iVOD / 163495

Field Value
IVOD_ID 163495
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/163495
日期 2025-08-14
會議資料.會議代碼 委員會-11-3-26-24
會議資料.會議代碼:str 第11屆第3會期社會福利及衛生環境委員會第24次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 24
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.標題 第11屆第3會期社會福利及衛生環境委員會第24次全體委員會議
影片種類 Clip
開始時間 2025-08-14T10:54:59+08:00
結束時間 2025-08-14T11:09:29+08:00
影片長度 00:14:30
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/3ced7f9f61571ec998816fa092bc8ebbbce7d2d90249eb2fcad52e77be0dc9cf250870e6442c78765ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 蘇清泉
委員發言時間 10:54:59 - 11:09:29
會議時間 2025-08-14T09:00:00+08:00
會議名稱 立法院第11屆第3會期社會福利及衛生環境委員會第24次全體委員會議(事由:邀請衛生福利部、經濟部、財政部就「美國針對進口藥品、原料藥課稅對我國產業造成影響」進行專題報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 3.74346875
transcript.pyannote[0].end 8.23221875
transcript.pyannote[1].speaker SPEAKER_03
transcript.pyannote[1].start 6.44346875
transcript.pyannote[1].end 7.77659375
transcript.pyannote[2].speaker SPEAKER_03
transcript.pyannote[2].start 8.23221875
transcript.pyannote[2].end 8.83971875
transcript.pyannote[3].speaker SPEAKER_02
transcript.pyannote[3].start 12.34971875
transcript.pyannote[3].end 14.13846875
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 14.44221875
transcript.pyannote[4].end 27.41909375
transcript.pyannote[5].speaker SPEAKER_03
transcript.pyannote[5].start 22.12034375
transcript.pyannote[5].end 22.30596875
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 28.04346875
transcript.pyannote[6].end 32.46471875
transcript.pyannote[7].speaker SPEAKER_02
transcript.pyannote[7].start 33.39284375
transcript.pyannote[7].end 39.09659375
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 39.67034375
transcript.pyannote[8].end 44.12534375
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 44.42909375
transcript.pyannote[9].end 51.48284375
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 51.97221875
transcript.pyannote[10].end 70.02846875
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 71.09159375
transcript.pyannote[11].end 73.74096875
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 74.46659375
transcript.pyannote[12].end 76.30596875
transcript.pyannote[13].speaker SPEAKER_03
transcript.pyannote[13].start 78.11159375
transcript.pyannote[13].end 90.46409375
transcript.pyannote[14].speaker SPEAKER_03
transcript.pyannote[14].start 90.97034375
transcript.pyannote[14].end 120.51846875
transcript.pyannote[15].speaker SPEAKER_03
transcript.pyannote[15].start 121.10909375
transcript.pyannote[15].end 137.69721875
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 137.03909375
transcript.pyannote[16].end 154.48784375
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 155.17971875
transcript.pyannote[17].end 156.54659375
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 156.98534375
transcript.pyannote[18].end 157.81221875
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 158.72346875
transcript.pyannote[19].end 166.43534375
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 167.12721875
transcript.pyannote[20].end 172.69596875
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 172.79721875
transcript.pyannote[21].end 180.28971875
transcript.pyannote[22].speaker SPEAKER_03
transcript.pyannote[22].start 181.11659375
transcript.pyannote[22].end 182.58471875
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 182.48346875
transcript.pyannote[23].end 191.44409375
transcript.pyannote[24].speaker SPEAKER_03
transcript.pyannote[24].start 191.42721875
transcript.pyannote[24].end 191.95034375
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 192.35534375
transcript.pyannote[25].end 194.11034375
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 194.98784375
transcript.pyannote[26].end 198.73409375
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 198.97034375
transcript.pyannote[27].end 200.92784375
transcript.pyannote[28].speaker SPEAKER_03
transcript.pyannote[28].start 201.87284375
transcript.pyannote[28].end 202.14284375
transcript.pyannote[29].speaker SPEAKER_03
transcript.pyannote[29].start 202.93596875
transcript.pyannote[29].end 223.11846875
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 222.35909375
transcript.pyannote[30].end 232.34909375
transcript.pyannote[31].speaker SPEAKER_03
transcript.pyannote[31].start 232.38284375
transcript.pyannote[31].end 234.54284375
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 233.98596875
transcript.pyannote[32].end 239.18346875
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 239.85846875
transcript.pyannote[33].end 243.50346875
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 243.70596875
transcript.pyannote[34].end 244.21221875
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 244.54971875
transcript.pyannote[35].end 245.51159375
transcript.pyannote[36].speaker SPEAKER_03
transcript.pyannote[36].start 245.54534375
transcript.pyannote[36].end 256.78409375
transcript.pyannote[37].speaker SPEAKER_03
transcript.pyannote[37].start 256.85159375
transcript.pyannote[37].end 256.86846875
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 257.25659375
transcript.pyannote[38].end 258.11721875
transcript.pyannote[39].speaker SPEAKER_03
transcript.pyannote[39].start 258.11721875
transcript.pyannote[39].end 258.45471875
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 258.62346875
transcript.pyannote[40].end 264.71534375
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 265.27221875
transcript.pyannote[41].end 265.86284375
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 265.89659375
transcript.pyannote[42].end 267.22971875
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 267.71909375
transcript.pyannote[43].end 269.27159375
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 269.42346875
transcript.pyannote[44].end 274.48596875
transcript.pyannote[45].speaker SPEAKER_03
transcript.pyannote[45].start 271.33034375
transcript.pyannote[45].end 271.95471875
transcript.pyannote[46].speaker SPEAKER_03
transcript.pyannote[46].start 274.19909375
transcript.pyannote[46].end 274.95846875
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 274.77284375
transcript.pyannote[47].end 275.29596875
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 275.59971875
transcript.pyannote[48].end 280.00409375
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 289.92659375
transcript.pyannote[49].end 298.51596875
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 301.24971875
transcript.pyannote[50].end 304.15221875
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 304.30409375
transcript.pyannote[51].end 304.91159375
transcript.pyannote[52].speaker SPEAKER_02
transcript.pyannote[52].start 306.21096875
transcript.pyannote[52].end 306.81846875
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 306.81846875
transcript.pyannote[53].end 307.05471875
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 308.11784375
transcript.pyannote[54].end 308.50596875
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 309.09659375
transcript.pyannote[55].end 310.66596875
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 311.81346875
transcript.pyannote[56].end 312.58971875
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 313.09596875
transcript.pyannote[57].end 318.27659375
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 318.88409375
transcript.pyannote[58].end 320.80784375
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 321.66846875
transcript.pyannote[59].end 331.62471875
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 331.74284375
transcript.pyannote[60].end 333.14346875
transcript.pyannote[61].speaker SPEAKER_02
transcript.pyannote[61].start 333.39659375
transcript.pyannote[61].end 345.00659375
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 345.96846875
transcript.pyannote[62].end 348.12846875
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 349.39409375
transcript.pyannote[63].end 349.81596875
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 350.23784375
transcript.pyannote[64].end 351.33471875
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 352.17846875
transcript.pyannote[65].end 357.13971875
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 357.35909375
transcript.pyannote[66].end 358.11846875
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 358.45596875
transcript.pyannote[67].end 406.78596875
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 407.25846875
transcript.pyannote[68].end 417.29909375
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 417.63659375
transcript.pyannote[69].end 428.75721875
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 426.36096875
transcript.pyannote[70].end 428.58846875
transcript.pyannote[71].speaker SPEAKER_02
transcript.pyannote[71].start 428.60534375
transcript.pyannote[71].end 428.67284375
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 428.70659375
transcript.pyannote[72].end 434.30909375
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 434.68034375
transcript.pyannote[73].end 435.37221875
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 436.19909375
transcript.pyannote[74].end 439.21971875
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 439.77659375
transcript.pyannote[75].end 441.16034375
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 441.41346875
transcript.pyannote[76].end 450.39096875
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 450.74534375
transcript.pyannote[77].end 452.48346875
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 453.07409375
transcript.pyannote[78].end 456.36471875
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 456.87096875
transcript.pyannote[79].end 458.57534375
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 459.09846875
transcript.pyannote[80].end 460.02659375
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 460.70159375
transcript.pyannote[81].end 469.72971875
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 470.35409375
transcript.pyannote[82].end 472.69971875
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 473.27346875
transcript.pyannote[83].end 474.53909375
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 475.06221875
transcript.pyannote[84].end 476.09159375
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 477.22221875
transcript.pyannote[85].end 478.23471875
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 479.36534375
transcript.pyannote[86].end 483.24659375
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 483.90471875
transcript.pyannote[87].end 484.96784375
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 485.72721875
transcript.pyannote[88].end 489.00096875
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 490.11471875
transcript.pyannote[89].end 491.41409375
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 491.54909375
transcript.pyannote[90].end 494.99159375
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 495.93659375
transcript.pyannote[91].end 497.72534375
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 499.00784375
transcript.pyannote[92].end 500.42534375
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 500.89784375
transcript.pyannote[93].end 502.60221875
transcript.pyannote[94].speaker SPEAKER_02
transcript.pyannote[94].start 503.14221875
transcript.pyannote[94].end 504.69471875
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 505.74096875
transcript.pyannote[95].end 507.12471875
transcript.pyannote[96].speaker SPEAKER_02
transcript.pyannote[96].start 507.63096875
transcript.pyannote[96].end 508.42409375
transcript.pyannote[97].speaker SPEAKER_02
transcript.pyannote[97].start 509.77409375
transcript.pyannote[97].end 513.36846875
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 513.94221875
transcript.pyannote[98].end 516.00096875
transcript.pyannote[99].speaker SPEAKER_03
transcript.pyannote[99].start 515.56221875
transcript.pyannote[99].end 515.59596875
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 517.55346875
transcript.pyannote[100].end 522.63284375
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 522.97034375
transcript.pyannote[101].end 538.96784375
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 539.49096875
transcript.pyannote[102].end 544.80659375
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 545.00909375
transcript.pyannote[103].end 548.18159375
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 548.43471875
transcript.pyannote[104].end 553.96971875
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 554.18909375
transcript.pyannote[105].end 558.79596875
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 559.57221875
transcript.pyannote[106].end 563.16659375
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 563.75721875
transcript.pyannote[107].end 569.37659375
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 569.86596875
transcript.pyannote[108].end 576.04221875
transcript.pyannote[109].speaker SPEAKER_02
transcript.pyannote[109].start 576.71721875
transcript.pyannote[109].end 577.81409375
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 578.62409375
transcript.pyannote[110].end 582.77534375
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 582.97784375
transcript.pyannote[111].end 583.02846875
transcript.pyannote[112].speaker SPEAKER_02
transcript.pyannote[112].start 583.11284375
transcript.pyannote[112].end 588.52971875
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 590.16659375
transcript.pyannote[113].end 592.00596875
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 592.64721875
transcript.pyannote[114].end 599.97096875
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 600.89909375
transcript.pyannote[115].end 601.65846875
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 602.99159375
transcript.pyannote[116].end 606.65346875
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 607.37909375
transcript.pyannote[117].end 616.77846875
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 618.14534375
transcript.pyannote[118].end 618.46596875
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 618.95534375
transcript.pyannote[119].end 620.33909375
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 621.16596875
transcript.pyannote[120].end 627.59534375
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 627.91596875
transcript.pyannote[121].end 639.01971875
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 639.52596875
transcript.pyannote[122].end 642.74909375
transcript.pyannote[123].speaker SPEAKER_01
transcript.pyannote[123].start 642.86721875
transcript.pyannote[123].end 694.84221875
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 695.21346875
transcript.pyannote[124].end 698.84159375
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 698.43659375
transcript.pyannote[125].end 703.36409375
transcript.pyannote[126].speaker SPEAKER_02
transcript.pyannote[126].start 703.66784375
transcript.pyannote[126].end 711.70034375
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 712.71284375
transcript.pyannote[127].end 713.20221875
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 713.97846875
transcript.pyannote[128].end 719.39534375
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 718.43346875
transcript.pyannote[129].end 729.48659375
transcript.pyannote[130].speaker SPEAKER_02
transcript.pyannote[130].start 729.63846875
transcript.pyannote[130].end 730.93784375
transcript.pyannote[131].speaker SPEAKER_01
transcript.pyannote[131].start 730.33034375
transcript.pyannote[131].end 765.59909375
transcript.pyannote[132].speaker SPEAKER_02
transcript.pyannote[132].start 764.41784375
transcript.pyannote[132].end 778.96409375
transcript.pyannote[133].speaker SPEAKER_01
transcript.pyannote[133].start 779.60534375
transcript.pyannote[133].end 783.21659375
transcript.pyannote[134].speaker SPEAKER_02
transcript.pyannote[134].start 783.21659375
transcript.pyannote[134].end 786.57471875
transcript.pyannote[135].speaker SPEAKER_02
transcript.pyannote[135].start 787.11471875
transcript.pyannote[135].end 788.32971875
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 787.23284375
transcript.pyannote[136].end 787.26659375
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 787.26659375
transcript.pyannote[137].end 787.35096875
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 787.35096875
transcript.pyannote[138].end 787.38471875
transcript.pyannote[139].speaker SPEAKER_02
transcript.pyannote[139].start 788.51534375
transcript.pyannote[139].end 791.75534375
transcript.pyannote[140].speaker SPEAKER_02
transcript.pyannote[140].start 792.17721875
transcript.pyannote[140].end 797.25659375
transcript.pyannote[141].speaker SPEAKER_02
transcript.pyannote[141].start 797.81346875
transcript.pyannote[141].end 798.52221875
transcript.pyannote[142].speaker SPEAKER_02
transcript.pyannote[142].start 799.28159375
transcript.pyannote[142].end 805.37346875
transcript.pyannote[143].speaker SPEAKER_02
transcript.pyannote[143].start 805.62659375
transcript.pyannote[143].end 807.75284375
transcript.pyannote[144].speaker SPEAKER_02
transcript.pyannote[144].start 808.37721875
transcript.pyannote[144].end 809.60909375
transcript.pyannote[145].speaker SPEAKER_02
transcript.pyannote[145].start 810.03096875
transcript.pyannote[145].end 822.19784375
transcript.pyannote[146].speaker SPEAKER_02
transcript.pyannote[146].start 822.67034375
transcript.pyannote[146].end 827.73284375
transcript.pyannote[147].speaker SPEAKER_02
transcript.pyannote[147].start 828.39096875
transcript.pyannote[147].end 832.79534375
transcript.pyannote[148].speaker SPEAKER_02
transcript.pyannote[148].start 833.08221875
transcript.pyannote[148].end 840.86159375
transcript.pyannote[149].speaker SPEAKER_02
transcript.pyannote[149].start 841.45221875
transcript.pyannote[149].end 846.17721875
transcript.pyannote[150].speaker SPEAKER_02
transcript.pyannote[150].start 846.58221875
transcript.pyannote[150].end 848.23596875
transcript.pyannote[151].speaker SPEAKER_01
transcript.pyannote[151].start 848.42159375
transcript.pyannote[151].end 865.80284375
transcript.pyannote[152].speaker SPEAKER_02
transcript.pyannote[152].start 865.80284375
transcript.pyannote[152].end 865.97159375
transcript.pyannote[153].speaker SPEAKER_01
transcript.pyannote[153].start 865.81971875
transcript.pyannote[153].end 867.37221875
transcript.pyannote[154].speaker SPEAKER_00
transcript.pyannote[154].start 865.97159375
transcript.pyannote[154].end 866.17409375
transcript.pyannote[155].speaker SPEAKER_02
transcript.pyannote[155].start 866.17409375
transcript.pyannote[155].end 866.25846875
transcript.pyannote[156].speaker SPEAKER_03
transcript.pyannote[156].start 866.71409375
transcript.pyannote[156].end 866.74784375
transcript.pyannote[157].speaker SPEAKER_02
transcript.pyannote[157].start 866.84909375
transcript.pyannote[157].end 866.93346875
transcript.pyannote[158].speaker SPEAKER_03
transcript.pyannote[158].start 866.93346875
transcript.pyannote[158].end 866.96721875
transcript.pyannote[159].speaker SPEAKER_02
transcript.pyannote[159].start 866.96721875
transcript.pyannote[159].end 867.00096875
transcript.pyannote[160].speaker SPEAKER_03
transcript.pyannote[160].start 867.00096875
transcript.pyannote[160].end 867.25409375
transcript.pyannote[161].speaker SPEAKER_00
transcript.pyannote[161].start 867.25409375
transcript.pyannote[161].end 867.32159375
transcript.pyannote[162].speaker SPEAKER_03
transcript.pyannote[162].start 867.32159375
transcript.pyannote[162].end 867.74346875
transcript.pyannote[163].speaker SPEAKER_00
transcript.pyannote[163].start 867.37221875
transcript.pyannote[163].end 868.58721875
transcript.whisperx[0].start 4.332
transcript.whisperx[0].end 29.899
transcript.whisperx[0].text 謝謝主席 請邱部長還有石崇亮署長指揮好 好 謝謝柏中我兩天前在那個大宴會那邊質詢因為時間有限因為風災的特別條例明天要三度那費用本來是560億現在真的要提高到600億了
transcript.whisperx[1].start 33.707
transcript.whisperx[1].end 46.078
transcript.whisperx[1].text 我特別提到醫療院所如果有受損的或者是一些病人就醫的補助我再次強調的是
transcript.whisperx[2].start 48.099
transcript.whisperx[2].end 75.948
transcript.whisperx[2].text 醫療人員在那幾天在那一班的可以比照 COVID-19 按個人讓他們補起來 給他們獎勵一下這是最高的不然他們家裡的都是受災婦就像八八風災的時候我們召回醫生那幾個房子 他們的房子都暈眩了那時代就大家在那裡打拚現在這件事也很感動所以老爸你有沒有分到多少
transcript.whisperx[3].start 79.132
transcript.whisperx[3].end 99.546
transcript.whisperx[3].text 報告委員在風災跟或者是雨災引起的災情其實對我們非常感謝我們第一線的醫療院所的團隊還是依然在崗位上鞦韆來照顧病人像這個部分
transcript.whisperx[4].start 100.806
transcript.whisperx[4].end 119.694
transcript.whisperx[4].text 我們值得肯定但是當然一切都要以安全為第一優先那第二個就是說再分幾個方面我們在第一時間也請健保署相關的部門能夠第一個照顧災民那當然有災民包括他就醫怎麼樣來
transcript.whisperx[5].start 121.355
transcript.whisperx[5].end 149.48
transcript.whisperx[5].text 給他更方便然後給他來協助他的負擔減輕他的負擔那在醫療院所的方面如果有受到相關的損傷的話那當然我們也會我意思是說現在就提高到600了你剛才在說健保幫我們做的你用健保的保留款或是健保裡面一些特別專案的拿來補助那個我們
transcript.whisperx[6].start 150.66
transcript.whisperx[6].end 178.239
transcript.whisperx[6].text 就是講這要公務一生 你也要幾天要去警署來預祝啊這要像 我講英文 英文我便宜小弟不可以笑成那樣子但是你就要撥到到位就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就就
transcript.whisperx[7].start 181.552
transcript.whisperx[7].end 187.575
transcript.whisperx[7].text 這個我們一定會照顧你特別 關稅特別一算五千多就刪除過了那你有清楚就有兩百元嘛有兩百元嘛對不對是是是這樣請救啦再多少去歐國那些衛生護理部這麼大還要啊 現在有什麼什麼
transcript.whisperx[8].start 203.13
transcript.whisperx[8].end 223.969
transcript.whisperx[8].text 對 當然我們預算是需要去幫忙我們一定要去協助 需要照顧一定要去照顧中間所需要的預算當然有各種來源那一定不管是從部分會從健保方面的一個來它本身就有它一定的預算在那邊可不可以說衛生署 醫療醫護署 那些衛生署受損的
transcript.whisperx[9].start 228.112
transcript.whisperx[9].end 242.476
transcript.whisperx[9].text 也要用一些公務預算給人家補助啦不然的話讓他趕快復原嘛好 這個我們會來現在也納入高雄 屏東陳其邁也在發聲屏東我也在發聲所以這個既然有特別條例不夠在編嘛 對不對
transcript.whisperx[10].start 245.598
transcript.whisperx[10].end 264.256
transcript.whisperx[10].text 我們一直有在評估醫院或診所以及衛生所謝謝委員對偏向衛生所的一個關心他的受損狀況我們都有掌握我有掌握我很肯定部長跟署長跟南區健保大家都很怕病
transcript.whisperx[11].start 267.779
transcript.whisperx[11].end 278.4
transcript.whisperx[11].text 把你撐住了 抱抱了繼續啦這不是說最好但是要繼續努力嘛是的 是的好 那我們請石耀署還有我們經濟部
transcript.whisperx[12].start 289.966
transcript.whisperx[12].end 302.695
transcript.whisperx[12].text 我請教我們台灣一年一年製藥產業的產值才1196億然後我們的藥廠有300多家100?平均一間就做3億所以我的質疑是因為我認識的藥廠很多都是有
transcript.whisperx[13].start 319.816
transcript.whisperx[13].end 328.559
transcript.whisperx[13].text 藥證 但是它沒有在生產你委託 想說我有藥證 我有藥廠但是我是沒有在生產委託保定的藥廠給它生產不然經濟規模嘛 太小啦所以真的有在生產的藥廠是幾間我今天問的都比較親切你要問 我不知道要怎麼回答 我不清楚真的有在生產的藥廠幾間
transcript.whisperx[14].start 346.862
transcript.whisperx[14].end 362.352
transcript.whisperx[14].text 這個我們在談這件事情就委員召委這邊特別提到了我們面對的是有藥症但是他有些是切結不生產一些目前不生產
transcript.whisperx[15].start 363.272
transcript.whisperx[15].end 387.866
transcript.whisperx[15].text 因為在藥品供應韌性上面我們希望能夠確確知道哪些是有生產所以我們同仁們最近非常積極地跟這些廠商在溝通能夠協助確確下來實際上能夠供應的才能夠把後面的韌性能夠建立起來所以這邊能夠進一步去做最後的盤查目前盤查已經有一定的進度在整體來講整體的確是140支家製劑廠30家的所謂原料藥廠
transcript.whisperx[16].start 392.389
transcript.whisperx[16].end 416.43
transcript.whisperx[16].text 我們的產值的確是剛好是三七億美金左右所以是千億那除起來很小所以我今年在三四月的時候跟學民藥的藥廠的溝通跟原料藥廠溝通裡面我特別提到國內的規模小必須要做協作因為在學民藥專利期過大家評估出來都是一樣的學民藥要再做所以網內互打變免費
transcript.whisperx[17].start 418.031
transcript.whisperx[17].end 438.006
transcript.whisperx[17].text 價位更低 造成他出口的時候的價格也被定得又更低所以必須要有一些所謂的介入跟輔導的所以目前有在學校幫忙的地方要落實管制啦 也要查好情緒你要查住了才要發因為他每一家都在生產溫室的
transcript.whisperx[18].start 440.128
transcript.whisperx[18].end 456.105
transcript.whisperx[18].text 產值那麼小幾億元然後要請一堆人那怎麼可能啦所以索索的看幾間有在做這才能掌握你要任性就是這樣啊對不對再來我問經財部這川普政府在要軟骨一牛要把藥給企業他藥啊
transcript.whisperx[19].start 461.202
transcript.whisperx[19].end 474.347
transcript.whisperx[19].text 他們進口的顏料藥跟進口的成品藥要蓋關稅蓋到250%負擔不足但是他的目的是什麼是要讓他有錢都回美國省省顏料都在美國省省這樣他還沒好他還沒笑鋼鐵也回去汽車也回去什麼都回去啊美國有那麼多人嗎美國人很噁心的很噁心的很噁心的
transcript.whisperx[20].start 490.408
transcript.whisperx[20].end 514.918
transcript.whisperx[20].text 懶到爆耶 我有親戚朋友從亞利桑那港回來他說那美國人瘦到半大已經這樣很歹毒 五點一覺東西扁扁的就下班了 台灣人起都下班了 到十點所以阿母都在扁扁的 現在最近回來 說很累了我說美國人 美國完全沒行
transcript.whisperx[21].start 517.732
transcript.whisperx[21].end 522.411
transcript.whisperx[21].text 所以川普的目的是什麼你給我說一下目的好了我覺得是外媒部的
transcript.whisperx[22].start 523.064
transcript.whisperx[22].end 552.556
transcript.whisperx[22].text 是跟委員報告基本上川普政府還是希望讓製造業回到美國生產但是您剛才所提到的一些疑慮其實跟我們國內的產業界跟世界上的一些學者其實看法是很接近的所以他能不能成功其實還是未定數不過他因為即使不成功他也可以從國外的這一些廠商把貨品賣進美國這些廠商獲得關稅的利益所以他可以把這些關稅利益做在美國政府內政的一些做一些政策
transcript.whisperx[23].start 552.956
transcript.whisperx[23].end 577.443
transcript.whisperx[23].text 的一些資用他們預估他這樣亂搞一通一年可以拿到3000億的關稅那這3000億的關稅我看有一半是美國人自己要付吧美國的消費者自己要付嘛那有可能人家出口去那些青雙雙都要自己吸收那就到了所以美國人自己也要負擔我想一半一定有的啦所以CPI就在起嘛那以後得到什麼
transcript.whisperx[24].start 579.066
transcript.whisperx[24].end 588.37
transcript.whisperx[24].text 我記得到最後一定是一團亂然後一場空啊有的就想要出口東西不一定我代表要人家偷竊就跟歐洲的差不多啊跟羅馬的偷竊差不多啊就是哪有這種政府這樣搞我們就要對他自己笑好 他的目的是要有美國的優惠 咳嗽如果是這樣應該他出口來我們台灣的優惠也不會棄價 要怎麼棄價
transcript.whisperx[25].start 607.435
transcript.whisperx[25].end 615.48
transcript.whisperx[25].text 我們如果買不到我們就來歐洲買來一本買一本以後也很先進的歐盟也很先進的以後我們就一定要向美國購買欸 江雙 我說我有理嗎
transcript.whisperx[26].start 621.209
transcript.whisperx[26].end 638.78
transcript.whisperx[26].text 我一直想不通我們跟他我們頭腦都那麼好的人去跟他一個瘋子在那邊怎麼搞周偉這邊講的我個人覺得是非常欽佩非常非常的精準在面對這個因為我們採購的範圍他關稅的單一他們的所謂的出口他們進口 我們出口
transcript.whisperx[27].start 639.6
transcript.whisperx[27].end 656.907
transcript.whisperx[27].text 那市場不是只有單一個美國的市場全面的市場在我們接下來的評估裡面現在蘇美的廠那些有限的會受到衝擊所以他們很快速在評估未來是要轉身去其他地方還是真的會到裡面去設廠
transcript.whisperx[28].start 658.027
transcript.whisperx[28].end 673.887
transcript.whisperx[28].text 還是說最後的條價negotiate如何去達到一個合理的利潤之下能夠存活下去目前我們在跟國內市特別是藥劑中心非常專業的做完評估之後大概是先是這樣有一部分是觀望有一部分是其實很大一部分是
transcript.whisperx[29].start 674.968
transcript.whisperx[29].end 694.394
transcript.whisperx[29].text 選擇要左右轉特別往歐盟 往北邊然後往東南亞的部分那國內的藥廠其實全部都是PIX GMP這麼嚴格的藥廠其實獲得的是世界的肯定所以在這個同時呢我們也希望國內的也一樣的肯定所以我們看到目前對於國內學名藥的一些支持
transcript.whisperx[30].start 695.427
transcript.whisperx[30].end 708.674
transcript.whisperx[30].text 也是我們現在食藥署在政策導引上面很重要的一個方向我們的顏料要85%都從印度 東歐大陸進口那如何強化我們的顏料要的製造商有40家嘛 有那麼多嗎我看 我知道有4間而已你告訴我40間
transcript.whisperx[31].start 714.025
transcript.whisperx[31].end 728.735
transcript.whisperx[31].text 我們現在手上是三十家啦大概二九三十幾的時候實際上有的生產我們部長我們的原料要直接做出來的原料要先煮比較高所以我們台灣的GMP藥廠不一定買得起所以他們做出來的都高多了
transcript.whisperx[32].start 729.836
transcript.whisperx[32].end 745.458
transcript.whisperx[32].text 對不對 是不是這樣我們有一個這個這個培南類的其實全世界供應都是台灣單一一個廠商供全球所以我們也有可以化醉更當的原料藥所以我們對於我們自己的品質的部分
transcript.whisperx[33].start 745.979
transcript.whisperx[33].end 770.274
transcript.whisperx[33].text 的確是只是說原料藥在整體的環境的評估的部分其實我們在韌性裡面也有在跨部會裡面去共同思考能夠讓這個所以原料藥的污染性相對高所以他必須另外一部分是需要做區域的性的一些整合所以這也是我們在做跨國區域性你的200億裡面要補助這些原料藥製造商強化他們的有沒有200億裡面有沒有要強化
transcript.whisperx[34].start 773.838
transcript.whisperx[34].end 778.493
transcript.whisperx[34].text 經濟部你如果要將來我們這裡有嗆啊本土的啊 玄密藥廠有沒有
transcript.whisperx[35].start 779.939
transcript.whisperx[35].end 804.294
transcript.whisperx[35].text 我們在計畫向下裡面其實這個都在規劃裡面我有提一個臨時提案是附加提案是二十億嘛是選民調協會請我幫忙提有加進去才會裁會會裡面啊我是 我是認為我們現在遇到川普政府會不會要睡覺說一天也許睡醒再說一天早上吃東西再說一天啊我們對他口口笑
transcript.whisperx[36].start 808.45
transcript.whisperx[36].end 814.771
transcript.whisperx[36].text 不需要這樣啦我們不變 硬要變 我們就慢慢來我們要怎麼強化我們的原料藥學名藥廠要怎麼強化健保署看要怎麼強化看要給一聲 給兩聲 給三聲 對嗎不然真的多 時裝人真的多你想說你沒有強化這樣這很死耶 保證這比較重要啦 醫療本身大家都很怕命
transcript.whisperx[37].start 833.5
transcript.whisperx[37].end 840.584
transcript.whisperx[37].text 醫療院所所有的醫護人員啊所有藥廠的人都戰戰兢兢啊台灣的這些人的素質小到好的這都要聽哨啦真的啊公務員也要聽哨啦不可以跟人家打招呼啦我都跟人家鼓勵真的要堅定啦
transcript.whisperx[38].start 848.923
transcript.whisperx[38].end 868.022
transcript.whisperx[38].text 這報告委員一下 其實針對原料藥以及所謂製劑的部分 甚至醫材的部分 我們在特別的計畫向下是非常努力的 其實有編列 這邊就讓我們就是努力的去做 然後未來有些成績能夠跟大家做一些些報告 以上好 好 謝謝 謝謝這幾天委員的發言