iVOD / 163583

Field Value
IVOD_ID 163583
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/163583
日期 2025-08-20
會議資料.會議代碼 委員會-11-3-19-20
會議資料.會議代碼:str 第11屆第3會期經濟委員會第20次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 20
會議資料.種類 委員會
會議資料.委員會代碼[0] 19
會議資料.委員會代碼:str[0] 經濟委員會
會議資料.標題 第11屆第3會期經濟委員會第20次全體委員會議
影片種類 Clip
開始時間 2025-08-20T11:42:46+08:00
結束時間 2025-08-20T11:52:15+08:00
影片長度 00:09:29
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/3feaef107a98f0c924d9e7d5b9e641200ed9bbdce0c549626d8aada7af21e617dd4df15546ecd50f5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 賴士葆
委員發言時間 11:42:46 - 11:52:15
會議時間 2025-08-20T09:00:00+08:00
會議名稱 立法院第11屆第3會期經濟委員會第20次全體委員會議(事由:邀請經濟部部長就「協助中小企業災後復原辦理情況」進行報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 1.41471875
transcript.pyannote[0].end 4.78971875
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 5.09346875
transcript.pyannote[1].end 5.56596875
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 13.51409375
transcript.pyannote[2].end 13.98659375
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 14.45909375
transcript.pyannote[3].end 15.18471875
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 15.75846875
transcript.pyannote[4].end 20.61846875
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 21.29346875
transcript.pyannote[5].end 22.82909375
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 23.09909375
transcript.pyannote[6].end 24.66846875
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 25.29284375
transcript.pyannote[7].end 26.96346875
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 27.55409375
transcript.pyannote[8].end 30.05159375
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 30.32159375
transcript.pyannote[9].end 30.86159375
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 31.21596875
transcript.pyannote[10].end 31.94159375
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 32.44784375
transcript.pyannote[11].end 33.49409375
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 33.76409375
transcript.pyannote[12].end 37.96596875
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 38.75909375
transcript.pyannote[13].end 41.18909375
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 41.59409375
transcript.pyannote[14].end 43.95659375
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 44.39534375
transcript.pyannote[15].end 47.70284375
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 47.98971875
transcript.pyannote[16].end 49.76159375
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 50.14971875
transcript.pyannote[17].end 56.34284375
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 57.01784375
transcript.pyannote[18].end 59.63346875
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 59.88659375
transcript.pyannote[19].end 62.02971875
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 62.14784375
transcript.pyannote[20].end 63.27846875
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 63.78471875
transcript.pyannote[21].end 64.32471875
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 64.45971875
transcript.pyannote[22].end 65.21909375
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 65.33721875
transcript.pyannote[23].end 65.97846875
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 66.28221875
transcript.pyannote[24].end 67.63221875
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 68.56034375
transcript.pyannote[25].end 69.92721875
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 70.21409375
transcript.pyannote[26].end 71.42909375
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 72.17159375
transcript.pyannote[27].end 76.22159375
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 76.82909375
transcript.pyannote[28].end 87.12284375
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 87.51096875
transcript.pyannote[29].end 90.85221875
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 91.03784375
transcript.pyannote[30].end 92.89409375
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 95.57721875
transcript.pyannote[31].end 97.61909375
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 98.37846875
transcript.pyannote[32].end 100.13346875
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 100.58909375
transcript.pyannote[33].end 101.39909375
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 102.14159375
transcript.pyannote[34].end 114.81471875
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 114.96659375
transcript.pyannote[35].end 119.01659375
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 119.38784375
transcript.pyannote[36].end 123.45471875
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 124.50096875
transcript.pyannote[37].end 134.27159375
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 134.72721875
transcript.pyannote[38].end 137.49471875
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 138.01784375
transcript.pyannote[39].end 146.43846875
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 146.67471875
transcript.pyannote[40].end 166.38471875
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 165.22034375
transcript.pyannote[41].end 166.82346875
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 167.48159375
transcript.pyannote[42].end 168.54471875
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 169.60784375
transcript.pyannote[43].end 170.75534375
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 171.19409375
transcript.pyannote[44].end 173.47221875
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 173.65784375
transcript.pyannote[45].end 176.99909375
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 177.13409375
transcript.pyannote[46].end 177.70784375
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 178.14659375
transcript.pyannote[47].end 181.63971875
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 181.94346875
transcript.pyannote[48].end 185.72346875
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 186.36471875
transcript.pyannote[49].end 188.72721875
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 189.04784375
transcript.pyannote[50].end 191.83221875
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 192.49034375
transcript.pyannote[51].end 202.64909375
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 203.07096875
transcript.pyannote[52].end 205.78784375
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 206.73284375
transcript.pyannote[53].end 213.22971875
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 213.33096875
transcript.pyannote[54].end 217.43159375
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 218.12346875
transcript.pyannote[55].end 219.69284375
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 220.30034375
transcript.pyannote[56].end 220.70534375
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 220.89096875
transcript.pyannote[57].end 221.38034375
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 221.97096875
transcript.pyannote[58].end 222.83159375
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 223.42221875
transcript.pyannote[59].end 223.79346875
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 224.26596875
transcript.pyannote[60].end 225.22784375
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 225.44721875
transcript.pyannote[61].end 227.21909375
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 227.59034375
transcript.pyannote[62].end 231.99471875
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 232.83846875
transcript.pyannote[63].end 235.18409375
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 235.89284375
transcript.pyannote[64].end 237.74909375
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 237.74909375
transcript.pyannote[65].end 237.78284375
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 238.64346875
transcript.pyannote[66].end 238.66034375
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 238.66034375
transcript.pyannote[67].end 239.21721875
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 240.19596875
transcript.pyannote[68].end 248.16096875
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 241.63034375
transcript.pyannote[69].end 242.33909375
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 245.89971875
transcript.pyannote[70].end 246.72659375
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 248.39721875
transcript.pyannote[71].end 258.33659375
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 249.40971875
transcript.pyannote[72].end 250.06784375
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 259.14659375
transcript.pyannote[73].end 268.96784375
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 265.28909375
transcript.pyannote[74].end 265.84596875
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 268.96784375
transcript.pyannote[75].end 275.39721875
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 272.39346875
transcript.pyannote[76].end 272.52846875
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 272.74784375
transcript.pyannote[77].end 272.84909375
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 275.61659375
transcript.pyannote[78].end 275.97096875
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 276.17346875
transcript.pyannote[79].end 279.29534375
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 279.63284375
transcript.pyannote[80].end 282.90659375
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 283.32846875
transcript.pyannote[81].end 284.56034375
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 284.74596875
transcript.pyannote[82].end 285.57284375
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 285.85971875
transcript.pyannote[83].end 289.42034375
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 290.04471875
transcript.pyannote[84].end 291.63096875
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 292.13721875
transcript.pyannote[85].end 293.43659375
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 294.28034375
transcript.pyannote[86].end 302.78534375
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 303.13971875
transcript.pyannote[87].end 306.02534375
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 306.24471875
transcript.pyannote[88].end 313.38284375
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 314.26034375
transcript.pyannote[89].end 316.67346875
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 317.39909375
transcript.pyannote[90].end 326.68034375
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 327.97971875
transcript.pyannote[91].end 329.17784375
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 329.17784375
transcript.pyannote[92].end 329.19471875
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 329.19471875
transcript.pyannote[93].end 329.24534375
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 329.26221875
transcript.pyannote[94].end 329.68409375
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 330.07221875
transcript.pyannote[95].end 330.08909375
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 330.08909375
transcript.pyannote[96].end 334.10534375
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 333.59909375
transcript.pyannote[97].end 334.03784375
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 334.10534375
transcript.pyannote[98].end 334.45971875
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 334.45971875
transcript.pyannote[99].end 335.35409375
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 334.47659375
transcript.pyannote[100].end 334.59471875
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 335.69159375
transcript.pyannote[101].end 340.29846875
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 337.88534375
transcript.pyannote[102].end 338.35784375
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 338.96534375
transcript.pyannote[103].end 339.45471875
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 340.23096875
transcript.pyannote[104].end 341.32784375
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 340.38284375
transcript.pyannote[105].end 343.06596875
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 343.31909375
transcript.pyannote[106].end 344.92221875
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 345.44534375
transcript.pyannote[107].end 347.03159375
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 347.85846875
transcript.pyannote[108].end 348.38159375
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 349.19159375
transcript.pyannote[109].end 350.06909375
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 350.06909375
transcript.pyannote[110].end 350.08596875
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 350.37284375
transcript.pyannote[111].end 351.33471875
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 351.33471875
transcript.pyannote[112].end 352.17846875
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 352.17846875
transcript.pyannote[113].end 352.33034375
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 352.33034375
transcript.pyannote[114].end 353.12346875
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 353.47784375
transcript.pyannote[115].end 355.19909375
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 354.16971875
transcript.pyannote[116].end 354.72659375
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 355.09784375
transcript.pyannote[117].end 355.57034375
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 355.41846875
transcript.pyannote[118].end 358.33784375
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 358.45596875
transcript.pyannote[119].end 359.63721875
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 359.83971875
transcript.pyannote[120].end 361.62846875
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 361.98284375
transcript.pyannote[121].end 363.29909375
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 363.53534375
transcript.pyannote[122].end 364.51409375
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 364.48034375
transcript.pyannote[123].end 364.96971875
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 364.96971875
transcript.pyannote[124].end 366.62346875
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 366.91034375
transcript.pyannote[125].end 372.98534375
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 373.49159375
transcript.pyannote[126].end 375.44909375
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 375.66846875
transcript.pyannote[127].end 380.15721875
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 380.95034375
transcript.pyannote[128].end 384.39284375
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 384.57846875
transcript.pyannote[129].end 388.84784375
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 389.03346875
transcript.pyannote[130].end 389.05034375
transcript.pyannote[131].speaker SPEAKER_01
transcript.pyannote[131].start 389.10096875
transcript.pyannote[131].end 390.02909375
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 390.02909375
transcript.pyannote[132].end 392.12159375
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 393.55596875
transcript.pyannote[133].end 402.41534375
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 397.70721875
transcript.pyannote[134].end 397.82534375
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 397.89284375
transcript.pyannote[135].end 399.96846875
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 402.41534375
transcript.pyannote[136].end 402.43221875
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 402.43221875
transcript.pyannote[137].end 402.48284375
transcript.pyannote[138].speaker SPEAKER_01
transcript.pyannote[138].start 402.48284375
transcript.pyannote[138].end 408.38909375
transcript.pyannote[139].speaker SPEAKER_01
transcript.pyannote[139].start 409.11471875
transcript.pyannote[139].end 413.04659375
transcript.pyannote[140].speaker SPEAKER_01
transcript.pyannote[140].start 413.23221875
transcript.pyannote[140].end 414.09284375
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 414.81846875
transcript.pyannote[141].end 416.32034375
transcript.pyannote[142].speaker SPEAKER_01
transcript.pyannote[142].start 416.94471875
transcript.pyannote[142].end 417.95721875
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 421.11284375
transcript.pyannote[143].end 423.20534375
transcript.pyannote[144].speaker SPEAKER_01
transcript.pyannote[144].start 423.84659375
transcript.pyannote[144].end 424.92659375
transcript.pyannote[145].speaker SPEAKER_01
transcript.pyannote[145].start 425.50034375
transcript.pyannote[145].end 426.49596875
transcript.pyannote[146].speaker SPEAKER_01
transcript.pyannote[146].start 427.23846875
transcript.pyannote[146].end 428.35221875
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 428.89221875
transcript.pyannote[147].end 429.24659375
transcript.pyannote[148].speaker SPEAKER_01
transcript.pyannote[148].start 430.09034375
transcript.pyannote[148].end 432.60471875
transcript.pyannote[149].speaker SPEAKER_01
transcript.pyannote[149].start 433.07721875
transcript.pyannote[149].end 433.29659375
transcript.pyannote[150].speaker SPEAKER_01
transcript.pyannote[150].start 433.44846875
transcript.pyannote[150].end 433.88721875
transcript.pyannote[151].speaker SPEAKER_01
transcript.pyannote[151].start 434.22471875
transcript.pyannote[151].end 436.77284375
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 436.92471875
transcript.pyannote[152].end 438.81471875
transcript.pyannote[153].speaker SPEAKER_01
transcript.pyannote[153].start 439.47284375
transcript.pyannote[153].end 441.73409375
transcript.pyannote[154].speaker SPEAKER_01
transcript.pyannote[154].start 441.97034375
transcript.pyannote[154].end 443.79284375
transcript.pyannote[155].speaker SPEAKER_01
transcript.pyannote[155].start 444.26534375
transcript.pyannote[155].end 445.09221875
transcript.pyannote[156].speaker SPEAKER_00
transcript.pyannote[156].start 445.09221875
transcript.pyannote[156].end 447.28596875
transcript.pyannote[157].speaker SPEAKER_00
transcript.pyannote[157].start 447.45471875
transcript.pyannote[157].end 451.72409375
transcript.pyannote[158].speaker SPEAKER_00
transcript.pyannote[158].start 451.94346875
transcript.pyannote[158].end 453.27659375
transcript.pyannote[159].speaker SPEAKER_00
transcript.pyannote[159].start 453.58034375
transcript.pyannote[159].end 453.90096875
transcript.pyannote[160].speaker SPEAKER_00
transcript.pyannote[160].start 454.37346875
transcript.pyannote[160].end 459.48659375
transcript.pyannote[161].speaker SPEAKER_00
transcript.pyannote[161].start 460.49909375
transcript.pyannote[161].end 461.93346875
transcript.pyannote[162].speaker SPEAKER_00
transcript.pyannote[162].start 462.45659375
transcript.pyannote[162].end 465.35909375
transcript.pyannote[163].speaker SPEAKER_00
transcript.pyannote[163].start 465.74721875
transcript.pyannote[163].end 467.09721875
transcript.pyannote[164].speaker SPEAKER_00
transcript.pyannote[164].start 468.05909375
transcript.pyannote[164].end 468.51471875
transcript.pyannote[165].speaker SPEAKER_01
transcript.pyannote[165].start 468.51471875
transcript.pyannote[165].end 468.56534375
transcript.pyannote[166].speaker SPEAKER_01
transcript.pyannote[166].start 468.73409375
transcript.pyannote[166].end 468.85221875
transcript.pyannote[167].speaker SPEAKER_00
transcript.pyannote[167].start 468.85221875
transcript.pyannote[167].end 468.90284375
transcript.pyannote[168].speaker SPEAKER_01
transcript.pyannote[168].start 468.90284375
transcript.pyannote[168].end 468.93659375
transcript.pyannote[169].speaker SPEAKER_00
transcript.pyannote[169].start 468.93659375
transcript.pyannote[169].end 468.97034375
transcript.pyannote[170].speaker SPEAKER_01
transcript.pyannote[170].start 468.97034375
transcript.pyannote[170].end 469.18971875
transcript.pyannote[171].speaker SPEAKER_00
transcript.pyannote[171].start 469.18971875
transcript.pyannote[171].end 469.96596875
transcript.pyannote[172].speaker SPEAKER_01
transcript.pyannote[172].start 469.96596875
transcript.pyannote[172].end 474.06659375
transcript.pyannote[173].speaker SPEAKER_01
transcript.pyannote[173].start 474.65721875
transcript.pyannote[173].end 476.00721875
transcript.pyannote[174].speaker SPEAKER_01
transcript.pyannote[174].start 476.24346875
transcript.pyannote[174].end 480.17534375
transcript.pyannote[175].speaker SPEAKER_01
transcript.pyannote[175].start 480.32721875
transcript.pyannote[175].end 482.52096875
transcript.pyannote[176].speaker SPEAKER_01
transcript.pyannote[176].start 483.38159375
transcript.pyannote[176].end 483.41534375
transcript.pyannote[177].speaker SPEAKER_00
transcript.pyannote[177].start 483.41534375
transcript.pyannote[177].end 483.43221875
transcript.pyannote[178].speaker SPEAKER_01
transcript.pyannote[178].start 483.43221875
transcript.pyannote[178].end 483.71909375
transcript.pyannote[179].speaker SPEAKER_00
transcript.pyannote[179].start 483.71909375
transcript.pyannote[179].end 483.83721875
transcript.pyannote[180].speaker SPEAKER_00
transcript.pyannote[180].start 484.09034375
transcript.pyannote[180].end 484.20846875
transcript.pyannote[181].speaker SPEAKER_01
transcript.pyannote[181].start 484.20846875
transcript.pyannote[181].end 484.57971875
transcript.pyannote[182].speaker SPEAKER_00
transcript.pyannote[182].start 484.27596875
transcript.pyannote[182].end 484.49534375
transcript.pyannote[183].speaker SPEAKER_00
transcript.pyannote[183].start 484.57971875
transcript.pyannote[183].end 485.44034375
transcript.pyannote[184].speaker SPEAKER_01
transcript.pyannote[184].start 485.44034375
transcript.pyannote[184].end 485.49096875
transcript.pyannote[185].speaker SPEAKER_00
transcript.pyannote[185].start 485.49096875
transcript.pyannote[185].end 485.52471875
transcript.pyannote[186].speaker SPEAKER_01
transcript.pyannote[186].start 485.52471875
transcript.pyannote[186].end 485.57534375
transcript.pyannote[187].speaker SPEAKER_00
transcript.pyannote[187].start 485.57534375
transcript.pyannote[187].end 487.22909375
transcript.pyannote[188].speaker SPEAKER_01
transcript.pyannote[188].start 486.52034375
transcript.pyannote[188].end 492.78096875
transcript.pyannote[189].speaker SPEAKER_01
transcript.pyannote[189].start 493.05096875
transcript.pyannote[189].end 495.34596875
transcript.pyannote[190].speaker SPEAKER_01
transcript.pyannote[190].start 495.90284375
transcript.pyannote[190].end 498.55221875
transcript.pyannote[191].speaker SPEAKER_01
transcript.pyannote[191].start 499.14284375
transcript.pyannote[191].end 500.93159375
transcript.pyannote[192].speaker SPEAKER_01
transcript.pyannote[192].start 501.38721875
transcript.pyannote[192].end 504.00284375
transcript.pyannote[193].speaker SPEAKER_01
transcript.pyannote[193].start 504.22221875
transcript.pyannote[193].end 505.89284375
transcript.pyannote[194].speaker SPEAKER_01
transcript.pyannote[194].start 506.17971875
transcript.pyannote[194].end 508.45784375
transcript.pyannote[195].speaker SPEAKER_01
transcript.pyannote[195].start 509.08221875
transcript.pyannote[195].end 510.29721875
transcript.pyannote[196].speaker SPEAKER_01
transcript.pyannote[196].start 510.53346875
transcript.pyannote[196].end 512.91284375
transcript.pyannote[197].speaker SPEAKER_00
transcript.pyannote[197].start 512.91284375
transcript.pyannote[197].end 512.94659375
transcript.pyannote[198].speaker SPEAKER_01
transcript.pyannote[198].start 512.94659375
transcript.pyannote[198].end 512.96346875
transcript.pyannote[199].speaker SPEAKER_00
transcript.pyannote[199].start 512.96346875
transcript.pyannote[199].end 518.22846875
transcript.pyannote[200].speaker SPEAKER_00
transcript.pyannote[200].start 518.49846875
transcript.pyannote[200].end 520.00034375
transcript.pyannote[201].speaker SPEAKER_00
transcript.pyannote[201].start 521.21534375
transcript.pyannote[201].end 522.78471875
transcript.pyannote[202].speaker SPEAKER_01
transcript.pyannote[202].start 521.50221875
transcript.pyannote[202].end 522.80159375
transcript.pyannote[203].speaker SPEAKER_00
transcript.pyannote[203].start 522.80159375
transcript.pyannote[203].end 523.00409375
transcript.pyannote[204].speaker SPEAKER_01
transcript.pyannote[204].start 523.00409375
transcript.pyannote[204].end 523.02096875
transcript.pyannote[205].speaker SPEAKER_00
transcript.pyannote[205].start 523.94909375
transcript.pyannote[205].end 523.98284375
transcript.pyannote[206].speaker SPEAKER_01
transcript.pyannote[206].start 523.98284375
transcript.pyannote[206].end 534.20909375
transcript.pyannote[207].speaker SPEAKER_01
transcript.pyannote[207].start 534.83346875
transcript.pyannote[207].end 537.09471875
transcript.pyannote[208].speaker SPEAKER_01
transcript.pyannote[208].start 537.60096875
transcript.pyannote[208].end 540.03096875
transcript.pyannote[209].speaker SPEAKER_01
transcript.pyannote[209].start 540.16596875
transcript.pyannote[209].end 545.53221875
transcript.pyannote[210].speaker SPEAKER_00
transcript.pyannote[210].start 543.69284375
transcript.pyannote[210].end 553.80096875
transcript.pyannote[211].speaker SPEAKER_00
transcript.pyannote[211].start 554.29034375
transcript.pyannote[211].end 556.11284375
transcript.pyannote[212].speaker SPEAKER_01
transcript.pyannote[212].start 554.56034375
transcript.pyannote[212].end 555.18471875
transcript.pyannote[213].speaker SPEAKER_01
transcript.pyannote[213].start 555.75846875
transcript.pyannote[213].end 556.09596875
transcript.pyannote[214].speaker SPEAKER_01
transcript.pyannote[214].start 556.11284375
transcript.pyannote[214].end 561.20909375
transcript.pyannote[215].speaker SPEAKER_01
transcript.pyannote[215].start 561.68159375
transcript.pyannote[215].end 563.30159375
transcript.pyannote[216].speaker SPEAKER_01
transcript.pyannote[216].start 563.75721875
transcript.pyannote[216].end 564.92159375
transcript.pyannote[217].speaker SPEAKER_01
transcript.pyannote[217].start 565.34346875
transcript.pyannote[217].end 568.90409375
transcript.whisperx[0].start 1.836
transcript.whisperx[0].end 5.292
transcript.whisperx[0].text 謝謝主席 繼各位先進有請經濟部的郭部長郭部長
transcript.whisperx[1].start 13.53
transcript.whisperx[1].end 36.792
transcript.whisperx[1].text 委員好部長你好現在今天我想外面比較大的討論就是說美國政府商業部長盧克尼克特別提到了有考慮仿照補貼他對晶片用晶片法案補貼
transcript.whisperx[2].start 39.42
transcript.whisperx[2].end 66.853
transcript.whisperx[2].text 這個金額把他換股權所以他原來就已經對英特爾這樣就是取了英特爾1818非常多變成最大股東我看了一下一些相關的資料他在這個消息出來之後英特爾的股價是下跌的那今天一樣今天的消息出來了說這個也是他要這個要川普政府這個要準備要對台積電的補助
transcript.whisperx[3].start 69.198
transcript.whisperx[3].end 92.845
transcript.whisperx[3].text 66億美金要把它變成一個一個股東結果變成是股市也是下跌的你要不要雖然我知道你已經講了不過你說這個假設性什麼之類的台積電假設性你要不要從你一個經濟部長你也是業界出身來怎麼看說政府的補助給企業變成持股對企業什麼影響這個有點像中國的
transcript.whisperx[4].start 98.684
transcript.whisperx[4].end 123.052
transcript.whisperx[4].text 過去他的企業民進國退的時段到後來最近的國進民退大概都是有這樣的一個痕跡在我們在看說政府要對企業補助美國剛開始是反對中國這樣的模式
transcript.whisperx[5].start 124.534
transcript.whisperx[5].end 152.117
transcript.whisperx[5].text 但是他覺得說中國那個模式可能不會讓這個企業倒所以他現在呢就是說我既然要補助你那我要一點股份我要股份就扮演股東的角色所以我想這個就這個這個Business Model來看的話這倒是一個我們一個比較新的可以討論的這個部分那就台灣來講他可能也有可能我想也有新聞在講說那他對Intel這樣的話
transcript.whisperx[6].start 153.218
transcript.whisperx[6].end 166.709
transcript.whisperx[6].text 那麼對台積電的這個補貼是不是也會要求入股對環球晶的補貼是不是也會要求入股這個我想我們還要跟業者討論我不太清楚這個業者的反應會怎麼樣你看聽那個重要的啦在過去
transcript.whisperx[7].start 169.636
transcript.whisperx[7].end 191.261
transcript.whisperx[7].text 我想你也是企業界老闆而且你這方面來講你應該是都是很深入的你講到一個東西叫做民退國進 國退民進的事情就原來講這個國營企業民營化是世界的潮流全球化的潮流是這樣子的民營化怎麼樣把國家的企業特別是貫穿國家
transcript.whisperx[8].start 193.021
transcript.whisperx[8].end 205.676
transcript.whisperx[8].text 中國大陸也好啦 蘇聯也好啦等等共產國家都是國營失業國營失業變成民營化造就一波的整個國家的一個經濟的火力出來了那現在呢 現在又倒回去了
transcript.whisperx[9].start 206.812
transcript.whisperx[9].end 233.485
transcript.whisperx[9].text 所以你剛講一句很有意思你說這個美國是跟中國大陸跑一樣中國也是目前有一點這個味道變成是民退國進就國家的原來補貼的變成一個要投資的這個我就在請教你了台積電可不可以跟他說NO如果這樣66億美金的補貼我不要了我不要了你這樣子這樣
transcript.whisperx[10].start 235.936
transcript.whisperx[10].end 258.129
transcript.whisperx[10].text 硬來的我不要了可以不可以這個我想我要去請教台積電我不能夠帶台積電台積電政府有股份我們國發基金股份有6%之多對 但是我們只有一席董事我們只有一席董事但是你知道台積電現在有幾席董事
transcript.whisperx[11].start 259.215
transcript.whisperx[11].end 275.228
transcript.whisperx[11].text 有幾席的董事 台積電現在就是一般的這個名股大概是五席嘛對 有幾席的董事 你知道嗎 其他大概是獨立董事他獨立董事有人講六席 有人講七席啊除了林全之外 其他都是外籍人士
transcript.whisperx[12].start 276.286
transcript.whisperx[12].end 293.3
transcript.whisperx[12].text 其他都是美國人跟英國人就基本上是美國人所以我會擔心的一點是那這樣一來的話美國川普可能不是只有說我持股而已喔我要一起懂事請問台積電有沒有人力所弄
transcript.whisperx[13].start 294.495
transcript.whisperx[13].end 315.915
transcript.whisperx[13].text 我同意委員的這個推論他有到那個股份一定可以選擇一個董事那他選擇董事就會去干預這個公司的所有的運作那他補助的時候是沒有辦法干預對那只有他進入董事會才會去干預這個我想委員的指教是非常正確的
transcript.whisperx[14].start 317.509
transcript.whisperx[14].end 346.411
transcript.whisperx[14].text 但是在台灣台積電這個案例我想委員所擔心我們也很擔心不過他如果要這樣的話要經過我們投審會美國要經過投審會請問台積電去美國投資1000億有沒有經過投審會現在經過沒有 到現在為止他現在還沒有錢還沒有嘛 到現在還沒有嘛所以等於說美國好 那你講到一個重點喔說美國川普他如果要硬來
transcript.whisperx[15].start 349.258
transcript.whisperx[15].end 350.785
transcript.whisperx[15].text 印象 要經過我們同意當然是脫審會啊
transcript.whisperx[16].start 353.69
transcript.whisperx[16].end 379.73
transcript.whisperx[16].text 要經過我們同意嘛 對不對要經過我們同意嘛所以 跟我們好好談一談啦這老實講 這也是一個好的一個機會啦齁但是 我還是要講原來晶片法案不是這樣子啦美國晶片法案沒有這一條啊沒有這個option啦說我可以印來的 突然咧怎麼權力這麼大 一下子說要印來印上 幹嘛用這樣
transcript.whisperx[17].start 381.696
transcript.whisperx[17].end 391.981
transcript.whisperx[17].text 就是你以前企業界老闆是政府給你補貼補貼二十億新台幣然後突然說我要轉成持股你敢同意 請問你如果郭董事長你敢同意
transcript.whisperx[18].start 393.558
transcript.whisperx[18].end 417.279
transcript.whisperx[18].text 同意他 我們當然同意是要看他進入以後對我們有沒有什麼當然有干預 怎麼沒有呢如果沒有加分效果的話 我們當然不會同意什麼叫沒有加分 現在好啦 因為我時間時間差不多到了 不用講扯太久 我是跟你講如此一來 他有機會 因為他66億美金不算少數他的資本額多少台積電資本額
transcript.whisperx[19].start 421.341
transcript.whisperx[19].end 438.653
transcript.whisperx[19].text 資本額大概2500億左右66億美金就是有一不少錢那他一來的話可能會相當大的一個比重就跟英特爾一樣取得英特爾的所以他來的話就變成是
transcript.whisperx[20].start 439.534
transcript.whisperx[20].end 466.861
transcript.whisperx[20].text 所以倒貼了台積電變美積電啊這沒什麼錯啊 就變這個樣子啦那你搖頭 你要不要解釋一下報告委員 我想66億我們要看啊它在市場裡面可以買到我們多少的股權所以這個不是說66億跟我的資產來衡量嘛所以這個我想都可以談如果它硬要加入我們的股份嘛那當然還是可以談
transcript.whisperx[21].start 469.256
transcript.whisperx[21].end 479.329
transcript.whisperx[21].text 我給你一個數字了外資佔有台積電73%了市值大概一兆美金左右了所以66億除以它大概
transcript.whisperx[22].start 487.415
transcript.whisperx[22].end 498.159
transcript.whisperx[22].text 6.6%是很大的雪隆以台積電這麼股權這麼分散的一個公司來講是相當高的比例了相當高的比例所以他取得一些東西不困難
transcript.whisperx[23].start 499.389
transcript.whisperx[23].end 518.604
transcript.whisperx[23].text 馬上進來了所以變成是以後變國運事業了以後在川普看上的半導體的重要的chip晶片的廠就是變成美國的國運事業了變這個樣子不過我想報告委員我想我們要看他這個投資是策略投資還是財務投資啊
transcript.whisperx[24].start 521.62
transcript.whisperx[24].end 536.293
transcript.whisperx[24].text 當然是策略投資啊那個商務部長講清楚了他的目標他講得很好聽他說讓美國人納稅人的錢他能夠得到一些報酬這個話這個四平八穩可是問題是你事先沒有這樣講
transcript.whisperx[25].start 537.734
transcript.whisperx[25].end 561.253
transcript.whisperx[25].text 事先沒有這樣講啦事先就是他的金邊法案就是給錢就給錢補助你就補助你但是美國是一個法治的國家啦那我想我們跟他第二的條件就像委員所指教的就是沒有這個條件當然我們可以拒絕可以拒絕啦好 那來投審會啊他如果真的要變成這個台積電的股東要經過我們的投審會就這個意思嘛好 謝謝謝謝委員
transcript.whisperx[26].start 563.854
transcript.whisperx[26].end 568.686
transcript.whisperx[26].text 好 謝謝我們現在請蔡易瑜委員做詢答