iVOD / 163485

Field Value
IVOD_ID 163485
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/163485
日期 2025-08-14
會議資料.會議代碼 委員會-11-3-26-24
會議資料.會議代碼:str 第11屆第3會期社會福利及衛生環境委員會第24次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 24
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.標題 第11屆第3會期社會福利及衛生環境委員會第24次全體委員會議
影片種類 Clip
開始時間 2025-08-14T10:01:28+08:00
結束時間 2025-08-14T10:13:01+08:00
影片長度 00:11:33
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/3ced7f9f61571ec9111463f4f60f9400bce7d2d90249eb2f9ae818901e71e46db20d4d170e3d7e975ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 邱鎮軍
委員發言時間 10:01:28 - 10:13:01
會議時間 2025-08-14T09:00:00+08:00
會議名稱 立法院第11屆第3會期社會福利及衛生環境委員會第24次全體委員會議(事由:邀請衛生福利部、經濟部、財政部就「美國針對進口藥品、原料藥課稅對我國產業造成影響」進行專題報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_03
transcript.pyannote[0].start 0.03096875
transcript.pyannote[0].end 0.48659375
transcript.pyannote[1].speaker SPEAKER_03
transcript.pyannote[1].start 3.72659375
transcript.pyannote[1].end 9.21096875
transcript.pyannote[2].speaker SPEAKER_03
transcript.pyannote[2].start 14.44221875
transcript.pyannote[2].end 61.82721875
transcript.pyannote[3].speaker SPEAKER_02
transcript.pyannote[3].start 63.17721875
transcript.pyannote[3].end 63.46409375
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 63.70034375
transcript.pyannote[4].end 64.24034375
transcript.pyannote[5].speaker SPEAKER_03
transcript.pyannote[5].start 64.24034375
transcript.pyannote[5].end 64.37534375
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 64.37534375
transcript.pyannote[6].end 64.47659375
transcript.pyannote[7].speaker SPEAKER_03
transcript.pyannote[7].start 64.47659375
transcript.pyannote[7].end 64.54409375
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 64.54409375
transcript.pyannote[8].end 64.57784375
transcript.pyannote[9].speaker SPEAKER_03
transcript.pyannote[9].start 64.57784375
transcript.pyannote[9].end 66.06284375
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 66.46784375
transcript.pyannote[10].end 86.14409375
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 86.29596875
transcript.pyannote[11].end 86.31284375
transcript.pyannote[12].speaker SPEAKER_03
transcript.pyannote[12].start 86.31284375
transcript.pyannote[12].end 91.25721875
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 86.34659375
transcript.pyannote[13].end 86.98784375
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 91.74659375
transcript.pyannote[14].end 92.15159375
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 92.65784375
transcript.pyannote[15].end 99.05346875
transcript.pyannote[16].speaker SPEAKER_03
transcript.pyannote[16].start 97.39971875
transcript.pyannote[16].end 116.24909375
transcript.pyannote[17].speaker SPEAKER_03
transcript.pyannote[17].start 116.77221875
transcript.pyannote[17].end 117.19409375
transcript.pyannote[18].speaker SPEAKER_03
transcript.pyannote[18].start 117.85221875
transcript.pyannote[18].end 118.59471875
transcript.pyannote[19].speaker SPEAKER_03
transcript.pyannote[19].start 118.72971875
transcript.pyannote[19].end 126.49221875
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 129.36096875
transcript.pyannote[20].end 129.56346875
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 130.47471875
transcript.pyannote[21].end 131.03159375
transcript.pyannote[22].speaker SPEAKER_03
transcript.pyannote[22].start 131.80784375
transcript.pyannote[22].end 131.84159375
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 131.84159375
transcript.pyannote[23].end 131.85846875
transcript.pyannote[24].speaker SPEAKER_03
transcript.pyannote[24].start 131.85846875
transcript.pyannote[24].end 131.87534375
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 131.87534375
transcript.pyannote[25].end 131.97659375
transcript.pyannote[26].speaker SPEAKER_03
transcript.pyannote[26].start 131.97659375
transcript.pyannote[26].end 134.55846875
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 134.55846875
transcript.pyannote[27].end 135.16596875
transcript.pyannote[28].speaker SPEAKER_03
transcript.pyannote[28].start 135.16596875
transcript.pyannote[28].end 135.31784375
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 135.31784375
transcript.pyannote[29].end 135.41909375
transcript.pyannote[30].speaker SPEAKER_03
transcript.pyannote[30].start 135.41909375
transcript.pyannote[30].end 135.46971875
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 135.46971875
transcript.pyannote[31].end 136.04346875
transcript.pyannote[32].speaker SPEAKER_03
transcript.pyannote[32].start 136.04346875
transcript.pyannote[32].end 164.24159375
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 136.16159375
transcript.pyannote[33].end 137.61284375
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 164.24159375
transcript.pyannote[34].end 164.42721875
transcript.pyannote[35].speaker SPEAKER_03
transcript.pyannote[35].start 164.73096875
transcript.pyannote[35].end 164.96721875
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 164.96721875
transcript.pyannote[36].end 185.41971875
transcript.pyannote[37].speaker SPEAKER_03
transcript.pyannote[37].start 182.78721875
transcript.pyannote[37].end 183.14159375
transcript.pyannote[38].speaker SPEAKER_03
transcript.pyannote[38].start 184.77846875
transcript.pyannote[38].end 191.07284375
transcript.pyannote[39].speaker SPEAKER_03
transcript.pyannote[39].start 191.19096875
transcript.pyannote[39].end 196.97909375
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 191.34284375
transcript.pyannote[40].end 192.72659375
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 195.94971875
transcript.pyannote[41].end 219.27096875
transcript.pyannote[42].speaker SPEAKER_03
transcript.pyannote[42].start 205.39971875
transcript.pyannote[42].end 205.63596875
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 205.63596875
transcript.pyannote[43].end 205.66971875
transcript.pyannote[44].speaker SPEAKER_03
transcript.pyannote[44].start 215.74409375
transcript.pyannote[44].end 220.03034375
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 219.38909375
transcript.pyannote[45].end 219.42284375
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 219.72659375
transcript.pyannote[46].end 230.83034375
transcript.pyannote[47].speaker SPEAKER_03
transcript.pyannote[47].start 229.59846875
transcript.pyannote[47].end 230.81346875
transcript.pyannote[48].speaker SPEAKER_03
transcript.pyannote[48].start 230.83034375
transcript.pyannote[48].end 230.84721875
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 231.08346875
transcript.pyannote[49].end 240.68534375
transcript.pyannote[50].speaker SPEAKER_03
transcript.pyannote[50].start 238.10346875
transcript.pyannote[50].end 238.45784375
transcript.pyannote[51].speaker SPEAKER_03
transcript.pyannote[51].start 240.38159375
transcript.pyannote[51].end 272.47784375
transcript.pyannote[52].speaker SPEAKER_03
transcript.pyannote[52].start 272.52846875
transcript.pyannote[52].end 275.71784375
transcript.pyannote[53].speaker SPEAKER_03
transcript.pyannote[53].start 276.54471875
transcript.pyannote[53].end 279.86909375
transcript.pyannote[54].speaker SPEAKER_03
transcript.pyannote[54].start 280.51034375
transcript.pyannote[54].end 280.84784375
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 281.53971875
transcript.pyannote[55].end 336.97409375
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 308.86034375
transcript.pyannote[56].end 308.99534375
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 309.07971875
transcript.pyannote[57].end 309.11346875
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 309.11346875
transcript.pyannote[58].end 309.16409375
transcript.pyannote[59].speaker SPEAKER_03
transcript.pyannote[59].start 334.76346875
transcript.pyannote[59].end 335.40471875
transcript.pyannote[60].speaker SPEAKER_03
transcript.pyannote[60].start 336.45096875
transcript.pyannote[60].end 342.15471875
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 338.27346875
transcript.pyannote[61].end 338.77971875
transcript.pyannote[62].speaker SPEAKER_03
transcript.pyannote[62].start 343.18409375
transcript.pyannote[62].end 346.82909375
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 346.89659375
transcript.pyannote[63].end 347.65596875
transcript.pyannote[64].speaker SPEAKER_03
transcript.pyannote[64].start 347.18346875
transcript.pyannote[64].end 349.49534375
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 349.66409375
transcript.pyannote[65].end 370.21784375
transcript.pyannote[66].speaker SPEAKER_03
transcript.pyannote[66].start 370.23471875
transcript.pyannote[66].end 377.22096875
transcript.pyannote[67].speaker SPEAKER_03
transcript.pyannote[67].start 378.26721875
transcript.pyannote[67].end 379.88721875
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 380.34284375
transcript.pyannote[68].end 382.55346875
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 382.55346875
transcript.pyannote[69].end 382.57034375
transcript.pyannote[70].speaker SPEAKER_03
transcript.pyannote[70].start 382.97534375
transcript.pyannote[70].end 385.84409375
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 385.89471875
transcript.pyannote[71].end 415.71284375
transcript.pyannote[72].speaker SPEAKER_03
transcript.pyannote[72].start 415.71284375
transcript.pyannote[72].end 426.36096875
transcript.pyannote[73].speaker SPEAKER_03
transcript.pyannote[73].start 426.58034375
transcript.pyannote[73].end 431.49096875
transcript.pyannote[74].speaker SPEAKER_03
transcript.pyannote[74].start 431.86221875
transcript.pyannote[74].end 437.38034375
transcript.pyannote[75].speaker SPEAKER_03
transcript.pyannote[75].start 437.71784375
transcript.pyannote[75].end 439.32096875
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 438.13971875
transcript.pyannote[76].end 438.40971875
transcript.pyannote[77].speaker SPEAKER_03
transcript.pyannote[77].start 439.50659375
transcript.pyannote[77].end 447.84284375
transcript.pyannote[78].speaker SPEAKER_03
transcript.pyannote[78].start 450.59346875
transcript.pyannote[78].end 451.04909375
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 451.04909375
transcript.pyannote[79].end 452.04471875
transcript.pyannote[80].speaker SPEAKER_03
transcript.pyannote[80].start 452.04471875
transcript.pyannote[80].end 473.23971875
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 452.11221875
transcript.pyannote[81].end 452.41596875
transcript.pyannote[82].speaker SPEAKER_03
transcript.pyannote[82].start 473.50971875
transcript.pyannote[82].end 474.75846875
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 475.53471875
transcript.pyannote[83].end 480.19221875
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 480.76596875
transcript.pyannote[84].end 482.16659375
transcript.pyannote[85].speaker SPEAKER_03
transcript.pyannote[85].start 482.16659375
transcript.pyannote[85].end 482.58846875
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 482.18346875
transcript.pyannote[86].end 482.53784375
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 482.58846875
transcript.pyannote[87].end 482.62221875
transcript.pyannote[88].speaker SPEAKER_03
transcript.pyannote[88].start 482.62221875
transcript.pyannote[88].end 482.97659375
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 484.57971875
transcript.pyannote[89].end 485.25471875
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 486.08159375
transcript.pyannote[90].end 487.04346875
transcript.pyannote[91].speaker SPEAKER_03
transcript.pyannote[91].start 486.92534375
transcript.pyannote[91].end 488.98409375
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 488.98409375
transcript.pyannote[92].end 491.90346875
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 492.25784375
transcript.pyannote[93].end 495.80159375
transcript.pyannote[94].speaker SPEAKER_03
transcript.pyannote[94].start 493.03409375
transcript.pyannote[94].end 516.47346875
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 496.93221875
transcript.pyannote[95].end 499.69971875
transcript.pyannote[96].speaker SPEAKER_03
transcript.pyannote[96].start 517.51971875
transcript.pyannote[96].end 532.11659375
transcript.pyannote[97].speaker SPEAKER_02
transcript.pyannote[97].start 532.85909375
transcript.pyannote[97].end 533.26409375
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 533.55096875
transcript.pyannote[98].end 534.42846875
transcript.pyannote[99].speaker SPEAKER_03
transcript.pyannote[99].start 535.15409375
transcript.pyannote[99].end 535.69409375
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 535.69409375
transcript.pyannote[100].end 546.00471875
transcript.pyannote[101].speaker SPEAKER_03
transcript.pyannote[101].start 546.00471875
transcript.pyannote[101].end 546.49409375
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 546.49409375
transcript.pyannote[102].end 550.94909375
transcript.pyannote[103].speaker SPEAKER_03
transcript.pyannote[103].start 546.61221875
transcript.pyannote[103].end 546.89909375
transcript.pyannote[104].speaker SPEAKER_03
transcript.pyannote[104].start 550.27409375
transcript.pyannote[104].end 553.02471875
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 551.84346875
transcript.pyannote[105].end 570.50721875
transcript.pyannote[106].speaker SPEAKER_03
transcript.pyannote[106].start 561.02346875
transcript.pyannote[106].end 565.32659375
transcript.pyannote[107].speaker SPEAKER_03
transcript.pyannote[107].start 570.50721875
transcript.pyannote[107].end 572.31284375
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 570.91221875
transcript.pyannote[108].end 575.08034375
transcript.pyannote[109].speaker SPEAKER_03
transcript.pyannote[109].start 574.47284375
transcript.pyannote[109].end 576.83534375
transcript.pyannote[110].speaker SPEAKER_03
transcript.pyannote[110].start 578.13471875
transcript.pyannote[110].end 580.22721875
transcript.pyannote[111].speaker SPEAKER_03
transcript.pyannote[111].start 581.35784375
transcript.pyannote[111].end 581.83034375
transcript.pyannote[112].speaker SPEAKER_02
transcript.pyannote[112].start 581.83034375
transcript.pyannote[112].end 587.19659375
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 587.85471875
transcript.pyannote[113].end 590.13284375
transcript.pyannote[114].speaker SPEAKER_03
transcript.pyannote[114].start 588.78284375
transcript.pyannote[114].end 594.75659375
transcript.pyannote[115].speaker SPEAKER_03
transcript.pyannote[115].start 595.39784375
transcript.pyannote[115].end 595.71846875
transcript.pyannote[116].speaker SPEAKER_03
transcript.pyannote[116].start 596.27534375
transcript.pyannote[116].end 596.29221875
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 596.29221875
transcript.pyannote[117].end 598.40159375
transcript.pyannote[118].speaker SPEAKER_03
transcript.pyannote[118].start 597.49034375
transcript.pyannote[118].end 601.11846875
transcript.pyannote[119].speaker SPEAKER_03
transcript.pyannote[119].start 601.30409375
transcript.pyannote[119].end 615.14159375
transcript.pyannote[120].speaker SPEAKER_03
transcript.pyannote[120].start 615.78284375
transcript.pyannote[120].end 616.81221875
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 617.41971875
transcript.pyannote[121].end 620.86221875
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 621.33471875
transcript.pyannote[122].end 643.03596875
transcript.pyannote[123].speaker SPEAKER_03
transcript.pyannote[123].start 643.03596875
transcript.pyannote[123].end 643.72784375
transcript.pyannote[124].speaker SPEAKER_03
transcript.pyannote[124].start 643.79534375
transcript.pyannote[124].end 654.10596875
transcript.pyannote[125].speaker SPEAKER_03
transcript.pyannote[125].start 654.37596875
transcript.pyannote[125].end 656.35034375
transcript.pyannote[126].speaker SPEAKER_03
transcript.pyannote[126].start 656.58659375
transcript.pyannote[126].end 674.40659375
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 674.40659375
transcript.pyannote[127].end 677.08971875
transcript.pyannote[128].speaker SPEAKER_02
transcript.pyannote[128].start 677.51159375
transcript.pyannote[128].end 677.57909375
transcript.pyannote[129].speaker SPEAKER_03
transcript.pyannote[129].start 677.57909375
transcript.pyannote[129].end 677.61284375
transcript.pyannote[130].speaker SPEAKER_02
transcript.pyannote[130].start 677.61284375
transcript.pyannote[130].end 677.76471875
transcript.pyannote[131].speaker SPEAKER_03
transcript.pyannote[131].start 677.76471875
transcript.pyannote[131].end 678.33846875
transcript.pyannote[132].speaker SPEAKER_02
transcript.pyannote[132].start 677.78159375
transcript.pyannote[132].end 680.22846875
transcript.pyannote[133].speaker SPEAKER_03
transcript.pyannote[133].start 679.06409375
transcript.pyannote[133].end 685.15596875
transcript.pyannote[134].speaker SPEAKER_02
transcript.pyannote[134].start 684.59909375
transcript.pyannote[134].end 685.22346875
transcript.pyannote[135].speaker SPEAKER_03
transcript.pyannote[135].start 685.22346875
transcript.pyannote[135].end 686.97846875
transcript.pyannote[136].speaker SPEAKER_02
transcript.pyannote[136].start 686.97846875
transcript.pyannote[136].end 687.75471875
transcript.pyannote[137].speaker SPEAKER_03
transcript.pyannote[137].start 687.75471875
transcript.pyannote[137].end 687.97409375
transcript.pyannote[138].speaker SPEAKER_02
transcript.pyannote[138].start 687.97409375
transcript.pyannote[138].end 689.30721875
transcript.pyannote[139].speaker SPEAKER_03
transcript.pyannote[139].start 688.59846875
transcript.pyannote[139].end 689.49284375
transcript.pyannote[140].speaker SPEAKER_02
transcript.pyannote[140].start 689.49284375
transcript.pyannote[140].end 690.01596875
transcript.whisperx[0].start 3.757
transcript.whisperx[0].end 9.109
transcript.whisperx[0].text 好謝謝主席主席好那我們要先請我們的邱部長還有食藥署好了
transcript.whisperx[1].start 14.488
transcript.whisperx[1].end 25.877
transcript.whisperx[1].text 委員好部長好那我根據食藥署的數據全台有效藥品許可證有11454張國產佔72.6%但原料廠有75%至80%是仰賴中國和印度進口那現在美國準備對全球藥品關稅開刀那台灣也有被波及這不是單純的這個出口問題而是藥價缺藥健保產業的適從這個夾擊
transcript.whisperx[2].start 43.59
transcript.whisperx[2].end 66.072
transcript.whisperx[2].text 那實際處方藥廠藥市場進口藥品佔比大概超過6成這代表什麼代表你們的國產比例是紙面數據實際上上藥的架上的藥10包裡面有6包是進口的那我想請問一下所有所以有多少藥品是真的在台灣生產佔比 佔比就好
transcript.whisperx[3].start 67.096
transcript.whisperx[3].end 90.785
transcript.whisperx[3].text 這邊跟委員做進一步的報告的確我們現在的原料藥的部分在應用的以中國跟印度的佔比相當相當高分別是27%跟26%所以在這種情形之下我們的原料藥的依存度呢的確是非常非常高的我們必要藥品上清單有大概584項有多少是在台灣生產
transcript.whisperx[4].start 93.132
transcript.whisperx[4].end 116.941
transcript.whisperx[4].text 這部分我可能要精確的確定一下你們是主管機關 這個必須要確實掌握因為現在是 我認為是全球在重新洗牌我們這個供應鏈全部重新在洗牌所以我們這些東西應該要確實掌握因為這個任何一個主要的來源果出問題我們的醫療系統就會出現缺口 對不對
transcript.whisperx[5].start 118.138
transcript.whisperx[5].end 126.29
transcript.whisperx[5].text 所以我看到我爸剛剛你講的如果反映在成本到這個成本反映到藥價上是健保吸收還是我們人民吸收
transcript.whisperx[6].start 132.929
transcript.whisperx[6].end 154.605
transcript.whisperx[6].text 因為我們的健保是單一個保險機構我這樣講問了那麼多你們都好像搞不太清楚狀況因為你們是主要的這個主管機關那所有藥品的製造輸入販賣都必須登錄在藥品許可證的這個資料庫是你們的職責嘛對不對那照理說你們隨時應該都可以查出來隨時都可以查出來
transcript.whisperx[7].start 155.365
transcript.whisperx[7].end 179.025
transcript.whisperx[7].text 那我不希望說這個東西到後來變成一個萬一真的發生了那我們怎麼去面對這個問題這個才是我比較擔心的第一個我們絕對會盡力不要增加人民的就醫的負擔包括要價的一個負擔所以我們很早就做好各種不少是美國的關稅的一個變化我們有強化
transcript.whisperx[8].start 180.206
transcript.whisperx[8].end 195.198
transcript.whisperx[8].text 供應的一個疫情這個一定不能讓他缺藥我有看到你的缺藥平台有做啊可是你的缺藥平台你的缺藥平台等他已經這個數據出來的時候就是已經發生的事情啊對不對我要的是你們在之前能夠確實掌握我們這個藥品的數量謝謝委員的提點
transcript.whisperx[9].start 199.281
transcript.whisperx[9].end 213.397
transcript.whisperx[9].text 因為針對預警的平台我們是西藥劑醫療器材的供應的平台短缺平台平台的登錄其實我們會在藥事法裡面希望在就已經規定在半年內致記的是半年內就提出來所以在
transcript.whisperx[10].start 214.258
transcript.whisperx[10].end 222.545
transcript.whisperx[10].text 提前的時間內在還沒有缺藥之前剛才補充一下我希望你好 你講你講製劑的部分其實我們國產的製劑其實佔了73.64%的是屬於國產的那這個部分呢我們化學藥品的部分其實是95.09原料咧
transcript.whisperx[11].start 231.132
transcript.whisperx[11].end 253.95
transcript.whisperx[11].text 那我們原料藥的部分相對是比較低目前的占比只有接近15%左右所以這部分是我們持續在努力的一個地方好啦 那我跟你講就是剛剛講這些我希望你能夠確實掌握 確實掌握那另外當然缺藥平台很重要可是我認為你們內部應該有一個提早的一個機制不能夠等這個數字顯示出來的時候再來處理
transcript.whisperx[12].start 259.714
transcript.whisperx[12].end 280.639
transcript.whisperx[12].text 另外剛剛講說我們有現在在扶植本土藥廠我們當然就是多了一層保障但是我們可能馬上面臨的問題我們比較擔心說我們的患者會不會受到影響因為你現在才要扶植它並不是那麼快 對不對
transcript.whisperx[13].start 282.021
transcript.whisperx[13].end 308.431
transcript.whisperx[13].text 跟委員報告這個剛剛提到的這個我們整個健保有幾副的藥品品項大概一萬四千多種那這裡面呢就如方剛剛提到的70%的量是這個等於是學名藥或者是在台灣製造那30%是靠進口那進口裡面我們最需要掌握的就是在專利期內的因為你這個去扶植都沒有用因為它是專利保護
transcript.whisperx[14].start 309.372
transcript.whisperx[14].end 322.148
transcript.whisperx[14].text 專利保護的品項大概是214項那麼大概金額大概在390億左右然後這裡面呢還有一些是沒有辦法替代品項很少的那這個大概在275項
transcript.whisperx[15].start 325.993
transcript.whisperx[15].end 349.039
transcript.whisperx[15].text 那金額大概在200億左右所以我們才會有特別的編列那個特別預算爭取在特別預算因應未來這個專利期內的這些藥就是6到18個月嘛對不對然後保持那我們健保的一樣是健保去吸收成本嘛那這樣的話健保會不會到時候的壓力又越來越大我們在什麼時候情況下會再做調整
transcript.whisperx[16].start 350.061
transcript.whisperx[16].end 376.988
transcript.whisperx[16].text 當然我們目前是行政院有在這個我們這個因應國際情勢的特別條例特別預算裡頭是有編列給健保200億的這個健保基金來因應這樣的變局啦但是長期來講當然也會造成健保保費的壓力確實是這樣對你現在講的是健保那萬一是自付這個自費的部分呢自費的藥品呢這些部分
transcript.whisperx[17].start 378.308
transcript.whisperx[17].end 407.456
transcript.whisperx[17].text 的成長你們有掌握嗎自費的我們就沒有這樣的資料就沒有資料那萬一博論生病怎麼辦這邊跟委員也進一步說明剛剛有特別提到我們的要自治國產的部分因為國內的市場相對比較小所以有時候是比較供應其實是供需上面需要有很好的調控所以我們特別把所謂的希望做智慧監控的導入在未來在我們的藥事法修法在27之3上面也希望在我們的藥品
transcript.whisperx[18].start 407.976
transcript.whisperx[18].end 436.014
transcript.whisperx[18].text 在有短缺的情況之下都能夠進入我們能夠調控的一個機制之內未來也需要多委員給我們很多的支持好啦我希望不管是健保藥品或者是自費的藥品我希望一步一步都要確實掌握啦因為這些都關乎我們國人的健康那麼台灣不只會藥變貴我這樣看但是我更擔心是這個藥買不到這個更是重點我希望大家能夠把這個螺絲拴緊好不好
transcript.whisperx[19].start 437.779
transcript.whisperx[19].end 446.596
transcript.whisperx[19].text 那再來我請教部長就是我們PM2.5直接影響這個疾病負擔死亡統計與健保支出這是不是衛福部的業務
transcript.whisperx[20].start 450.666
transcript.whisperx[20].end 474.389
transcript.whisperx[20].text 有嗎就是P2 2.5的死亡統計跟健保的支出那世界衛生組織2019年統計很清楚P2.5造成的過早死亡將近七成是心臟病與中風那14%是慢性阻塞性肺病14%是肺炎另外4%是肺癌所以我先問這個部分我們是衛福部的核心公共衛生問題
transcript.whisperx[21].start 475.563
transcript.whisperx[21].end 500.26
transcript.whisperx[21].text 好 我想不管任何的因素影響到健康這是我們衛福部應該要去我們有數據嗎哪一方面的數據就這個部分 我們有做過調查嗎影響健康 各方面影響健康我想這個這個2023年在那個國際的一個期刊那個Science的研究第一是把PN2.5
transcript.whisperx[22].start 501.081
transcript.whisperx[22].end 514.809
transcript.whisperx[22].text 按照來源分開發現藍莓火力發電的這個PM2.5致死風險是其他來源的2.1倍美國因此每年多死了4萬3千人20年間累積了46萬人 這代表
transcript.whisperx[23].start 517.574
transcript.whisperx[23].end 530.493
transcript.whisperx[23].text 在這個所有的這些致命的疾病背後有相當的比例的風險來自於藍莓這種加倍致命的污染源不然我請問你有沒有針對藍莓P2.5做過全國的健康這個衝擊的評估
transcript.whisperx[24].start 536.08
transcript.whisperx[24].end 551.452
transcript.whisperx[24].text 我想過去幾年多年來我也在這邊當過八年的立委幾乎都是在質詢這個問題所以你應該很了解當然我們這個跟環境部跟衛福部都有當然這是跨部會的
transcript.whisperx[25].start 551.992
transcript.whisperx[25].end 576.765
transcript.whisperx[25].text 但是你們這個部分因為一個空污的狀況或PM2.5這個部分它的來源我們要看看它的來源是對啊 別人都有在做它的分類都分很清楚第二個就是說要科學的分析科學的分析就是要有足夠的證據力對啊 結果你有做嗎拿一兩篇paper就來說不是 我現在就是請教你們我們有沒有做就是沒有嘛
transcript.whisperx[26].start 581.46
transcript.whisperx[26].end 594.354
transcript.whisperx[26].text 對不對我們來瞭解國衛院他們現在的應該有相關的一個相關的我不希望這樣國衛院有做那你衛福部不是要掌握嗎這個不是關乎我們國人的健康嗎
transcript.whisperx[27].start 596.359
transcript.whisperx[27].end 616.196
transcript.whisperx[27].text 我們當然是很關心所以我認為啦你的立場跟環境部的立場有時候我們必須要以國人的健康作為出發來去做提點不管他們未來他們要怎麼去這個施政或者他的政策方向怎麼走那至少我們要進到我們衛福部應有的一個立場我這樣講沒錯吧
transcript.whisperx[28].start 618.639
transcript.whisperx[28].end 643.181
transcript.whisperx[28].text 我想空污跟各種疾病的相關相連性它有強弱之別我們都會去看看國內外的文獻來做好我們政策的分析一定要儘量減少對我們民眾的影響我想這個部分是我們基本要去做的事情
transcript.whisperx[29].start 643.962
transcript.whisperx[29].end 669.262
transcript.whisperx[29].text 好啦 我是希望我們衛福部盡到自己的這個業務的這個職責不要讓我們台灣人用非發電尤其我們中火它就已經佔了一半以上所以這個部分真的是非常非常嚴重請我們這個主管機關不要這個當作沒事一樣不要 要勇於挑戰因為上面的政策是怎麼樣 這是一回事那我們
transcript.whisperx[30].start 670.063
transcript.whisperx[30].end 689.212
transcript.whisperx[30].text 的業務我這是我的責任我應該說清楚的我還是希望大家來說清楚好不好對我們會按照科學的根據然後有最好是這樣不要變成這個幫我們這個能源政策化妝好不好我講重點在這裡我們會站在人民的健康立場來分析謝謝部長謝謝