iVOD / 163584

Field Value
IVOD_ID 163584
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/163584
日期 2025-08-20
會議資料.會議代碼 委員會-11-3-19-20
會議資料.會議代碼:str 第11屆第3會期經濟委員會第20次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 20
會議資料.種類 委員會
會議資料.委員會代碼[0] 19
會議資料.委員會代碼:str[0] 經濟委員會
會議資料.標題 第11屆第3會期經濟委員會第20次全體委員會議
影片種類 Clip
開始時間 2025-08-20T11:52:29+08:00
結束時間 2025-08-20T12:02:31+08:00
影片長度 00:10:02
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/3feaef107a98f0c9ab12c141f793a10f0ed9bbdce0c54962817c1cbb294e2f3586617f26213d19805ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 蔡易餘
委員發言時間 11:52:29 - 12:02:31
會議時間 2025-08-20T09:00:00+08:00
會議名稱 立法院第11屆第3會期經濟委員會第20次全體委員會議(事由:邀請經濟部部長就「協助中小企業災後復原辦理情況」進行報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 0.92534375
transcript.pyannote[0].end 3.69284375
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 4.68846875
transcript.pyannote[1].end 5.27909375
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 12.77159375
transcript.pyannote[2].end 13.22721875
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 14.29034375
transcript.pyannote[3].end 15.15096875
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 15.84284375
transcript.pyannote[4].end 20.44971875
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 20.70284375
transcript.pyannote[5].end 22.49159375
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 23.62221875
transcript.pyannote[6].end 24.80346875
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 25.09034375
transcript.pyannote[7].end 27.14909375
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 27.40221875
transcript.pyannote[8].end 32.65034375
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 32.86971875
transcript.pyannote[9].end 35.35034375
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 35.77221875
transcript.pyannote[10].end 38.80971875
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 39.28221875
transcript.pyannote[11].end 40.85159375
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 43.31534375
transcript.pyannote[12].end 44.15909375
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 44.42909375
transcript.pyannote[13].end 46.53846875
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 48.00659375
transcript.pyannote[14].end 53.38971875
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 53.99721875
transcript.pyannote[15].end 56.25846875
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 56.79846875
transcript.pyannote[16].end 64.84784375
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 65.35409375
transcript.pyannote[17].end 66.95721875
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 68.00346875
transcript.pyannote[18].end 70.78784375
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 71.31096875
transcript.pyannote[19].end 77.57159375
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 71.47971875
transcript.pyannote[20].end 72.25596875
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 78.88784375
transcript.pyannote[21].end 80.72721875
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 81.36846875
transcript.pyannote[22].end 84.47346875
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 82.90409375
transcript.pyannote[23].end 84.42284375
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 85.13159375
transcript.pyannote[24].end 85.97534375
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 86.36346875
transcript.pyannote[25].end 89.38409375
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 91.08846875
transcript.pyannote[26].end 93.95721875
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 94.31159375
transcript.pyannote[27].end 95.66159375
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 96.57284375
transcript.pyannote[28].end 96.97784375
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 97.07909375
transcript.pyannote[29].end 98.74971875
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 98.74971875
transcript.pyannote[30].end 99.71159375
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 99.03659375
transcript.pyannote[31].end 102.69846875
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 102.69846875
transcript.pyannote[32].end 104.25096875
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 105.19596875
transcript.pyannote[33].end 107.89596875
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 108.35159375
transcript.pyannote[34].end 109.71846875
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 110.59596875
transcript.pyannote[35].end 111.64221875
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 110.62971875
transcript.pyannote[36].end 114.61221875
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 114.61221875
transcript.pyannote[37].end 114.96659375
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 114.96659375
transcript.pyannote[38].end 114.98346875
transcript.pyannote[39].speaker SPEAKER_01
transcript.pyannote[39].start 115.00034375
transcript.pyannote[39].end 115.03409375
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 115.06784375
transcript.pyannote[40].end 117.86909375
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 118.02096875
transcript.pyannote[41].end 118.34159375
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 118.89846875
transcript.pyannote[42].end 119.69159375
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 120.58596875
transcript.pyannote[43].end 131.13284375
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 131.13284375
transcript.pyannote[44].end 132.98909375
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 131.97659375
transcript.pyannote[45].end 137.20784375
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 134.82846875
transcript.pyannote[46].end 135.11534375
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 136.78596875
transcript.pyannote[47].end 141.73034375
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 137.74784375
transcript.pyannote[48].end 139.97534375
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 140.73471875
transcript.pyannote[49].end 140.98784375
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 141.32534375
transcript.pyannote[50].end 145.12221875
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 145.61159375
transcript.pyannote[51].end 147.94034375
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 148.36221875
transcript.pyannote[52].end 150.35346875
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 151.48409375
transcript.pyannote[53].end 153.40784375
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 153.40784375
transcript.pyannote[54].end 153.72846875
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 153.72846875
transcript.pyannote[55].end 156.93471875
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 157.52534375
transcript.pyannote[56].end 157.98096875
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 158.48721875
transcript.pyannote[57].end 161.03534375
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 161.30534375
transcript.pyannote[58].end 162.41909375
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 163.88721875
transcript.pyannote[59].end 168.93284375
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 169.32096875
transcript.pyannote[60].end 170.01284375
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 170.40096875
transcript.pyannote[61].end 174.28221875
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 174.88971875
transcript.pyannote[62].end 182.28096875
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 176.64471875
transcript.pyannote[63].end 177.20159375
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 182.92221875
transcript.pyannote[64].end 185.20034375
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 185.21721875
transcript.pyannote[65].end 191.12346875
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 191.46096875
transcript.pyannote[66].end 193.87409375
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 193.87409375
transcript.pyannote[67].end 194.19471875
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 194.17784375
transcript.pyannote[68].end 200.40471875
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 200.40471875
transcript.pyannote[69].end 200.77596875
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 200.77596875
transcript.pyannote[70].end 208.69034375
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 209.12909375
transcript.pyannote[71].end 214.22534375
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 214.73159375
transcript.pyannote[72].end 225.97034375
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 226.51034375
transcript.pyannote[73].end 227.42159375
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 227.77596875
transcript.pyannote[74].end 237.91784375
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 238.54221875
transcript.pyannote[75].end 242.62596875
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 243.11534375
transcript.pyannote[76].end 243.94221875
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 243.73971875
transcript.pyannote[77].end 246.65909375
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 246.49034375
transcript.pyannote[78].end 246.54096875
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 246.65909375
transcript.pyannote[79].end 246.69284375
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 246.69284375
transcript.pyannote[80].end 278.94096875
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 246.74346875
transcript.pyannote[81].end 246.84471875
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 279.07596875
transcript.pyannote[82].end 283.09221875
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 283.56471875
transcript.pyannote[83].end 284.56034375
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 284.64471875
transcript.pyannote[84].end 285.85971875
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 286.46721875
transcript.pyannote[85].end 296.76096875
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 297.03096875
transcript.pyannote[86].end 298.09409375
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 298.24596875
transcript.pyannote[87].end 301.70534375
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 302.19471875
transcript.pyannote[88].end 317.24721875
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 317.46659375
transcript.pyannote[89].end 322.64721875
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 320.47034375
transcript.pyannote[90].end 320.72346875
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 323.27159375
transcript.pyannote[91].end 323.86221875
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 324.14909375
transcript.pyannote[92].end 330.24096875
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 330.47721875
transcript.pyannote[93].end 343.16721875
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 343.31909375
transcript.pyannote[94].end 348.04409375
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 348.04409375
transcript.pyannote[95].end 350.96346875
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 349.47846875
transcript.pyannote[96].end 355.09784375
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 355.33409375
transcript.pyannote[97].end 358.59096875
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 358.77659375
transcript.pyannote[98].end 360.17721875
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 360.46409375
transcript.pyannote[99].end 364.66596875
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 365.27346875
transcript.pyannote[100].end 370.09971875
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 370.48784375
transcript.pyannote[101].end 375.28034375
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 375.68534375
transcript.pyannote[102].end 380.73096875
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 381.43971875
transcript.pyannote[103].end 385.01721875
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 385.03409375
transcript.pyannote[104].end 391.31159375
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 391.56471875
transcript.pyannote[105].end 392.99909375
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 393.65721875
transcript.pyannote[106].end 400.05284375
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 400.79534375
transcript.pyannote[107].end 413.24909375
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 413.80596875
transcript.pyannote[108].end 416.35409375
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 415.96596875
transcript.pyannote[109].end 428.82471875
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 424.77471875
transcript.pyannote[110].end 425.04471875
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 428.82471875
transcript.pyannote[111].end 429.07784375
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 429.07784375
transcript.pyannote[112].end 439.54034375
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 440.09721875
transcript.pyannote[113].end 449.36159375
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 449.46284375
transcript.pyannote[114].end 451.09971875
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 451.33596875
transcript.pyannote[115].end 455.28471875
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 454.98096875
transcript.pyannote[116].end 469.51034375
transcript.pyannote[117].speaker SPEAKER_01
transcript.pyannote[117].start 457.41096875
transcript.pyannote[117].end 460.75221875
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 464.44784375
transcript.pyannote[118].end 465.02159375
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 468.27846875
transcript.pyannote[119].end 468.83534375
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 469.00409375
transcript.pyannote[120].end 473.74596875
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 470.55659375
transcript.pyannote[121].end 470.80971875
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 474.04971875
transcript.pyannote[122].end 475.38284375
transcript.pyannote[123].speaker SPEAKER_01
transcript.pyannote[123].start 475.83846875
transcript.pyannote[123].end 478.01534375
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 478.42034375
transcript.pyannote[124].end 481.49159375
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 482.72346875
transcript.pyannote[125].end 483.02721875
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 483.02721875
transcript.pyannote[126].end 483.68534375
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 484.20846875
transcript.pyannote[127].end 484.56284375
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 485.28846875
transcript.pyannote[128].end 486.35159375
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 486.73971875
transcript.pyannote[129].end 496.81409375
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 497.15159375
transcript.pyannote[130].end 509.35221875
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 509.47034375
transcript.pyannote[131].end 511.14096875
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 511.74846875
transcript.pyannote[132].end 513.62159375
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 514.04346875
transcript.pyannote[133].end 517.90784375
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 519.10596875
transcript.pyannote[134].end 523.03784375
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 520.84409375
transcript.pyannote[135].end 521.04659375
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 521.63721875
transcript.pyannote[136].end 521.82284375
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 522.19409375
transcript.pyannote[137].end 522.85221875
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 523.22346875
transcript.pyannote[138].end 526.27784375
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 526.80096875
transcript.pyannote[139].end 548.33346875
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 548.73846875
transcript.pyannote[140].end 553.93596875
transcript.pyannote[141].speaker SPEAKER_00
transcript.pyannote[141].start 554.35784375
transcript.pyannote[141].end 558.32346875
transcript.pyannote[142].speaker SPEAKER_00
transcript.pyannote[142].start 558.45846875
transcript.pyannote[142].end 559.25159375
transcript.pyannote[143].speaker SPEAKER_00
transcript.pyannote[143].start 559.82534375
transcript.pyannote[143].end 566.50784375
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 566.96346875
transcript.pyannote[144].end 571.04721875
transcript.pyannote[145].speaker SPEAKER_00
transcript.pyannote[145].start 571.36784375
transcript.pyannote[145].end 584.02409375
transcript.pyannote[146].speaker SPEAKER_00
transcript.pyannote[146].start 584.27721875
transcript.pyannote[146].end 591.61784375
transcript.pyannote[147].speaker SPEAKER_00
transcript.pyannote[147].start 592.47846875
transcript.pyannote[147].end 593.28846875
transcript.pyannote[148].speaker SPEAKER_01
transcript.pyannote[148].start 592.57971875
transcript.pyannote[148].end 597.00096875
transcript.pyannote[149].speaker SPEAKER_00
transcript.pyannote[149].start 595.49909375
transcript.pyannote[149].end 595.70159375
transcript.pyannote[150].speaker SPEAKER_00
transcript.pyannote[150].start 597.16971875
transcript.pyannote[150].end 600.61221875
transcript.pyannote[151].speaker SPEAKER_01
transcript.pyannote[151].start 598.75596875
transcript.pyannote[151].end 599.09346875
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 599.16096875
transcript.pyannote[152].end 599.19471875
transcript.pyannote[153].speaker SPEAKER_01
transcript.pyannote[153].start 601.38846875
transcript.pyannote[153].end 602.31659375
transcript.whisperx[0].start 1.293
transcript.whisperx[0].end 16.889
transcript.whisperx[0].text 謝謝主席那我們是不是有請郭部長郭部長委員好部長從8月1號這個20%的這個關稅來我想現在所有的產業逛腕的居多
transcript.whisperx[1].start 25.188
transcript.whisperx[1].end 52.462
transcript.whisperx[1].text 那大家也都還在期待說我們對外宣示的這個暫時性關稅那到最後的一個談判結果那部長如果你這樣來判斷的話這個暫時性關稅那跟美國繼續談判這段時間差不多會多久以我們所收集的情報對台灣的關稅應該跟美國主要要談跟中國的關稅
transcript.whisperx[2].start 54.362
transcript.whisperx[2].end 80.41
transcript.whisperx[2].text 有一些關聯性存在跟中國還沒有談完嘛 美國跟中國還沒有談嘛跟中國當然是一個很重要的一個節點那台灣跟中國你意思說會受到干擾 我們會受到中國的干擾我們倒是認為啦 現在的20%關稅再往下走往下走是我們的目標啦
transcript.whisperx[3].start 81.448
transcript.whisperx[3].end 109.166
transcript.whisperx[3].text 當然啦 大家都是這樣期待繼續要往下走但是 美國希望對中國課的是比較高的稅他會用台灣來做一個衡量的基準也有這麼樣的一個說法所以部長也這樣說有一些學者也做這樣的討論所以台灣有可能真正的關稅定案要在美國跟中國談完
transcript.whisperx[4].start 111.227
transcript.whisperx[4].end 119.465
transcript.whisperx[4].text 我们认为我也访谈了很多的业者也访谈了很多的智库他们都
transcript.whisperx[5].start 120.703
transcript.whisperx[5].end 150.138
transcript.whisperx[5].text 建議說台灣不要這麼快就敲定當然如果一開始就能夠敲定到我們理想的關稅譬如說我們現在大家都希望就是仿造日本韓國然後沒有天花板就是有天花板然後這個不要疊加它走向15%然後我們有同等的對如果我們現在談可以一下子談到這個點我覺得這個是我們大家樂見的對但是如果
transcript.whisperx[6].start 151.63
transcript.whisperx[6].end 158.497
transcript.whisperx[6].text 對 這是一個談判的一個策略的運用所以部長你會這樣做判斷基本上我認為這個可能性是有的所以你剛剛這樣講的基本上
transcript.whisperx[7].start 175.166
transcript.whisperx[7].end 195.779
transcript.whisperx[7].text 我是接受會有這樣的一個可能但是這一個的結果就會變成說我剛剛說產業在觀望這個觀望期間就會變得更久我們在這個產業觀望的這段期間裡面我們都做出幾個solution做出幾個方式希望幫助這個產業能夠度過這一陣比較尷尬的期間
transcript.whisperx[8].start 200.922
transcript.whisperx[8].end 223.374
transcript.whisperx[8].text 那我大概访谈了非常多的工协会也访谈很多的厂商他们倒是对关税这个20加N这一个命题不是那么当然是很重要但是他们更重要的是汇率的汇率因为他讲说美国大概占他可能50% 30% 40%但是汇率如果不稳定
transcript.whisperx[9].start 226.556
transcript.whisperx[9].end 237.603
transcript.whisperx[9].text 他是100%所以我们现在早是重点上面就短期里面我们希望在关税你就暂时用20加n的这样的一个条件
transcript.whisperx[10].start 238.618
transcript.whisperx[10].end 262.942
transcript.whisperx[10].text 去努力那是我减少那个汇率的变数减少汇率的变数不就你在说是开始很多抽象的形象因为对他们来说竞争条件没有改变除了日韩比我们好其他我们主要竞争国家如果是在一些传统产业可能像泰国 越南竞争改变不大因为他们的关税顶多比我们少个一趴
transcript.whisperx[11].start 263.902
transcript.whisperx[11].end 285.688
transcript.whisperx[11].text 不然就是一樣像印度是還多我們5%所以競爭不變的情況之下匯率就是的漲跟跌就是直接的硬傷所以這個是確實有這樣的一個狀況但是產業現在還有的面對的一個課題就是說因為台灣的產業的佈局過去就是走全世界了
transcript.whisperx[12].start 286.668
transcript.whisperx[12].end 301.521
transcript.whisperx[12].text 過去台灣產業 我們台灣人就做到這種事已經都在全世界佈局了所以台灣產業在全世界佈局的時候他一樣會有面對說每一個國家跟美國的狀況不同然後影響他接下來的佈局
transcript.whisperx[13].start 302.222
transcript.whisperx[13].end 322.474
transcript.whisperx[13].text 所以我現在是說部長那你有再進一步的跟產業聊說好那如果現在台灣的20加N那跟東南亞甚至全世界的國家那這一些產業他們未來會改變他們的佈局模式嗎是 報告委員我們大概有三個措施第一個就是給金融支持
transcript.whisperx[14].start 323.342
transcript.whisperx[14].end 342.836
transcript.whisperx[14].text 金融你可能要贷款贷款往后延这个我们做金融师第二个升级转型升级转型第一个我们增加它的升级的条件利用AI应用帮助它在制造的时候升级第二个利用节能减碳降低它的操作成本
transcript.whisperx[15].start 343.816
transcript.whisperx[15].end 364.472
transcript.whisperx[15].text 第三个帮助他供购一些这个是在国内他们的升级但是最重要是开拓市场开拓美国以外的市场包括我们如何在印度如何在中东如何在东南亚把这个新的市场开拓出来那这个我们也编了
transcript.whisperx[16].start 365.593
transcript.whisperx[16].end 379.88
transcript.whisperx[16].text 這個比較大的這個開拓市長的費用所以總統有特別指示總統跟院長在這一期我們在115年就是說今後的這個所有的費用裡面這個加很大錢加很大然後這個
transcript.whisperx[17].start 381.936
transcript.whisperx[17].end 399.228
transcript.whisperx[17].text 讓我們在開拓市場上面能夠更大的發揮就是台灣的在地產業開拓市場美國以外的市場那部長那你判斷會不會有產業他們因為關稅的這個變數存在讓他考慮他要到美國設廠
transcript.whisperx[18].start 400.868
transcript.whisperx[18].end 428.529
transcript.whisperx[18].text 考慮直接因為他可能原本就有在美國就已經有有公司了現在他進一步的在美國乾脆直接用部分的產業鏈在美國那以後要銷售美國的就直接直接在美國會不會有這樣的公司存在報告委員現在這個有兩個方向第一個就是說我們經濟部本來就有在為這個國內的廠商拓展海外所以我們在去年設了捷克的這個貿易投資貿易中心對
transcript.whisperx[19].start 429.229
transcript.whisperx[19].end 456.929
transcript.whisperx[19].text 然后我们在今年的4月在福冈日本福冈这个月上个礼拜我们在Dallas也设了这个美国投资贸易中心这个贸易中心就是帮助我们国内厂商先进入到这个市场所以我们会在自由贸易港区里面设置这个所谓的仓储跟配送的这个服务让它减少因为我们可以帮它并贵各方面部长这个厂商是有的哦
transcript.whisperx[20].start 457.469
transcript.whisperx[20].end 484.286
transcript.whisperx[20].text 我相信你這樣講我們鼓勵過去台灣在做鋼鋁的他們因為美國跟他們科很重的稅嘛所以事實上有一些鋼鐵公司他們早就在美國設廠了沒錯 我們會買通路我會鼓勵廠商他們去經營通路我們就協助他找到美國的通路商然後我們請他們能夠M&A去好 部長
transcript.whisperx[21].start 485.339
transcript.whisperx[21].end 510.62
transcript.whisperx[21].text 台灣的民間的這個生命力很強所以他們知道在美國的關稅之下他們要做什麼產業的佈局這個我們對民間投資有信心那我們也知道說台灣國內的部分我們協助他們拓展國內市場但是我覺得經濟部現在有一件事是你們要協助我們接下來在跟美國的談判的一個團隊我們要做什麼事就是說如果台灣
transcript.whisperx[22].start 511.801
transcript.whisperx[22].end 526.091
transcript.whisperx[22].text 未來美國會不會要求類似日本 類似韓國要求台灣也是要投資美國這一段很有可能會發生 不能排除可以預期 對不對好 既然這件事是可以預期的
transcript.whisperx[23].start 526.892
transcript.whisperx[23].end 551.67
transcript.whisperx[23].text 那現在台灣要投資美國的原本他們的計畫有投資美國的事實上經濟部現在應該要先把它先做一個數字的統計起來這些統計的數字咧都是未來我們一旦台灣是需要面對美國川普開出條件的時候這些都是我們的籌碼所以我覺得這件事經濟部可以開始去著手
transcript.whisperx[24].start 552.29
transcript.whisperx[24].end 577.421
transcript.whisperx[24].text 雖然現在還沒有看到條件 但是你怎麼開始去判證啊這就是我們國家的理論 如何在這一次跟川普的談判也許跟川普的談判 因為剛剛講了還有中國因素這個時間我們沒辦法預測 有可能會比想像的還要久一點的時間那我們就有這個時間先把台灣投資美國這件事情 先把這個事理念出來
transcript.whisperx[25].start 578.041
transcript.whisperx[25].end 600.218
transcript.whisperx[25].text 這些壽禮越漂亮的話基本上我們如果期待這些禮藏都被他花好熱愛這些都是我們最好的籌碼民間都是台灣所有的台灣人都是我們談判的一個最好的的一個一個背光啊是不是 部長這個委員講得非常正確啦齁這個我們都在進行中好 那要繼續努力啦是 謝謝委員好 謝謝好 謝謝