IVOD_ID |
163499 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/163499 |
日期 |
2025-08-14 |
會議資料.會議代碼 |
委員會-11-3-26-24 |
會議資料.會議代碼:str |
第11屆第3會期社會福利及衛生環境委員會第24次全體委員會議 |
會議資料.屆 |
11 |
會議資料.會期 |
3 |
會議資料.會次 |
24 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
26 |
會議資料.委員會代碼:str[0] |
社會福利及衛生環境委員會 |
會議資料.標題 |
第11屆第3會期社會福利及衛生環境委員會第24次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2025-08-14T11:09:46+08:00 |
結束時間 |
2025-08-14T11:19:27+08:00 |
影片長度 |
00:09:41 |
支援功能[0] |
ai-transcript |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/3ced7f9f61571ec91c2ba24957f15e27bce7d2d90249eb2fcad52e77be0dc9cfa2be613e28a423535ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
盧縣一 |
委員發言時間 |
11:09:46 - 11:19:27 |
會議時間 |
2025-08-14T09:00:00+08:00 |
會議名稱 |
立法院第11屆第3會期社會福利及衛生環境委員會第24次全體委員會議(事由:邀請衛生福利部、經濟部、財政部就「美國針對進口藥品、原料藥課稅對我國產業造成影響」進行專題報告,並備質詢。) |
transcript.pyannote[0].speaker |
SPEAKER_00 |
transcript.pyannote[0].start |
4.30034375 |
transcript.pyannote[0].end |
5.95409375 |
transcript.pyannote[1].speaker |
SPEAKER_01 |
transcript.pyannote[1].start |
6.10596875 |
transcript.pyannote[1].end |
6.12284375 |
transcript.pyannote[2].speaker |
SPEAKER_00 |
transcript.pyannote[2].start |
6.12284375 |
transcript.pyannote[2].end |
6.15659375 |
transcript.pyannote[3].speaker |
SPEAKER_01 |
transcript.pyannote[3].start |
6.15659375 |
transcript.pyannote[3].end |
6.81471875 |
transcript.pyannote[4].speaker |
SPEAKER_01 |
transcript.pyannote[4].start |
12.26534375 |
transcript.pyannote[4].end |
12.72096875 |
transcript.pyannote[5].speaker |
SPEAKER_00 |
transcript.pyannote[5].start |
12.83909375 |
transcript.pyannote[5].end |
13.48034375 |
transcript.pyannote[6].speaker |
SPEAKER_00 |
transcript.pyannote[6].start |
13.95284375 |
transcript.pyannote[6].end |
18.91409375 |
transcript.pyannote[7].speaker |
SPEAKER_00 |
transcript.pyannote[7].start |
18.96471875 |
transcript.pyannote[7].end |
19.35284375 |
transcript.pyannote[8].speaker |
SPEAKER_00 |
transcript.pyannote[8].start |
19.40346875 |
transcript.pyannote[8].end |
23.47034375 |
transcript.pyannote[9].speaker |
SPEAKER_00 |
transcript.pyannote[9].start |
25.32659375 |
transcript.pyannote[9].end |
26.59221875 |
transcript.pyannote[10].speaker |
SPEAKER_01 |
transcript.pyannote[10].start |
27.68909375 |
transcript.pyannote[10].end |
28.73534375 |
transcript.pyannote[11].speaker |
SPEAKER_01 |
transcript.pyannote[11].start |
29.24159375 |
transcript.pyannote[11].end |
31.57034375 |
transcript.pyannote[12].speaker |
SPEAKER_00 |
transcript.pyannote[12].start |
31.73909375 |
transcript.pyannote[12].end |
33.79784375 |
transcript.pyannote[13].speaker |
SPEAKER_01 |
transcript.pyannote[13].start |
35.75534375 |
transcript.pyannote[13].end |
36.61596875 |
transcript.pyannote[14].speaker |
SPEAKER_01 |
transcript.pyannote[14].start |
36.93659375 |
transcript.pyannote[14].end |
40.61534375 |
transcript.pyannote[15].speaker |
SPEAKER_01 |
transcript.pyannote[15].start |
41.05409375 |
transcript.pyannote[15].end |
45.55971875 |
transcript.pyannote[16].speaker |
SPEAKER_00 |
transcript.pyannote[16].start |
44.78346875 |
transcript.pyannote[16].end |
48.07409375 |
transcript.pyannote[17].speaker |
SPEAKER_00 |
transcript.pyannote[17].start |
48.34409375 |
transcript.pyannote[17].end |
54.73971875 |
transcript.pyannote[18].speaker |
SPEAKER_00 |
transcript.pyannote[18].start |
54.94221875 |
transcript.pyannote[18].end |
62.94096875 |
transcript.pyannote[19].speaker |
SPEAKER_01 |
transcript.pyannote[19].start |
60.22409375 |
transcript.pyannote[19].end |
60.73034375 |
transcript.pyannote[20].speaker |
SPEAKER_00 |
transcript.pyannote[20].start |
63.26159375 |
transcript.pyannote[20].end |
66.04596875 |
transcript.pyannote[21].speaker |
SPEAKER_00 |
transcript.pyannote[21].start |
66.40034375 |
transcript.pyannote[21].end |
67.31159375 |
transcript.pyannote[22].speaker |
SPEAKER_00 |
transcript.pyannote[22].start |
67.54784375 |
transcript.pyannote[22].end |
82.83659375 |
transcript.pyannote[23].speaker |
SPEAKER_00 |
transcript.pyannote[23].start |
82.87034375 |
transcript.pyannote[23].end |
89.67096875 |
transcript.pyannote[24].speaker |
SPEAKER_01 |
transcript.pyannote[24].start |
88.03409375 |
transcript.pyannote[24].end |
88.05096875 |
transcript.pyannote[25].speaker |
SPEAKER_01 |
transcript.pyannote[25].start |
88.40534375 |
transcript.pyannote[25].end |
88.50659375 |
transcript.pyannote[26].speaker |
SPEAKER_00 |
transcript.pyannote[26].start |
89.85659375 |
transcript.pyannote[26].end |
90.37971875 |
transcript.pyannote[27].speaker |
SPEAKER_00 |
transcript.pyannote[27].start |
90.70034375 |
transcript.pyannote[27].end |
95.29034375 |
transcript.pyannote[28].speaker |
SPEAKER_00 |
transcript.pyannote[28].start |
95.94846875 |
transcript.pyannote[28].end |
99.79596875 |
transcript.pyannote[29].speaker |
SPEAKER_00 |
transcript.pyannote[29].start |
100.47096875 |
transcript.pyannote[29].end |
101.33159375 |
transcript.pyannote[30].speaker |
SPEAKER_01 |
transcript.pyannote[30].start |
101.43284375 |
transcript.pyannote[30].end |
102.04034375 |
transcript.pyannote[31].speaker |
SPEAKER_00 |
transcript.pyannote[31].start |
102.02346875 |
transcript.pyannote[31].end |
103.06971875 |
transcript.pyannote[32].speaker |
SPEAKER_01 |
transcript.pyannote[32].start |
104.53784375 |
transcript.pyannote[32].end |
105.46596875 |
transcript.pyannote[33].speaker |
SPEAKER_01 |
transcript.pyannote[33].start |
106.27596875 |
transcript.pyannote[33].end |
111.22034375 |
transcript.pyannote[34].speaker |
SPEAKER_01 |
transcript.pyannote[34].start |
111.81096875 |
transcript.pyannote[34].end |
116.21534375 |
transcript.pyannote[35].speaker |
SPEAKER_00 |
transcript.pyannote[35].start |
115.82721875 |
transcript.pyannote[35].end |
119.48909375 |
transcript.pyannote[36].speaker |
SPEAKER_01 |
transcript.pyannote[36].start |
116.82284375 |
transcript.pyannote[36].end |
117.58221875 |
transcript.pyannote[37].speaker |
SPEAKER_01 |
transcript.pyannote[37].start |
117.86909375 |
transcript.pyannote[37].end |
118.35846875 |
transcript.pyannote[38].speaker |
SPEAKER_01 |
transcript.pyannote[38].start |
119.06721875 |
transcript.pyannote[38].end |
125.07471875 |
transcript.pyannote[39].speaker |
SPEAKER_00 |
transcript.pyannote[39].start |
125.00721875 |
transcript.pyannote[39].end |
125.37846875 |
transcript.pyannote[40].speaker |
SPEAKER_00 |
transcript.pyannote[40].start |
125.51346875 |
transcript.pyannote[40].end |
132.51659375 |
transcript.pyannote[41].speaker |
SPEAKER_00 |
transcript.pyannote[41].start |
132.85409375 |
transcript.pyannote[41].end |
134.32221875 |
transcript.pyannote[42].speaker |
SPEAKER_00 |
transcript.pyannote[42].start |
134.49096875 |
transcript.pyannote[42].end |
138.05159375 |
transcript.pyannote[43].speaker |
SPEAKER_00 |
transcript.pyannote[43].start |
138.76034375 |
transcript.pyannote[43].end |
144.10971875 |
transcript.pyannote[44].speaker |
SPEAKER_00 |
transcript.pyannote[44].start |
144.34596875 |
transcript.pyannote[44].end |
149.50971875 |
transcript.pyannote[45].speaker |
SPEAKER_00 |
transcript.pyannote[45].start |
149.77971875 |
transcript.pyannote[45].end |
156.52971875 |
transcript.pyannote[46].speaker |
SPEAKER_00 |
transcript.pyannote[46].start |
156.76596875 |
transcript.pyannote[46].end |
163.02659375 |
transcript.pyannote[47].speaker |
SPEAKER_00 |
transcript.pyannote[47].start |
163.26284375 |
transcript.pyannote[47].end |
164.47784375 |
transcript.pyannote[48].speaker |
SPEAKER_00 |
transcript.pyannote[48].start |
164.68034375 |
transcript.pyannote[48].end |
173.23596875 |
transcript.pyannote[49].speaker |
SPEAKER_00 |
transcript.pyannote[49].start |
173.42159375 |
transcript.pyannote[49].end |
174.51846875 |
transcript.pyannote[50].speaker |
SPEAKER_00 |
transcript.pyannote[50].start |
174.97409375 |
transcript.pyannote[50].end |
176.62784375 |
transcript.pyannote[51].speaker |
SPEAKER_00 |
transcript.pyannote[51].start |
176.74596875 |
transcript.pyannote[51].end |
177.89346875 |
transcript.pyannote[52].speaker |
SPEAKER_00 |
transcript.pyannote[52].start |
178.41659375 |
transcript.pyannote[52].end |
186.02721875 |
transcript.pyannote[53].speaker |
SPEAKER_00 |
transcript.pyannote[53].start |
186.43221875 |
transcript.pyannote[53].end |
188.50784375 |
transcript.pyannote[54].speaker |
SPEAKER_00 |
transcript.pyannote[54].start |
188.86221875 |
transcript.pyannote[54].end |
189.87471875 |
transcript.pyannote[55].speaker |
SPEAKER_00 |
transcript.pyannote[55].start |
190.70159375 |
transcript.pyannote[55].end |
191.07284375 |
transcript.pyannote[56].speaker |
SPEAKER_00 |
transcript.pyannote[56].start |
191.56221875 |
transcript.pyannote[56].end |
192.33846875 |
transcript.pyannote[57].speaker |
SPEAKER_00 |
transcript.pyannote[57].start |
192.82784375 |
transcript.pyannote[57].end |
193.38471875 |
transcript.pyannote[58].speaker |
SPEAKER_00 |
transcript.pyannote[58].start |
194.00909375 |
transcript.pyannote[58].end |
203.81346875 |
transcript.pyannote[59].speaker |
SPEAKER_00 |
transcript.pyannote[59].start |
206.34471875 |
transcript.pyannote[59].end |
213.90471875 |
transcript.pyannote[60].speaker |
SPEAKER_00 |
transcript.pyannote[60].start |
214.32659375 |
transcript.pyannote[60].end |
218.64659375 |
transcript.pyannote[61].speaker |
SPEAKER_00 |
transcript.pyannote[61].start |
218.93346875 |
transcript.pyannote[61].end |
223.00034375 |
transcript.pyannote[62].speaker |
SPEAKER_00 |
transcript.pyannote[62].start |
223.08471875 |
transcript.pyannote[62].end |
237.61409375 |
transcript.pyannote[63].speaker |
SPEAKER_00 |
transcript.pyannote[63].start |
238.66034375 |
transcript.pyannote[63].end |
241.14096875 |
transcript.pyannote[64].speaker |
SPEAKER_01 |
transcript.pyannote[64].start |
238.67721875 |
transcript.pyannote[64].end |
238.82909375 |
transcript.pyannote[65].speaker |
SPEAKER_01 |
transcript.pyannote[65].start |
241.39409375 |
transcript.pyannote[65].end |
244.85346875 |
transcript.pyannote[66].speaker |
SPEAKER_01 |
transcript.pyannote[66].start |
244.97159375 |
transcript.pyannote[66].end |
261.57659375 |
transcript.pyannote[67].speaker |
SPEAKER_00 |
transcript.pyannote[67].start |
249.10596875 |
transcript.pyannote[67].end |
249.35909375 |
transcript.pyannote[68].speaker |
SPEAKER_00 |
transcript.pyannote[68].start |
252.02534375 |
transcript.pyannote[68].end |
252.22784375 |
transcript.pyannote[69].speaker |
SPEAKER_00 |
transcript.pyannote[69].start |
260.80034375 |
transcript.pyannote[69].end |
265.72784375 |
transcript.pyannote[70].speaker |
SPEAKER_01 |
transcript.pyannote[70].start |
262.63971875 |
transcript.pyannote[70].end |
263.16284375 |
transcript.pyannote[71].speaker |
SPEAKER_00 |
transcript.pyannote[71].start |
266.11596875 |
transcript.pyannote[71].end |
273.72659375 |
transcript.pyannote[72].speaker |
SPEAKER_00 |
transcript.pyannote[72].start |
274.33409375 |
transcript.pyannote[72].end |
276.98346875 |
transcript.pyannote[73].speaker |
SPEAKER_01 |
transcript.pyannote[73].start |
277.11846875 |
transcript.pyannote[73].end |
280.96596875 |
transcript.pyannote[74].speaker |
SPEAKER_01 |
transcript.pyannote[74].start |
281.53971875 |
transcript.pyannote[74].end |
284.25659375 |
transcript.pyannote[75].speaker |
SPEAKER_00 |
transcript.pyannote[75].start |
282.06284375 |
transcript.pyannote[75].end |
285.42096875 |
transcript.pyannote[76].speaker |
SPEAKER_01 |
transcript.pyannote[76].start |
284.91471875 |
transcript.pyannote[76].end |
290.48346875 |
transcript.pyannote[77].speaker |
SPEAKER_00 |
transcript.pyannote[77].start |
290.48346875 |
transcript.pyannote[77].end |
290.77034375 |
transcript.pyannote[78].speaker |
SPEAKER_01 |
transcript.pyannote[78].start |
291.00659375 |
transcript.pyannote[78].end |
291.91784375 |
transcript.pyannote[79].speaker |
SPEAKER_00 |
transcript.pyannote[79].start |
291.61409375 |
transcript.pyannote[79].end |
294.26346875 |
transcript.pyannote[80].speaker |
SPEAKER_01 |
transcript.pyannote[80].start |
293.11596875 |
transcript.pyannote[80].end |
293.89221875 |
transcript.pyannote[81].speaker |
SPEAKER_01 |
transcript.pyannote[81].start |
294.02721875 |
transcript.pyannote[81].end |
294.06096875 |
transcript.pyannote[82].speaker |
SPEAKER_01 |
transcript.pyannote[82].start |
294.07784375 |
transcript.pyannote[82].end |
313.82159375 |
transcript.pyannote[83].speaker |
SPEAKER_01 |
transcript.pyannote[83].start |
314.15909375 |
transcript.pyannote[83].end |
330.44346875 |
transcript.pyannote[84].speaker |
SPEAKER_01 |
transcript.pyannote[84].start |
330.62909375 |
transcript.pyannote[84].end |
333.00846875 |
transcript.pyannote[85].speaker |
SPEAKER_00 |
transcript.pyannote[85].start |
332.41784375 |
transcript.pyannote[85].end |
336.29909375 |
transcript.pyannote[86].speaker |
SPEAKER_01 |
transcript.pyannote[86].start |
334.39221875 |
transcript.pyannote[86].end |
353.22471875 |
transcript.pyannote[87].speaker |
SPEAKER_01 |
transcript.pyannote[87].start |
353.39346875 |
transcript.pyannote[87].end |
360.27846875 |
transcript.pyannote[88].speaker |
SPEAKER_00 |
transcript.pyannote[88].start |
359.60346875 |
transcript.pyannote[88].end |
362.50596875 |
transcript.pyannote[89].speaker |
SPEAKER_01 |
transcript.pyannote[89].start |
361.18971875 |
transcript.pyannote[89].end |
364.42971875 |
transcript.pyannote[90].speaker |
SPEAKER_00 |
transcript.pyannote[90].start |
364.07534375 |
transcript.pyannote[90].end |
379.85346875 |
transcript.pyannote[91].speaker |
SPEAKER_01 |
transcript.pyannote[91].start |
366.45471875 |
transcript.pyannote[91].end |
367.12971875 |
transcript.pyannote[92].speaker |
SPEAKER_01 |
transcript.pyannote[92].start |
376.76534375 |
transcript.pyannote[92].end |
376.78221875 |
transcript.pyannote[93].speaker |
SPEAKER_01 |
transcript.pyannote[93].start |
377.20409375 |
transcript.pyannote[93].end |
389.47221875 |
transcript.pyannote[94].speaker |
SPEAKER_00 |
transcript.pyannote[94].start |
388.62846875 |
transcript.pyannote[94].end |
423.79596875 |
transcript.pyannote[95].speaker |
SPEAKER_01 |
transcript.pyannote[95].start |
395.41221875 |
transcript.pyannote[95].end |
397.36971875 |
transcript.pyannote[96].speaker |
SPEAKER_00 |
transcript.pyannote[96].start |
424.06596875 |
transcript.pyannote[96].end |
428.65596875 |
transcript.pyannote[97].speaker |
SPEAKER_00 |
transcript.pyannote[97].start |
429.24659375 |
transcript.pyannote[97].end |
434.59596875 |
transcript.pyannote[98].speaker |
SPEAKER_00 |
transcript.pyannote[98].start |
435.05159375 |
transcript.pyannote[98].end |
443.20221875 |
transcript.pyannote[99].speaker |
SPEAKER_00 |
transcript.pyannote[99].start |
443.45534375 |
transcript.pyannote[99].end |
459.89159375 |
transcript.pyannote[100].speaker |
SPEAKER_00 |
transcript.pyannote[100].start |
460.63409375 |
transcript.pyannote[100].end |
464.31284375 |
transcript.pyannote[101].speaker |
SPEAKER_00 |
transcript.pyannote[101].start |
464.53221875 |
transcript.pyannote[101].end |
474.26909375 |
transcript.pyannote[102].speaker |
SPEAKER_00 |
transcript.pyannote[102].start |
475.04534375 |
transcript.pyannote[102].end |
520.13534375 |
transcript.pyannote[103].speaker |
SPEAKER_01 |
transcript.pyannote[103].start |
500.59409375 |
transcript.pyannote[103].end |
500.91471875 |
transcript.pyannote[104].speaker |
SPEAKER_00 |
transcript.pyannote[104].start |
520.27034375 |
transcript.pyannote[104].end |
527.49284375 |
transcript.pyannote[105].speaker |
SPEAKER_01 |
transcript.pyannote[105].start |
527.74596875 |
transcript.pyannote[105].end |
532.99409375 |
transcript.pyannote[106].speaker |
SPEAKER_01 |
transcript.pyannote[106].start |
533.34846875 |
transcript.pyannote[106].end |
573.27471875 |
transcript.pyannote[107].speaker |
SPEAKER_01 |
transcript.pyannote[107].start |
573.39284375 |
transcript.pyannote[107].end |
574.77659375 |
transcript.pyannote[108].speaker |
SPEAKER_00 |
transcript.pyannote[108].start |
574.81034375 |
transcript.pyannote[108].end |
576.68346875 |
transcript.pyannote[109].speaker |
SPEAKER_01 |
transcript.pyannote[109].start |
576.80159375 |
transcript.pyannote[109].end |
577.15596875 |
transcript.pyannote[110].speaker |
SPEAKER_00 |
transcript.pyannote[110].start |
577.15596875 |
transcript.pyannote[110].end |
577.88159375 |
transcript.pyannote[111].speaker |
SPEAKER_01 |
transcript.pyannote[111].start |
577.17284375 |
transcript.pyannote[111].end |
578.86034375 |
transcript.pyannote[112].speaker |
SPEAKER_01 |
transcript.pyannote[112].start |
581.03721875 |
transcript.pyannote[112].end |
581.96534375 |
transcript.whisperx[0].start |
4.592 |
transcript.whisperx[0].end |
33.568 |
transcript.whisperx[0].text |
謝謝主席有請部長部長請委員好部長好昨天我參加了一個下午的我們所謂的600億的防災的那個特別條例我不知道我們衛福部有沒有派人去參加衛福部有派人參加嗎我們沒有被指派600億你們不想要 |
transcript.whisperx[1].start |
37.163 |
transcript.whisperx[1].end |
60.959 |
transcript.whisperx[1].text |
不是因為他各種需要的項目是不是我們已經有需要去那邊其實我特別問的原因就是說可能他們在在指定的時候比如說可能是房屋的修繕或者是農損的這些賠償那我是覺得說我們應該剛才趙有提到就是我就是要講我們衛生單位的不過等一下再說 |
transcript.whisperx[2].start |
61.779 |
transcript.whisperx[2].end |
87.766 |
transcript.whisperx[2].text |
就關稅來講我一直在擔心的就是我們護理人員的待遇那其實會不會造成我們護理人員的更壓縮呢更等不到所謂的護理人員的薪資調整呢其實今年3月6號我們國民黨團我們羅志強委員陳金威委員還有王玉美委員有開一個記者會嘛來抨擊你們之前所說的月薪7萬塊的事情 |
transcript.whisperx[3].start |
88.467 |
transcript.whisperx[3].end |
102.866 |
transcript.whisperx[3].text |
那其实实际上的情况大家应该都知道那我再拿几个数据让大家知道那我先请问部长台东大学的护理系为什么没有核定通过台东大学护理系 |
transcript.whisperx[4].start |
108.07 |
transcript.whisperx[4].end |
124.097 |
transcript.whisperx[4].text |
我想這個都是有經過依照現在的醫療資源然後專家會議的一個評審因為我們一直說護理方如果有任何地方上如果有任何意見其實都可以再提出來來討論 |
transcript.whisperx[5].start |
125.638 |
transcript.whisperx[5].end |
136.83 |
transcript.whisperx[5].text |
那因為看到這個新聞我就想問然後結果我們現在只要翻開所有的文獻啊新聞啊去查一下美國的護理薪資的話真的是很嚇人現在美國的護理薪資是360萬台幣 |
transcript.whisperx[6].start |
138.826 |
transcript.whisperx[6].end |
155.879 |
transcript.whisperx[6].text |
所以很多我們台灣的其實在台灣念護理系的大學尤其是大護他們根本就不是要留在台灣的他們是想拿完學歷就去美國了那你有沒有一個配套措施去想一下我們的關稅已經這麼嚴謹了可是這個部分我們還是要解決 |
transcript.whisperx[7].start |
156.88 |
transcript.whisperx[7].end |
179.148 |
transcript.whisperx[7].text |
那你多没有人去帮他们想办法的话这个事情会雪上加霜每况愈下那我们再往下看其实就平均薪资来说我们看一下其实就40岁到50岁其实都还在190万将近200万的台币的水准那我们台湾其实大家都可想而知然后我们就OECD来看这个排列的话 |
transcript.whisperx[8].start |
179.788 |
transcript.whisperx[8].end |
202.825 |
transcript.whisperx[8].text |
盧森堡300萬台幣然後我們到看最後大概中間數我們跟我們台灣比較接近的供應制度的因果是140萬台幣下一頁再下一頁日本的話的起薪大概是在54萬台幣然後大概如果是做了24年的話大概150萬左右的水準那韓國 |
transcript.whisperx[9].start |
206.658 |
transcript.whisperx[9].end |
222.164 |
transcript.whisperx[9].text |
韓國的話大概是140萬左右這是他們的預期大概2030年我們也是預期這樣所以我想知道到底下一張我們的預期是差不多150萬2030年的時候現在是大概50幾萬60萬台幣的水準這個水準應該是衛福部公告上去國外才會做這樣的一個所謂的推測 |
transcript.whisperx[10].start |
230.307 |
transcript.whisperx[10].end |
240.204 |
transcript.whisperx[10].text |
那我想說你們是有一定的一個步驟還是說你們有配套措施讓我們護理人員以後有得到這麼多的錢嗎怎麼國外可以得到我們這一個預測呢 |
transcript.whisperx[11].start |
242.489 |
transcript.whisperx[11].end |
265.1 |
transcript.whisperx[11].text |
謝謝委員的催省 我先幾點回報告第一個 護理系的一個資源那個是 核定是教育部那這個部分教育部有他的一個資源或者由護理的教育的專家們他們去評估可是就我們在野黨的理解會說因為台東大學在台東縣 |
transcript.whisperx[12].start |
266.361 |
transcript.whisperx[12].end |
280.441 |
transcript.whisperx[12].text |
會不會加惠了那邊的人那就故意不讓他通過因為那邊的人會去念台東大學的可能都是台東的原住民那就故意不讓他通過會不會有這方面的疑慮我們很希望當地的大學都是當地的 |
transcript.whisperx[13].start |
282.543 |
transcript.whisperx[13].end |
303.74 |
transcript.whisperx[13].text |
因為他沒有通過的話大家就會這樣想如果能夠在那邊唸我相信在那邊生根的機會會大很多啦所以有的時候要適時的解釋第二個就是有關於護理薪資的問題真的我們這幾年來用了多少策略希望把從 |
transcript.whisperx[14].start |
305.001 |
transcript.whisperx[14].end |
329.731 |
transcript.whisperx[14].text |
護理工作的工作環境的改善那當然薪資其實牽涉的到比較多但是我們說因為我們要鼓勵護理人員的留任或者鼓勵他們的辛苦所給的不管是健保多家的給付其實我們的健保署都很要求包括我們夜班的包括我們三班戶並比的這些獎勵 |
transcript.whisperx[15].start |
334.912 |
transcript.whisperx[15].end |
359.236 |
transcript.whisperx[15].text |
那另外剛剛有提到說其實原來我們在兩三年前曾經在趙復師在有一個網站就讓各個醫院所有的醫院幾百家醫院通通把他們的護理人員薪資弄在上面那只是他們醫院的真實的去呈現那中位數或者是一個呈現那讓大家覺得好像跟事實上有 |
transcript.whisperx[16].start |
359.696 |
transcript.whisperx[16].end |
376.268 |
transcript.whisperx[16].text |
其實為什麼我會提但是那個是醫院真的他很真實的因為時間的關係我的意思就是說因為600億昨天應該是可以去爭取的那我想說那麼多人加班為了這個颱風很多醫護人員都是所以其實這個時候應該去幫他們爭取一點藍區來講藍區的分組他們有做這方面的討論有給他們那個 |
transcript.whisperx[17].start |
384.974 |
transcript.whisperx[17].end |
412.754 |
transcript.whisperx[17].text |
有給他們鼓勵跟一些相關的一個措施我是希望因為部長來自嘉義科來自基層有的時候多放一點心思在偏鄉地區我們很重視偏鄉我們還有一點時間談一下防災任性其實我們不想塑造英雄可是每次有颱風就會看到很多英雄那這些英雄產生的原因就是因為我們國家的不努力國家的怠惰一而再再而上的發生我們烏台鄉鄉長永度那個 |
transcript.whisperx[18].start |
413.394 |
transcript.whisperx[18].end |
427.983 |
transcript.whisperx[18].text |
那個野蜥 這個其實是非常危險的事情然後納瑪夏 它可以通的路可能只有到甲鮮要走路要走一天才會到最遠的部落 達嘎諾然後這個桃園 他們要送藥到對面是用流籠 |
transcript.whisperx[19].start |
429.324 |
transcript.whisperx[19].end |
457.011 |
transcript.whisperx[19].text |
就是我們平常送農產品的流籠送過去我的意思就是說明明我們就有無人機團隊然後我們也有所謂的防災任性的計畫衛福部也有一些經費其實可以用一個小組就是我們無人機小組如果是衛福部的話可能放在哪一個地方每次其實會發生這些事情的都是特定區域其實你可以提早佈建 |
transcript.whisperx[20].start |
457.791 |
transcript.whisperx[20].end |
473.75 |
transcript.whisperx[20].text |
就不會每次都有這麼厲害的事情發生會讓人家覺得如果你有去過現場你會覺得很不可思議這個鄉長可以過那個河流因為這不是一般人可以過的所以我相信 |
transcript.whisperx[21].start |
475.231 |
transcript.whisperx[21].end |
489.945 |
transcript.whisperx[21].text |
國人都在看然後不要每次的災害都是一樣重複發生那昨天我們比較偏遠的山地門鄉也發生了就是集體要要簽署的這個過程剛才我在主席台上他們還打電話來在哭說希望我們能夠在 |
transcript.whisperx[22].start |
490.565 |
transcript.whisperx[22].end |
519.765 |
transcript.whisperx[22].text |
跟我們專案單位說他們的處境是非常非常的辛苦所以我還是要請部長尤其是這個防災的部分還可以去多想一下微電網的設置我們在網路上面如果在颱風的時候要怎麼讓他暢通如果病人來就醫的話他至少可以上網去登打他的處方而不是又要等到災後以後才可以去登打已經過兩三天然後又被健保去勾結說這個不正常 |
transcript.whisperx[23].start |
520.425 |
transcript.whisperx[23].end |
527.314 |
transcript.whisperx[23].text |
所以一而再再發生這樣的事情的時候其實要想辦法早點來解決才會真正覺得國家有在努力好不好 |
transcript.whisperx[24].start |
527.779 |
transcript.whisperx[24].end |
554.133 |
transcript.whisperx[24].text |
好 薛委員我想補充報告一下就災害防變災防中心應變中心其實有針對這些問題都一直在討論那昨天三點半下午三點半賴總統也親自到災防中心那也非常關心這樣的一個尤其是偏鄉的一個這樣的狀況那我相信我們都非常那個從政府是非常注重到 |
transcript.whisperx[25].start |
555.653 |
transcript.whisperx[25].end |
577.044 |
transcript.whisperx[25].text |
這個各種災區像也那在討論的當中也特別提醒到無人機看看能不能再能夠更大的擴散他原來現在是一個沙盒那必須要克服一些困難那未來是不是能夠使用在這樣的情況我們非常樂意來發展來處理好我們期待明年可以完成好謝謝謝謝盧委員 |