iVOD / 163581

Field Value
IVOD_ID 163581
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/163581
日期 2025-08-20
會議資料.會議代碼 委員會-11-3-19-20
會議資料.會議代碼:str 第11屆第3會期經濟委員會第20次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 20
會議資料.種類 委員會
會議資料.委員會代碼[0] 19
會議資料.委員會代碼:str[0] 經濟委員會
會議資料.標題 第11屆第3會期經濟委員會第20次全體委員會議
影片種類 Clip
開始時間 2025-08-20T11:32:02+08:00
結束時間 2025-08-20T11:42:40+08:00
影片長度 00:10:38
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/3feaef107a98f0c99b4a51b17e0ab8510ed9bbdce0c549626d8aada7af21e6177307c4a423e313cf5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 李坤城
委員發言時間 11:32:02 - 11:42:40
會議時間 2025-08-20T09:00:00+08:00
會議名稱 立法院第11屆第3會期經濟委員會第20次全體委員會議(事由:邀請經濟部部長就「協助中小企業災後復原辦理情況」進行報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 0.03096875
transcript.pyannote[0].end 0.06471875
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 0.06471875
transcript.pyannote[1].end 0.50346875
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 8.72159375
transcript.pyannote[2].end 10.83096875
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 12.45096875
transcript.pyannote[3].end 15.08346875
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 20.80409375
transcript.pyannote[4].end 21.15846875
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 21.15846875
transcript.pyannote[5].end 32.76846875
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 21.17534375
transcript.pyannote[6].end 21.90096875
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 33.27471875
transcript.pyannote[7].end 34.16909375
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 34.28721875
transcript.pyannote[8].end 62.53596875
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 62.90721875
transcript.pyannote[9].end 68.20596875
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 67.78409375
transcript.pyannote[10].end 68.27346875
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 68.22284375
transcript.pyannote[11].end 68.25659375
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 68.27346875
transcript.pyannote[12].end 70.11284375
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 68.29034375
transcript.pyannote[13].end 68.30721875
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 69.77534375
transcript.pyannote[14].end 70.18034375
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 70.18034375
transcript.pyannote[15].end 71.68221875
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 70.21409375
transcript.pyannote[16].end 70.24784375
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 72.08721875
transcript.pyannote[17].end 76.12034375
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 76.45784375
transcript.pyannote[18].end 76.57596875
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 76.74471875
transcript.pyannote[19].end 82.60034375
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 83.02221875
transcript.pyannote[20].end 86.32971875
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 86.04284375
transcript.pyannote[21].end 86.78534375
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 86.39721875
transcript.pyannote[22].end 88.48971875
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 88.48971875
transcript.pyannote[23].end 88.72596875
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 88.72596875
transcript.pyannote[24].end 93.61971875
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 93.40034375
transcript.pyannote[25].end 94.46346875
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 95.59409375
transcript.pyannote[26].end 98.12534375
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 98.27721875
transcript.pyannote[27].end 104.68971875
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 105.11159375
transcript.pyannote[28].end 105.60096875
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 106.03971875
transcript.pyannote[29].end 108.90846875
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 108.95909375
transcript.pyannote[30].end 110.42721875
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 110.42721875
transcript.pyannote[31].end 113.88659375
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 114.17346875
transcript.pyannote[32].end 118.86471875
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 119.57346875
transcript.pyannote[33].end 126.01971875
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 126.40784375
transcript.pyannote[34].end 127.06596875
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 127.26846875
transcript.pyannote[35].end 135.31784375
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 135.23346875
transcript.pyannote[36].end 147.55221875
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 147.85596875
transcript.pyannote[37].end 148.31159375
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 148.31159375
transcript.pyannote[38].end 152.05784375
transcript.pyannote[39].speaker SPEAKER_01
transcript.pyannote[39].start 152.10846875
transcript.pyannote[39].end 152.66534375
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 152.59784375
transcript.pyannote[40].end 155.97284375
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 156.68159375
transcript.pyannote[41].end 159.17909375
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 158.36909375
transcript.pyannote[42].end 158.60534375
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 158.90909375
transcript.pyannote[43].end 165.50721875
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 165.92909375
transcript.pyannote[44].end 168.64596875
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 168.93284375
transcript.pyannote[45].end 175.31159375
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 175.44659375
transcript.pyannote[46].end 176.32409375
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 176.59409375
transcript.pyannote[47].end 178.01159375
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 177.96096875
transcript.pyannote[48].end 187.14096875
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 180.25596875
transcript.pyannote[49].end 180.47534375
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 183.81659375
transcript.pyannote[50].end 183.83346875
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 183.83346875
transcript.pyannote[51].end 183.90096875
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 184.42409375
transcript.pyannote[52].end 184.44096875
transcript.pyannote[53].speaker SPEAKER_02
transcript.pyannote[53].start 187.22534375
transcript.pyannote[53].end 197.43471875
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 191.61284375
transcript.pyannote[54].end 191.79846875
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 197.43471875
transcript.pyannote[55].end 197.87346875
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 197.87346875
transcript.pyannote[56].end 230.08784375
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 218.84909375
transcript.pyannote[57].end 219.03471875
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 219.06846875
transcript.pyannote[58].end 219.15284375
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 220.50284375
transcript.pyannote[59].end 220.90784375
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 230.12159375
transcript.pyannote[60].end 230.42534375
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 230.66159375
transcript.pyannote[61].end 234.20534375
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 234.99846875
transcript.pyannote[62].end 245.51159375
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 245.86596875
transcript.pyannote[63].end 256.04159375
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 256.63221875
transcript.pyannote[64].end 260.63159375
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 261.45846875
transcript.pyannote[65].end 263.28096875
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 263.53409375
transcript.pyannote[66].end 269.18721875
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 269.33909375
transcript.pyannote[67].end 269.67659375
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 270.31784375
transcript.pyannote[68].end 273.54096875
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 274.28346875
transcript.pyannote[69].end 279.21096875
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 279.32909375
transcript.pyannote[70].end 289.63971875
transcript.pyannote[71].speaker SPEAKER_02
transcript.pyannote[71].start 290.16284375
transcript.pyannote[71].end 292.25534375
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 292.74471875
transcript.pyannote[72].end 294.11159375
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 294.46596875
transcript.pyannote[73].end 296.67659375
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 297.40221875
transcript.pyannote[74].end 300.23721875
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 300.84471875
transcript.pyannote[75].end 301.99221875
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 302.95409375
transcript.pyannote[76].end 305.36721875
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 304.52346875
transcript.pyannote[77].end 306.36284375
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 306.36284375
transcript.pyannote[78].end 308.59034375
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 308.01659375
transcript.pyannote[79].end 314.22659375
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 310.07534375
transcript.pyannote[80].end 310.10909375
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 314.22659375
transcript.pyannote[81].end 317.34846875
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 317.31471875
transcript.pyannote[82].end 321.01034375
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 321.33096875
transcript.pyannote[83].end 322.47846875
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 322.66409375
transcript.pyannote[84].end 329.07659375
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 323.33909375
transcript.pyannote[85].end 325.21221875
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 330.62909375
transcript.pyannote[86].end 336.45096875
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 334.45971875
transcript.pyannote[87].end 334.67909375
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 336.56909375
transcript.pyannote[88].end 339.28596875
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 339.38721875
transcript.pyannote[89].end 347.74034375
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 348.01034375
transcript.pyannote[90].end 354.79409375
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 355.45221875
transcript.pyannote[91].end 358.38846875
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 358.69221875
transcript.pyannote[92].end 363.78846875
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 364.12596875
transcript.pyannote[93].end 365.32409375
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 365.96534375
transcript.pyannote[94].end 366.45471875
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 366.79221875
transcript.pyannote[95].end 370.47096875
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 370.47096875
transcript.pyannote[96].end 371.95596875
transcript.pyannote[97].speaker SPEAKER_02
transcript.pyannote[97].start 372.61409375
transcript.pyannote[97].end 374.48721875
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 375.78659375
transcript.pyannote[98].end 376.09034375
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 376.32659375
transcript.pyannote[99].end 376.34346875
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 376.34346875
transcript.pyannote[100].end 376.52909375
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 376.52909375
transcript.pyannote[101].end 376.76534375
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 376.76534375
transcript.pyannote[102].end 377.03534375
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 377.03534375
transcript.pyannote[103].end 377.17034375
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 377.17034375
transcript.pyannote[104].end 377.74409375
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 377.74409375
transcript.pyannote[105].end 377.76096875
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 377.76096875
transcript.pyannote[106].end 377.77784375
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 377.77784375
transcript.pyannote[107].end 379.14471875
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 377.79471875
transcript.pyannote[108].end 380.41034375
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 379.90409375
transcript.pyannote[109].end 383.12721875
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 383.41409375
transcript.pyannote[110].end 388.29096875
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 387.21096875
transcript.pyannote[111].end 387.70034375
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 388.29096875
transcript.pyannote[112].end 388.37534375
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 388.37534375
transcript.pyannote[113].end 388.56096875
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 388.56096875
transcript.pyannote[114].end 390.60284375
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 389.79284375
transcript.pyannote[115].end 395.85096875
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 390.68721875
transcript.pyannote[116].end 391.09221875
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 396.28971875
transcript.pyannote[117].end 403.54596875
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 403.71471875
transcript.pyannote[118].end 404.35596875
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 404.54159375
transcript.pyannote[119].end 406.09409375
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 406.33034375
transcript.pyannote[120].end 406.34721875
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 406.34721875
transcript.pyannote[121].end 407.19096875
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 407.19096875
transcript.pyannote[122].end 407.22471875
transcript.pyannote[123].speaker SPEAKER_01
transcript.pyannote[123].start 407.34284375
transcript.pyannote[123].end 409.50284375
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 409.73909375
transcript.pyannote[124].end 411.88221875
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 412.45596875
transcript.pyannote[125].end 412.81034375
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 413.38409375
transcript.pyannote[126].end 413.95784375
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 415.25721875
transcript.pyannote[127].end 415.56096875
transcript.pyannote[128].speaker SPEAKER_02
transcript.pyannote[128].start 415.88159375
transcript.pyannote[128].end 425.71971875
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 419.30721875
transcript.pyannote[129].end 421.58534375
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 422.02409375
transcript.pyannote[130].end 423.18846875
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 425.71971875
transcript.pyannote[131].end 426.02346875
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 426.02346875
transcript.pyannote[132].end 427.03596875
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 427.03596875
transcript.pyannote[133].end 427.76159375
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 427.76159375
transcript.pyannote[134].end 427.82909375
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 427.99784375
transcript.pyannote[135].end 428.26784375
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 429.22971875
transcript.pyannote[136].end 437.02596875
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 433.87034375
transcript.pyannote[137].end 436.67159375
transcript.pyannote[138].speaker SPEAKER_01
transcript.pyannote[138].start 436.95846875
transcript.pyannote[138].end 437.46471875
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 437.46471875
transcript.pyannote[139].end 437.58284375
transcript.pyannote[140].speaker SPEAKER_01
transcript.pyannote[140].start 437.58284375
transcript.pyannote[140].end 437.71784375
transcript.pyannote[141].speaker SPEAKER_00
transcript.pyannote[141].start 437.71784375
transcript.pyannote[141].end 437.83596875
transcript.pyannote[142].speaker SPEAKER_01
transcript.pyannote[142].start 437.83596875
transcript.pyannote[142].end 437.85284375
transcript.pyannote[143].speaker SPEAKER_00
transcript.pyannote[143].start 437.85284375
transcript.pyannote[143].end 437.86971875
transcript.pyannote[144].speaker SPEAKER_01
transcript.pyannote[144].start 437.86971875
transcript.pyannote[144].end 439.10159375
transcript.pyannote[145].speaker SPEAKER_00
transcript.pyannote[145].start 439.10159375
transcript.pyannote[145].end 439.18596875
transcript.pyannote[146].speaker SPEAKER_01
transcript.pyannote[146].start 439.18596875
transcript.pyannote[146].end 439.21971875
transcript.pyannote[147].speaker SPEAKER_00
transcript.pyannote[147].start 439.21971875
transcript.pyannote[147].end 439.37159375
transcript.pyannote[148].speaker SPEAKER_01
transcript.pyannote[148].start 439.37159375
transcript.pyannote[148].end 439.43909375
transcript.pyannote[149].speaker SPEAKER_00
transcript.pyannote[149].start 439.43909375
transcript.pyannote[149].end 439.45596875
transcript.pyannote[150].speaker SPEAKER_01
transcript.pyannote[150].start 439.45596875
transcript.pyannote[150].end 439.55721875
transcript.pyannote[151].speaker SPEAKER_00
transcript.pyannote[151].start 439.55721875
transcript.pyannote[151].end 439.59096875
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 439.59096875
transcript.pyannote[152].end 439.60784375
transcript.pyannote[153].speaker SPEAKER_00
transcript.pyannote[153].start 439.60784375
transcript.pyannote[153].end 439.62471875
transcript.pyannote[154].speaker SPEAKER_01
transcript.pyannote[154].start 439.62471875
transcript.pyannote[154].end 439.69221875
transcript.pyannote[155].speaker SPEAKER_00
transcript.pyannote[155].start 439.69221875
transcript.pyannote[155].end 448.97346875
transcript.pyannote[156].speaker SPEAKER_01
transcript.pyannote[156].start 440.09721875
transcript.pyannote[156].end 440.21534375
transcript.pyannote[157].speaker SPEAKER_01
transcript.pyannote[157].start 448.97346875
transcript.pyannote[157].end 458.89596875
transcript.pyannote[158].speaker SPEAKER_01
transcript.pyannote[158].start 459.26721875
transcript.pyannote[158].end 463.01346875
transcript.pyannote[159].speaker SPEAKER_01
transcript.pyannote[159].start 463.97534375
transcript.pyannote[159].end 466.55721875
transcript.pyannote[160].speaker SPEAKER_02
transcript.pyannote[160].start 466.55721875
transcript.pyannote[160].end 471.65346875
transcript.pyannote[161].speaker SPEAKER_01
transcript.pyannote[161].start 468.32909375
transcript.pyannote[161].end 468.59909375
transcript.pyannote[162].speaker SPEAKER_01
transcript.pyannote[162].start 471.94034375
transcript.pyannote[162].end 477.69471875
transcript.pyannote[163].speaker SPEAKER_01
transcript.pyannote[163].start 478.01534375
transcript.pyannote[163].end 482.82471875
transcript.pyannote[164].speaker SPEAKER_02
transcript.pyannote[164].start 485.42346875
transcript.pyannote[164].end 492.61221875
transcript.pyannote[165].speaker SPEAKER_01
transcript.pyannote[165].start 489.01784375
transcript.pyannote[165].end 490.04721875
transcript.pyannote[166].speaker SPEAKER_01
transcript.pyannote[166].start 492.61221875
transcript.pyannote[166].end 493.57409375
transcript.pyannote[167].speaker SPEAKER_01
transcript.pyannote[167].start 493.97909375
transcript.pyannote[167].end 493.99596875
transcript.pyannote[168].speaker SPEAKER_01
transcript.pyannote[168].start 494.48534375
transcript.pyannote[168].end 502.21409375
transcript.pyannote[169].speaker SPEAKER_02
transcript.pyannote[169].start 502.21409375
transcript.pyannote[169].end 504.45846875
transcript.pyannote[170].speaker SPEAKER_01
transcript.pyannote[170].start 504.45846875
transcript.pyannote[170].end 511.74846875
transcript.pyannote[171].speaker SPEAKER_02
transcript.pyannote[171].start 511.88346875
transcript.pyannote[171].end 520.81034375
transcript.pyannote[172].speaker SPEAKER_01
transcript.pyannote[172].start 513.65534375
transcript.pyannote[172].end 513.79034375
transcript.pyannote[173].speaker SPEAKER_01
transcript.pyannote[173].start 513.80721875
transcript.pyannote[173].end 513.84096875
transcript.pyannote[174].speaker SPEAKER_02
transcript.pyannote[174].start 520.82721875
transcript.pyannote[174].end 527.81346875
transcript.pyannote[175].speaker SPEAKER_00
transcript.pyannote[175].start 524.13471875
transcript.pyannote[175].end 524.18534375
transcript.pyannote[176].speaker SPEAKER_02
transcript.pyannote[176].start 527.96534375
transcript.pyannote[176].end 531.86346875
transcript.pyannote[177].speaker SPEAKER_02
transcript.pyannote[177].start 532.25159375
transcript.pyannote[177].end 533.77034375
transcript.pyannote[178].speaker SPEAKER_01
transcript.pyannote[178].start 533.77034375
transcript.pyannote[178].end 547.52346875
transcript.pyannote[179].speaker SPEAKER_02
transcript.pyannote[179].start 533.80409375
transcript.pyannote[179].end 533.85471875
transcript.pyannote[180].speaker SPEAKER_01
transcript.pyannote[180].start 547.75971875
transcript.pyannote[180].end 548.65409375
transcript.pyannote[181].speaker SPEAKER_01
transcript.pyannote[181].start 548.68784375
transcript.pyannote[181].end 551.80971875
transcript.pyannote[182].speaker SPEAKER_01
transcript.pyannote[182].start 552.06284375
transcript.pyannote[182].end 552.85596875
transcript.pyannote[183].speaker SPEAKER_01
transcript.pyannote[183].start 553.02471875
transcript.pyannote[183].end 555.45471875
transcript.pyannote[184].speaker SPEAKER_01
transcript.pyannote[184].start 555.60659375
transcript.pyannote[184].end 558.98159375
transcript.pyannote[185].speaker SPEAKER_01
transcript.pyannote[185].start 559.18409375
transcript.pyannote[185].end 561.41159375
transcript.pyannote[186].speaker SPEAKER_01
transcript.pyannote[186].start 561.63096875
transcript.pyannote[186].end 566.77784375
transcript.pyannote[187].speaker SPEAKER_01
transcript.pyannote[187].start 566.99721875
transcript.pyannote[187].end 567.75659375
transcript.pyannote[188].speaker SPEAKER_01
transcript.pyannote[188].start 568.27971875
transcript.pyannote[188].end 578.94471875
transcript.pyannote[189].speaker SPEAKER_02
transcript.pyannote[189].start 579.14721875
transcript.pyannote[189].end 583.77096875
transcript.pyannote[190].speaker SPEAKER_01
transcript.pyannote[190].start 584.47971875
transcript.pyannote[190].end 599.26221875
transcript.pyannote[191].speaker SPEAKER_01
transcript.pyannote[191].start 599.59971875
transcript.pyannote[191].end 600.69659375
transcript.pyannote[192].speaker SPEAKER_01
transcript.pyannote[192].start 601.27034375
transcript.pyannote[192].end 616.06971875
transcript.pyannote[193].speaker SPEAKER_01
transcript.pyannote[193].start 616.35659375
transcript.pyannote[193].end 632.03346875
transcript.pyannote[194].speaker SPEAKER_02
transcript.pyannote[194].start 632.03346875
transcript.pyannote[194].end 632.38784375
transcript.pyannote[195].speaker SPEAKER_01
transcript.pyannote[195].start 632.38784375
transcript.pyannote[195].end 632.42159375
transcript.pyannote[196].speaker SPEAKER_01
transcript.pyannote[196].start 633.72096875
transcript.pyannote[196].end 637.46721875
transcript.whisperx[0].start 9.557
transcript.whisperx[0].end 13.861
transcript.whisperx[0].text 謝謝主席我們請部長也請我們這個財發署的這個邱署長
transcript.whisperx[1].start 20.814
transcript.whisperx[1].end 46.828
transcript.whisperx[1].text 委員好部長好辛苦了這個請教一下這個部長還有署長我是問這個有關這個汽車關稅的問題那部長知道說現在在我們這一個台北港大概有三萬輛的這個進口車就只在那邊那就是因為關稅的問題就是說消費者會等想說這個等關稅確定之後是不是有便宜的進口車可以買那所以呢這個業者當然也賣不出去那我想請教一下目前我們的這個進口車的關稅是17.5%
transcript.whisperx[2].start 49.75
transcript.whisperx[2].end 61.389
transcript.whisperx[2].text 那這個在談判的過程當中這個汽車關稅是一個非常重要的一個談判的議題那我想請教一下部長目前有關這個汽車關稅這一塊到底有沒有什麼比較具體的一個進程
transcript.whisperx[3].start 63.104
transcript.whisperx[3].end 82.296
transcript.whisperx[3].text 報告委員我想因為關稅的談判現在還是在進行中我知道暫定的啦對所以這個進口的車的這個關稅目前還沒有還沒有確定但是是會朝向要調降的方向來做談判的一個方向嗎
transcript.whisperx[4].start 83.503
transcript.whisperx[4].end 97.914
transcript.whisperx[4].text 美国一定会要求我们往下降但是降到什么样的程度现在就是我们的谈判团队跟美国还在继续协商所以有没有可能降到零这个我不清楚因为我不是谈判团队
transcript.whisperx[5].start 99.214
transcript.whisperx[5].end 125.789
transcript.whisperx[5].text 那你也是業者出身的啦那你也知道說這個在舊美國來講他是想有機會就會把關稅降到零嘛對不對那這是一個參考詞啦那如果降到零的話有沒有想到說對我們產業的影響因為這個降到零就是一個最差的一個情況了嘛那降到零的話這個當然對於這個我們的這個台灣的這些要買車的人當然是一個好消息但是對於台灣的這些這個
transcript.whisperx[6].start 127.438
transcript.whisperx[6].end 155.498
transcript.whisperx[6].text 这个零件车子零件的业者或整车业者当然会受到影响那有没有想到说会受到什么样的影响呢就国产汽车来讲我们大概就是如果进口车那关税是零或者是这个比较低的这个关税的时候那么会影响到台湾的可能就是汽车零组件还有在台湾制造的这个汽车嘛这个部分我们大概都有跟业者还继续在
transcript.whisperx[7].start 156.775
transcript.whisperx[7].end 169.719
transcript.whisperx[7].text 在共同努力啦就是說沒有沒有一個比較具體我問兩個比較具體的就好了就是說這個國產車自治率的一個條件然後呢還有這個國內無產制國內沒有產的這個零組件進口的關稅這個兩項這個兩項有沒有去做討論我們都有討論
transcript.whisperx[8].start 176.661
transcript.whisperx[8].end 197.109
transcript.whisperx[8].text 那有没有一个比较具体的我们现在是这样子就是我们的建议台湾的强项其实应该是在电子零组件上面所以我们其实都有建议这些在台湾有厂的这些所谓外籍的这个公司包括日本的包括韩国的那我们就建议他们能够是不是能够生产电动车
transcript.whisperx[9].start 198.169
transcript.whisperx[9].end 220.28
transcript.whisperx[9].text 生产电动车因为电动车其实不是日本跟韩国这些公司的主力但是他的客户会要求电动车所以我们建议他是不是让在台湾的厂可以生产他全球的这个他们品牌的电动车那他们是有在考虑但是他们必须要跟他的母厂母公司来协商啦
transcript.whisperx[10].start 220.62
transcript.whisperx[10].end 233.911
transcript.whisperx[10].text 我想這個我們從這個今年的大概是7月吧7月的時候討論出來一個方向但是關稅有可能在譬如說9月10月就會決定了
transcript.whisperx[11].start 235.166
transcript.whisperx[11].end 258.2
transcript.whisperx[11].text 所以你要轉型坐電動車那是一個比較long term的一個轉型的目標那我剛才講一個就是說我們有很多是屬於零組件進口就是零組件是台灣當然坐車但是有一些關鍵零組件還是從國外進口那這方面的話關稅有要調降嗎就是不然你台灣的國產車幾乎沒有什麼競爭力
transcript.whisperx[12].start 261.55
transcript.whisperx[12].end 268.284
transcript.whisperx[12].text 我們國產車的部分我想這個國內我們可能會鼓勵太舊換新
transcript.whisperx[13].start 270.473
transcript.whisperx[13].end 296.377
transcript.whisperx[13].text 因為台灣的這個超過20年的車有200萬台所以我們鼓勵他因為基於這個節能減碳所以我們也希望他能夠換一些這個耗能比較輕的車由國內的這些廠商他們來生產所以大概200萬台車可以在這幾年裡面讓他去轉型不是啊 那你怎麼害羞煥心你有什麼政策上面的誘因啊
transcript.whisperx[14].start 297.455
transcript.whisperx[14].end 299.41
transcript.whisperx[14].text 我們這個可能會調降這個貨物稅
transcript.whisperx[15].start 300.899
transcript.whisperx[15].end 328.726
transcript.whisperx[15].text 那你要問財政部這個不是只有你說我們意思就是說我跟這個委員你們有跟財政部有討論過了嗎我們當然是業者的意願確定了我們才會做這個財政部的溝通那有跟財政部先溝通過這個貨物稅的問題嗎這個部分在我們所謂的這個討論的過程裡面都有提過了那財政部的財政部的這個財政部啦因為我自己在財委會財政部只要跟他講說要降稅他就跟你拼命
transcript.whisperx[16].start 330.657
transcript.whisperx[16].end 358.158
transcript.whisperx[16].text 不过这个我想我们会基于国人的企业发展的这样的一个过程我想财政部应该会支持好那我再请问一下一个是这个法规的问题就是说现在我们的这个车子我们是采用这一个欧洲的这个检验的一个标准那如果说美国车子进来的话那怎么去做这一个标准的一个做一个调整他还是要通过我们的车车中心的检验
transcript.whisperx[17].start 358.975
transcript.whisperx[17].end 382.216
transcript.whisperx[17].text 對啊 但是規格不一樣啊 它是一個是美國的 一個是我們是採用歐洲的啊 是不一樣的啊可以做correlation什麼意思可以做一些這個規格上面的一個比照現在有在處理這一塊嗎現在還沒有看到沒有 但是美國車是有可能有需求我們就會來一定會有這個需求啊 因為接下來就是美國車會進來啦
transcript.whisperx[18].start 383.476
transcript.whisperx[18].end 403.176
transcript.whisperx[18].text 但是我跟委員報告就是我們所了解就是數量款式都會增加市場上面大概你講的是美國牌的品牌的大車但我們所了解的有很多美國車會進來的倒是這個所謂日系韓系在美國製造的車
transcript.whisperx[19].start 404.577
transcript.whisperx[19].end 420.56
transcript.whisperx[19].text 那規格是一樣的嗎規格應該是一樣是一樣嗎是用台灣現在的這個這個歐洲的這個檢驗的規格嗎是嗎署長是嗎署長這個這個我想我們認為應該是啦沒有我一樣署長這個這個署長比較這個可能不是太嚴重的問題沒有我問一下署長那署長是嗎
transcript.whisperx[20].start 429.658
transcript.whisperx[20].end 458.638
transcript.whisperx[20].text 因為美國車以前就都已經有進來的 並不是這次開放才進來的那以前數量不多嘛那現在數量如果一下增加的話如果說需要進行一些法規的調適的話可能我們還要再跟交通部這邊再討論一下所以也都還沒有進行就對了這個你們可能也要開始要做進行因為我覺得這個是大概是在兩三個月大概就會確定的事情那我最後再問一下部長就是說因為如果
transcript.whisperx[21].start 459.298
transcript.whisperx[21].end 482.492
transcript.whisperx[21].text 你開放這個美國車關稅是零的話那其他的其他的歐洲的車他會不會比照要求要辦理我們跟美國的談判就台灣跟美國之間的關稅關係對啊那他就說那美國車就降了那基於這一個這一個比如說WTO的精神這個不能獨厚美國他其他車也要降其他這個歐洲進口車也要降會不會
transcript.whisperx[22].start 485.475
transcript.whisperx[22].end 511.474
transcript.whisperx[22].text 理論上這個應該會有這樣的一個要求啦對啊但是我們的原則現在還是只跟美國談是啊 那我是說因為現在美國當然是跟美國談那我是說會不會有其他的這個歐洲的那邊的車子也會有要求也會有相同的這個一些要求啊據WTO他們可能會要求但是我們現在那我們有做什麼樣的因應嗎我們還要再評論啦對啊 這個都是近這兩個月會發生的事情耶
transcript.whisperx[23].start 511.914
transcript.whisperx[23].end 527.695
transcript.whisperx[23].text 对但是因为我们现在在看就是看这个未来的变化因为这一系数变跟美国谈现在还没有谈定那其他的国家跟美国很多还是没有谈定所以没有谈定的过程里面这个变数太多了
transcript.whisperx[24].start 528.235
transcript.whisperx[24].end 555.109
transcript.whisperx[24].text 所以我們現在先針對美國這個先造成的影響以後其他的部分是穩定的可是你們要去預想啊就是說我剛才講那幾個那應該都是要去預想就是說好像關稅就是有可能是零那如果關稅零的話那對台灣的這個國產車業者會造成怎麼樣的影響那我剛才講的就是說那有一些比較關鍵的一些一些領主線要進來那這個關稅是不是要做調整那或是說這一個你剛才講的你希望說鼓勵
transcript.whisperx[25].start 555.689
transcript.whisperx[25].end 583.646
transcript.whisperx[25].text 台湾的这个车子能够车主能够太旧换新然后除了这个货物税上面给予一些减免之外还有什么要去做的然后不然的话对于台湾的这些这个国产吃的这些厂商来讲做零件的厂商来讲会受到很大影响接下来就是会变成失业的人口了这个不是就是一连串会延续发生的吗是 谢谢委员知道我们都会依据国际食物跟规定来办理
transcript.whisperx[26].start 585.347
transcript.whisperx[26].end 607.458
transcript.whisperx[26].text 我的意思是說 雖然談判在進行當中但是因為現在已經快八月底了我覺得大概在兩個月大概會確定也不可能一直懸在那邊沒辦法確定但是汽車關稅的談判一定是其中一個沒有辦法把我們的關稅談好的其中一個蠻重要的因素在所以這個東西搞不好已經談好了也不一定
transcript.whisperx[27].start 609.12
transcript.whisperx[27].end 634.358
transcript.whisperx[27].text 這個對業者來講當然是希望說能夠買到便宜的車但是卡在那邊不上不下你如果早點決定了其實業者跟這個買車的人他們都有一個盤算在那邊現在對業者來講其實最擔心就是你懸而不決一直卡在那邊其實對業者來講才是一個最大的一個心理或是經濟上面的一個負擔謝謝是 謝謝委員好 謝謝現在請賴世保委員做詢答