灣的公糧收購有買美國米嗎我們一年買幾噸大概一年大概是六萬四千噸左右我現在要問的是如果我們在去美國談判的我們有關公糧收購本來就一定要買公糧一定的配比就要買外國米的話我能不能乾脆就多買美國米
transcript.whisperx[34].start 795.353
transcript.whisperx[34].end 813.828
transcript.whisperx[34].text 不過我跟委員報告就是稻米因為是我們糧食安全非常重要的產品而且我們國內是小農制影響的農民數大概22萬所以在稻米我們還是盡量跟美國溝通就是說稻米是我們糧食安全一個非常重要的那您剛才說的日本的部分是用配額的方式去處理
transcript.whisperx[35].start 814.448
transcript.whisperx[35].end 830.658
transcript.whisperx[35].text 他用配額去買他也是用配額的方式處理但是日本跟台灣不一樣我們能不能在不影響我們本土米本土公糧收購的狀況下在配額上做調整我多買一點美國米把關稅降下來對生產製造業有幫助我也沒影響到容業可是我把配額米
transcript.whisperx[36].start 831.633
transcript.whisperx[36].end 854.962
transcript.whisperx[36].text 多買一點美國這樣會不會違反WTO的規定WTO規定只有下限的部分上限的部分沒有我還是跟委員報告我們還是積極去跟美國溝通但是我們也同時也想了非常多的因應的方法最主要是不會影響到不會衝擊到我們的農民是第一要件的當然 農民是根本那個要保護他
transcript.whisperx[37].start 856.043
transcript.whisperx[37].end 870.084
transcript.whisperx[37].text 我們本來公糧收購就在買外國米在那個比例上我們讓談判代表有至少有個工具可以去談因為公糧收購如果全部買本產米那另外一回事長年來我們都買泰國米
transcript.whisperx[38].start 871.024
transcript.whisperx[38].end 897.439
transcript.whisperx[38].text 有大概一年大概兩萬八千噸左右還有其他國家還有越南米越南米還有日本米這兩塊對我們不太好我的意思是說我們現在談判的時候我不好意思講一些話但我的意思是說在對外採購米的時候有時候美國要求的是一個公平那個產值其實不大我們在配合上調整一下在意識上順了讓我們關稅談判多一點武器其實不壞
transcript.whisperx[39].start 898.964
transcript.whisperx[39].end 913.957
transcript.whisperx[39].text 不轉動維持嗎對 我知道但是政府配額裡面的國家配額是固定的它是比較難調整那剛才說的就是說用其他的方式這一題讓農業部去思考不影響本產米怎麼樣在幫助談判上
transcript.whisperx[40].start 915.717
transcript.whisperx[40].end 935.684
transcript.whisperx[40].text 又符合我們世界貿易組織的規範上去處理然後我最後10秒鐘提醒行政院就是說如果我們對美軍事採購的金額這麼高他們容許商售方式列入貿易赤字的額度計算的話那我們就應該好好精算累一點把它拆開來買一樣的東西但是列入貿易赤字的底下
transcript.whisperx[41].start 943.202
transcript.whisperx[41].end 945.47
transcript.whisperx[41].text 謝謝王委員 謝謝卓院長