iVOD / 163412

Field Value
IVOD_ID 163412
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/163412
日期 2025-08-07
會議資料.會議代碼 委員會-11-3-19-19
會議資料.會議代碼:str 第11屆第3會期經濟委員會第19次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 19
會議資料.種類 委員會
會議資料.委員會代碼[0] 19
會議資料.委員會代碼:str[0] 經濟委員會
會議資料.標題 第11屆第3會期經濟委員會第19次全體委員會議
影片種類 Clip
開始時間 2025-08-07T11:12:04+08:00
結束時間 2025-08-07T11:25:51+08:00
影片長度 00:13:47
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/ce960b47cc6398b9158b7b656f9f68a170dc6911ab88c3aa0394dc758d122e31340600c8c0d0f7405ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 邱志偉
委員發言時間 11:12:04 - 11:25:51
會議時間 2025-08-07T09:00:00+08:00
會議名稱 立法院第11屆第3會期經濟委員會第19次全體委員會議(事由:邀請國家發展委員會主任委員就「美國對等關稅底定後,我國經濟未來之景氣情況及產業全球佈局新規劃」進行報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 3.64221875
transcript.pyannote[0].end 6.52784375
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 12.53534375
transcript.pyannote[1].end 15.23534375
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 16.01159375
transcript.pyannote[2].end 16.51784375
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 23.74034375
transcript.pyannote[3].end 29.86596875
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 24.04409375
transcript.pyannote[4].end 24.97221875
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 30.69284375
transcript.pyannote[5].end 32.02596875
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 32.02596875
transcript.pyannote[6].end 32.26221875
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 32.26221875
transcript.pyannote[7].end 32.39721875
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 32.39721875
transcript.pyannote[8].end 32.43096875
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 32.93721875
transcript.pyannote[9].end 44.10846875
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 44.64846875
transcript.pyannote[10].end 48.09096875
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 48.41159375
transcript.pyannote[11].end 51.53346875
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 52.00596875
transcript.pyannote[12].end 55.26284375
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 52.03971875
transcript.pyannote[13].end 58.14846875
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 58.26659375
transcript.pyannote[14].end 58.77284375
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 58.89096875
transcript.pyannote[15].end 60.66284375
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 61.91159375
transcript.pyannote[16].end 63.04221875
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 63.97034375
transcript.pyannote[17].end 68.08784375
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 68.86409375
transcript.pyannote[18].end 70.31534375
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 71.26034375
transcript.pyannote[19].end 71.83409375
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 71.95221875
transcript.pyannote[20].end 73.79159375
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 74.78721875
transcript.pyannote[21].end 75.95159375
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 76.22159375
transcript.pyannote[22].end 79.90034375
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 80.57534375
transcript.pyannote[23].end 81.43596875
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 82.12784375
transcript.pyannote[24].end 83.32596875
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 84.79409375
transcript.pyannote[25].end 87.35909375
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 87.35909375
transcript.pyannote[26].end 87.37596875
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 88.08471875
transcript.pyannote[27].end 88.52346875
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 88.52346875
transcript.pyannote[28].end 88.55721875
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 88.99596875
transcript.pyannote[29].end 89.02971875
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 89.02971875
transcript.pyannote[30].end 95.18909375
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 95.64471875
transcript.pyannote[31].end 102.36096875
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 103.93034375
transcript.pyannote[32].end 104.03159375
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 104.03159375
transcript.pyannote[33].end 110.78159375
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 106.88346875
transcript.pyannote[34].end 108.67221875
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 111.60846875
transcript.pyannote[35].end 116.43471875
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 116.02971875
transcript.pyannote[36].end 116.26596875
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 116.43471875
transcript.pyannote[37].end 116.60346875
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 116.60346875
transcript.pyannote[38].end 116.67096875
transcript.pyannote[39].speaker SPEAKER_01
transcript.pyannote[39].start 116.67096875
transcript.pyannote[39].end 116.70471875
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 116.70471875
transcript.pyannote[40].end 116.77221875
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 116.77221875
transcript.pyannote[41].end 116.80596875
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 116.80596875
transcript.pyannote[42].end 116.83971875
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 116.83971875
transcript.pyannote[43].end 116.89034375
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 116.89034375
transcript.pyannote[44].end 116.97471875
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 116.97471875
transcript.pyannote[45].end 118.81409375
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 118.81409375
transcript.pyannote[46].end 118.89846875
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 118.89846875
transcript.pyannote[47].end 119.08409375
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 119.15159375
transcript.pyannote[48].end 123.08346875
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 122.12159375
transcript.pyannote[49].end 128.21346875
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 125.19284375
transcript.pyannote[50].end 125.24346875
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 128.50034375
transcript.pyannote[51].end 130.64346875
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 130.64346875
transcript.pyannote[52].end 130.66034375
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 131.16659375
transcript.pyannote[53].end 131.48721875
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 131.21721875
transcript.pyannote[54].end 131.52096875
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 131.52096875
transcript.pyannote[55].end 131.65596875
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 131.65596875
transcript.pyannote[56].end 131.67284375
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 132.19596875
transcript.pyannote[57].end 132.22971875
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 132.22971875
transcript.pyannote[58].end 138.94596875
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 139.11471875
transcript.pyannote[59].end 141.94971875
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 142.64159375
transcript.pyannote[60].end 145.10534375
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 142.67534375
transcript.pyannote[61].end 144.16034375
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 144.27846875
transcript.pyannote[62].end 144.90284375
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 145.10534375
transcript.pyannote[63].end 151.09596875
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 148.19346875
transcript.pyannote[64].end 149.15534375
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 153.07034375
transcript.pyannote[65].end 156.27659375
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 156.47909375
transcript.pyannote[66].end 162.01409375
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 160.56284375
transcript.pyannote[67].end 163.14471875
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 162.65534375
transcript.pyannote[68].end 165.76034375
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 163.83659375
transcript.pyannote[69].end 165.03471875
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 165.87846875
transcript.pyannote[70].end 174.87284375
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 166.24971875
transcript.pyannote[71].end 168.03846875
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 170.41784375
transcript.pyannote[72].end 170.82284375
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 175.15971875
transcript.pyannote[73].end 177.97784375
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 175.19346875
transcript.pyannote[74].end 176.57721875
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 177.97784375
transcript.pyannote[75].end 187.96784375
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 189.03096875
transcript.pyannote[76].end 191.66346875
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 190.53284375
transcript.pyannote[77].end 191.62971875
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 191.66346875
transcript.pyannote[78].end 191.71409375
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 191.71409375
transcript.pyannote[79].end 196.86096875
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 192.42284375
transcript.pyannote[80].end 195.49409375
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 197.36721875
transcript.pyannote[81].end 209.23034375
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 202.27784375
transcript.pyannote[82].end 202.71659375
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 203.03721875
transcript.pyannote[83].end 203.77971875
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 204.25221875
transcript.pyannote[84].end 205.19721875
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 205.60221875
transcript.pyannote[85].end 207.17159375
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 209.48346875
transcript.pyannote[86].end 213.02721875
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 211.06971875
transcript.pyannote[87].end 211.10346875
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 213.02721875
transcript.pyannote[88].end 213.09471875
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 213.09471875
transcript.pyannote[89].end 220.26659375
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 213.17909375
transcript.pyannote[90].end 213.29721875
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 220.82346875
transcript.pyannote[91].end 223.21971875
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 223.47284375
transcript.pyannote[92].end 244.04346875
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 226.78034375
transcript.pyannote[93].end 227.48909375
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 244.53284375
transcript.pyannote[94].end 244.88721875
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 245.59596875
transcript.pyannote[95].end 249.22409375
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 249.51096875
transcript.pyannote[96].end 268.63034375
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 255.97409375
transcript.pyannote[97].end 256.51409375
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 258.82596875
transcript.pyannote[98].end 260.80034375
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 269.50784375
transcript.pyannote[99].end 279.91971875
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 281.37096875
transcript.pyannote[100].end 282.88971875
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 283.22721875
transcript.pyannote[101].end 287.07471875
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 285.38721875
transcript.pyannote[102].end 286.18034375
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 287.37846875
transcript.pyannote[103].end 287.69909375
transcript.pyannote[104].speaker SPEAKER_01
transcript.pyannote[104].start 288.10409375
transcript.pyannote[104].end 290.46659375
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 288.12096875
transcript.pyannote[105].end 289.57221875
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 290.50034375
transcript.pyannote[106].end 293.36909375
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 293.67284375
transcript.pyannote[107].end 297.36846875
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 297.36846875
transcript.pyannote[108].end 297.48659375
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 297.55409375
transcript.pyannote[109].end 297.62159375
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 297.62159375
transcript.pyannote[110].end 297.67221875
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 297.67221875
transcript.pyannote[111].end 297.82409375
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 297.82409375
transcript.pyannote[112].end 305.24909375
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 304.96221875
transcript.pyannote[113].end 312.47159375
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 313.73721875
transcript.pyannote[114].end 317.24721875
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 317.68596875
transcript.pyannote[115].end 320.75721875
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 321.21284375
transcript.pyannote[116].end 328.85721875
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 328.30034375
transcript.pyannote[117].end 328.33409375
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 329.49846875
transcript.pyannote[118].end 330.79784375
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 330.83159375
transcript.pyannote[119].end 331.00034375
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 331.00034375
transcript.pyannote[120].end 331.18596875
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 331.86096875
transcript.pyannote[121].end 334.15596875
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 334.32471875
transcript.pyannote[122].end 337.02471875
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 337.02471875
transcript.pyannote[123].end 337.09221875
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 338.40846875
transcript.pyannote[124].end 340.01159375
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 340.36596875
transcript.pyannote[125].end 343.82534375
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 344.34846875
transcript.pyannote[126].end 347.97659375
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 347.97659375
transcript.pyannote[127].end 355.11471875
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 355.92471875
transcript.pyannote[128].end 357.03846875
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 357.44346875
transcript.pyannote[129].end 362.80971875
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 363.50159375
transcript.pyannote[130].end 364.71659375
transcript.pyannote[131].speaker SPEAKER_01
transcript.pyannote[131].start 365.56034375
transcript.pyannote[131].end 367.18034375
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 368.12534375
transcript.pyannote[132].end 369.39096875
transcript.pyannote[133].speaker SPEAKER_01
transcript.pyannote[133].start 369.61034375
transcript.pyannote[133].end 371.61846875
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 372.29346875
transcript.pyannote[134].end 372.61409375
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 373.74471875
transcript.pyannote[135].end 380.66346875
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 374.28471875
transcript.pyannote[136].end 374.72346875
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 381.52409375
transcript.pyannote[137].end 386.99159375
transcript.pyannote[138].speaker SPEAKER_01
transcript.pyannote[138].start 387.46409375
transcript.pyannote[138].end 391.83471875
transcript.pyannote[139].speaker SPEAKER_01
transcript.pyannote[139].start 392.23971875
transcript.pyannote[139].end 400.86284375
transcript.pyannote[140].speaker SPEAKER_01
transcript.pyannote[140].start 401.43659375
transcript.pyannote[140].end 412.79346875
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 413.19846875
transcript.pyannote[141].end 414.04221875
transcript.pyannote[142].speaker SPEAKER_01
transcript.pyannote[142].start 414.46409375
transcript.pyannote[142].end 417.13034375
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 417.50159375
transcript.pyannote[143].end 419.57721875
transcript.pyannote[144].speaker SPEAKER_01
transcript.pyannote[144].start 420.84284375
transcript.pyannote[144].end 425.33159375
transcript.pyannote[145].speaker SPEAKER_01
transcript.pyannote[145].start 425.68596875
transcript.pyannote[145].end 429.85409375
transcript.pyannote[146].speaker SPEAKER_01
transcript.pyannote[146].start 430.24221875
transcript.pyannote[146].end 432.52034375
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 432.84096875
transcript.pyannote[147].end 448.31534375
transcript.pyannote[148].speaker SPEAKER_01
transcript.pyannote[148].start 449.15909375
transcript.pyannote[148].end 451.62284375
transcript.pyannote[149].speaker SPEAKER_01
transcript.pyannote[149].start 452.97284375
transcript.pyannote[149].end 465.03846875
transcript.pyannote[150].speaker SPEAKER_00
transcript.pyannote[150].start 465.03846875
transcript.pyannote[150].end 466.03409375
transcript.pyannote[151].speaker SPEAKER_01
transcript.pyannote[151].start 466.47284375
transcript.pyannote[151].end 466.48971875
transcript.pyannote[152].speaker SPEAKER_00
transcript.pyannote[152].start 466.48971875
transcript.pyannote[152].end 477.23909375
transcript.pyannote[153].speaker SPEAKER_00
transcript.pyannote[153].start 477.54284375
transcript.pyannote[153].end 492.03846875
transcript.pyannote[154].speaker SPEAKER_01
transcript.pyannote[154].start 490.26659375
transcript.pyannote[154].end 491.92034375
transcript.pyannote[155].speaker SPEAKER_01
transcript.pyannote[155].start 492.03846875
transcript.pyannote[155].end 492.05534375
transcript.pyannote[156].speaker SPEAKER_00
transcript.pyannote[156].start 492.05534375
transcript.pyannote[156].end 492.61221875
transcript.pyannote[157].speaker SPEAKER_01
transcript.pyannote[157].start 492.61221875
transcript.pyannote[157].end 492.66284375
transcript.pyannote[158].speaker SPEAKER_00
transcript.pyannote[158].start 492.66284375
transcript.pyannote[158].end 492.69659375
transcript.pyannote[159].speaker SPEAKER_01
transcript.pyannote[159].start 492.69659375
transcript.pyannote[159].end 497.89409375
transcript.pyannote[160].speaker SPEAKER_01
transcript.pyannote[160].start 498.24846875
transcript.pyannote[160].end 503.47971875
transcript.pyannote[161].speaker SPEAKER_01
transcript.pyannote[161].start 503.91846875
transcript.pyannote[161].end 507.02346875
transcript.pyannote[162].speaker SPEAKER_00
transcript.pyannote[162].start 507.02346875
transcript.pyannote[162].end 513.04784375
transcript.pyannote[163].speaker SPEAKER_00
transcript.pyannote[163].start 513.50346875
transcript.pyannote[163].end 513.97596875
transcript.pyannote[164].speaker SPEAKER_01
transcript.pyannote[164].start 513.97596875
transcript.pyannote[164].end 524.92784375
transcript.pyannote[165].speaker SPEAKER_01
transcript.pyannote[165].start 525.51846875
transcript.pyannote[165].end 527.00346875
transcript.pyannote[166].speaker SPEAKER_01
transcript.pyannote[166].start 527.57721875
transcript.pyannote[166].end 530.39534375
transcript.pyannote[167].speaker SPEAKER_01
transcript.pyannote[167].start 530.83409375
transcript.pyannote[167].end 537.29721875
transcript.pyannote[168].speaker SPEAKER_01
transcript.pyannote[168].start 538.17471875
transcript.pyannote[168].end 538.81596875
transcript.pyannote[169].speaker SPEAKER_01
transcript.pyannote[169].start 539.18721875
transcript.pyannote[169].end 560.63534375
transcript.pyannote[170].speaker SPEAKER_01
transcript.pyannote[170].start 560.73659375
transcript.pyannote[170].end 564.04409375
transcript.pyannote[171].speaker SPEAKER_01
transcript.pyannote[171].start 564.36471875
transcript.pyannote[171].end 566.03534375
transcript.pyannote[172].speaker SPEAKER_00
transcript.pyannote[172].start 566.03534375
transcript.pyannote[172].end 566.47409375
transcript.pyannote[173].speaker SPEAKER_01
transcript.pyannote[173].start 567.01409375
transcript.pyannote[173].end 567.03096875
transcript.pyannote[174].speaker SPEAKER_00
transcript.pyannote[174].start 567.03096875
transcript.pyannote[174].end 567.52034375
transcript.pyannote[175].speaker SPEAKER_00
transcript.pyannote[175].start 567.79034375
transcript.pyannote[175].end 573.24096875
transcript.pyannote[176].speaker SPEAKER_00
transcript.pyannote[176].start 573.51096875
transcript.pyannote[176].end 582.82596875
transcript.pyannote[177].speaker SPEAKER_01
transcript.pyannote[177].start 581.61096875
transcript.pyannote[177].end 590.04846875
transcript.pyannote[178].speaker SPEAKER_00
transcript.pyannote[178].start 586.13346875
transcript.pyannote[178].end 586.45409375
transcript.pyannote[179].speaker SPEAKER_01
transcript.pyannote[179].start 590.25096875
transcript.pyannote[179].end 592.54596875
transcript.pyannote[180].speaker SPEAKER_01
transcript.pyannote[180].start 592.59659375
transcript.pyannote[180].end 602.51909375
transcript.pyannote[181].speaker SPEAKER_01
transcript.pyannote[181].start 602.80596875
transcript.pyannote[181].end 603.53159375
transcript.pyannote[182].speaker SPEAKER_01
transcript.pyannote[182].start 604.22346875
transcript.pyannote[182].end 604.79721875
transcript.pyannote[183].speaker SPEAKER_01
transcript.pyannote[183].start 605.33721875
transcript.pyannote[183].end 607.02471875
transcript.pyannote[184].speaker SPEAKER_00
transcript.pyannote[184].start 607.02471875
transcript.pyannote[184].end 607.14284375
transcript.pyannote[185].speaker SPEAKER_00
transcript.pyannote[185].start 608.35784375
transcript.pyannote[185].end 611.53034375
transcript.pyannote[186].speaker SPEAKER_00
transcript.pyannote[186].start 611.96909375
transcript.pyannote[186].end 616.42409375
transcript.pyannote[187].speaker SPEAKER_01
transcript.pyannote[187].start 616.42409375
transcript.pyannote[187].end 622.68471875
transcript.pyannote[188].speaker SPEAKER_01
transcript.pyannote[188].start 623.15721875
transcript.pyannote[188].end 627.93284375
transcript.pyannote[189].speaker SPEAKER_01
transcript.pyannote[189].start 628.21971875
transcript.pyannote[189].end 631.24034375
transcript.pyannote[190].speaker SPEAKER_01
transcript.pyannote[190].start 631.39221875
transcript.pyannote[190].end 635.47596875
transcript.pyannote[191].speaker SPEAKER_01
transcript.pyannote[191].start 636.16784375
transcript.pyannote[191].end 640.45409375
transcript.pyannote[192].speaker SPEAKER_00
transcript.pyannote[192].start 636.53909375
transcript.pyannote[192].end 636.97784375
transcript.pyannote[193].speaker SPEAKER_01
transcript.pyannote[193].start 641.17971875
transcript.pyannote[193].end 643.28909375
transcript.pyannote[194].speaker SPEAKER_01
transcript.pyannote[194].start 643.69409375
transcript.pyannote[194].end 645.80346875
transcript.pyannote[195].speaker SPEAKER_01
transcript.pyannote[195].start 646.69784375
transcript.pyannote[195].end 647.42346875
transcript.pyannote[196].speaker SPEAKER_01
transcript.pyannote[196].start 648.08159375
transcript.pyannote[196].end 651.77721875
transcript.pyannote[197].speaker SPEAKER_01
transcript.pyannote[197].start 652.33409375
transcript.pyannote[197].end 666.44159375
transcript.pyannote[198].speaker SPEAKER_01
transcript.pyannote[198].start 666.59346875
transcript.pyannote[198].end 668.95596875
transcript.pyannote[199].speaker SPEAKER_01
transcript.pyannote[199].start 668.97284375
transcript.pyannote[199].end 673.02284375
transcript.pyannote[200].speaker SPEAKER_00
transcript.pyannote[200].start 673.02284375
transcript.pyannote[200].end 673.66409375
transcript.pyannote[201].speaker SPEAKER_01
transcript.pyannote[201].start 674.30534375
transcript.pyannote[201].end 674.33909375
transcript.pyannote[202].speaker SPEAKER_00
transcript.pyannote[202].start 674.33909375
transcript.pyannote[202].end 679.95846875
transcript.pyannote[203].speaker SPEAKER_00
transcript.pyannote[203].start 680.27909375
transcript.pyannote[203].end 696.42846875
transcript.pyannote[204].speaker SPEAKER_00
transcript.pyannote[204].start 696.56346875
transcript.pyannote[204].end 702.73971875
transcript.pyannote[205].speaker SPEAKER_01
transcript.pyannote[205].start 696.74909375
transcript.pyannote[205].end 696.85034375
transcript.pyannote[206].speaker SPEAKER_00
transcript.pyannote[206].start 703.00971875
transcript.pyannote[206].end 710.78909375
transcript.pyannote[207].speaker SPEAKER_01
transcript.pyannote[207].start 703.02659375
transcript.pyannote[207].end 703.60034375
transcript.pyannote[208].speaker SPEAKER_01
transcript.pyannote[208].start 706.35096875
transcript.pyannote[208].end 706.40159375
transcript.pyannote[209].speaker SPEAKER_01
transcript.pyannote[209].start 708.30846875
transcript.pyannote[209].end 709.69221875
transcript.pyannote[210].speaker SPEAKER_01
transcript.pyannote[210].start 710.36721875
transcript.pyannote[210].end 731.24159375
transcript.pyannote[211].speaker SPEAKER_01
transcript.pyannote[211].start 731.74784375
transcript.pyannote[211].end 736.64159375
transcript.pyannote[212].speaker SPEAKER_01
transcript.pyannote[212].start 737.87346875
transcript.pyannote[212].end 741.26534375
transcript.pyannote[213].speaker SPEAKER_01
transcript.pyannote[213].start 741.95721875
transcript.pyannote[213].end 749.14596875
transcript.pyannote[214].speaker SPEAKER_01
transcript.pyannote[214].start 749.68596875
transcript.pyannote[214].end 750.63096875
transcript.pyannote[215].speaker SPEAKER_01
transcript.pyannote[215].start 751.30596875
transcript.pyannote[215].end 752.11596875
transcript.pyannote[216].speaker SPEAKER_01
transcript.pyannote[216].start 753.95534375
transcript.pyannote[216].end 757.09409375
transcript.pyannote[217].speaker SPEAKER_00
transcript.pyannote[217].start 757.33034375
transcript.pyannote[217].end 757.61721875
transcript.pyannote[218].speaker SPEAKER_01
transcript.pyannote[218].start 757.95471875
transcript.pyannote[218].end 758.30909375
transcript.pyannote[219].speaker SPEAKER_01
transcript.pyannote[219].start 758.46096875
transcript.pyannote[219].end 760.82346875
transcript.pyannote[220].speaker SPEAKER_01
transcript.pyannote[220].start 760.95846875
transcript.pyannote[220].end 763.62471875
transcript.pyannote[221].speaker SPEAKER_01
transcript.pyannote[221].start 764.62034375
transcript.pyannote[221].end 766.34159375
transcript.pyannote[222].speaker SPEAKER_01
transcript.pyannote[222].start 767.11784375
transcript.pyannote[222].end 770.05409375
transcript.pyannote[223].speaker SPEAKER_01
transcript.pyannote[223].start 770.50971875
transcript.pyannote[223].end 774.79596875
transcript.pyannote[224].speaker SPEAKER_01
transcript.pyannote[224].start 775.08284375
transcript.pyannote[224].end 777.96846875
transcript.pyannote[225].speaker SPEAKER_00
transcript.pyannote[225].start 775.13346875
transcript.pyannote[225].end 779.43659375
transcript.pyannote[226].speaker SPEAKER_00
transcript.pyannote[226].start 779.75721875
transcript.pyannote[226].end 786.18659375
transcript.pyannote[227].speaker SPEAKER_00
transcript.pyannote[227].start 786.33846875
transcript.pyannote[227].end 788.46471875
transcript.pyannote[228].speaker SPEAKER_00
transcript.pyannote[228].start 788.76846875
transcript.pyannote[228].end 808.39409375
transcript.pyannote[229].speaker SPEAKER_00
transcript.pyannote[229].start 808.73159375
transcript.pyannote[229].end 812.84909375
transcript.pyannote[230].speaker SPEAKER_00
transcript.pyannote[230].start 813.18659375
transcript.pyannote[230].end 821.42159375
transcript.pyannote[231].speaker SPEAKER_01
transcript.pyannote[231].start 817.81034375
transcript.pyannote[231].end 818.68784375
transcript.pyannote[232].speaker SPEAKER_00
transcript.pyannote[232].start 821.82659375
transcript.pyannote[232].end 822.83909375
transcript.pyannote[233].speaker SPEAKER_00
transcript.pyannote[233].start 823.96971875
transcript.pyannote[233].end 825.40409375
transcript.pyannote[234].speaker SPEAKER_01
transcript.pyannote[234].start 824.10471875
transcript.pyannote[234].end 824.40846875
transcript.whisperx[0].start 3.943
transcript.whisperx[0].end 32.224
transcript.whisperx[0].text 現在請邱志偉委員做詢答謝謝主席請這個劉主委劉主委主委好 主委辛苦了今天台股早上大漲600點最主要的利多因素是什麼
transcript.whisperx[1].start 33.304
transcript.whisperx[1].end 59.658
transcript.whisperx[1].text 主要是這次的晶片的這個關稅對我們比較有利為什麼會比較有利因為我們幾個大主要的像台積電、中美金在美國都有廠那我們也有一些像聯電在美國都有合作再來這個部分是全球一致的稅率就像我們之前零關稅,其他國家沒有設廠的或者沒有設廠計畫的就可以百%對看一下它的原文
transcript.whisperx[2].start 61.974
transcript.whisperx[2].end 87.196
transcript.whisperx[2].text 它是針對chip大概100%的這個稅率chip跟semiconductor晶片跟半導體對不對所以半導體你是這個裸晶片還是相關於半導體的相關的產品它也沒有說明清楚您從這張文字來看它的原文來看
transcript.whisperx[3].start 88.117
transcript.whisperx[3].end 110.477
transcript.whisperx[3].text 它是chips还有semiconductors对 它有semiconductors那个的话就可以解释的比较宽一点只要你那个IT中央台里面有包括这个半导体有包括晶片这些算不算它chips是明确的定义对 第二个是半导体相关的像晶圆这些
transcript.whisperx[4].start 111.707
transcript.whisperx[4].end 129.941
transcript.whisperx[4].text 我認為應該,這個我們還在查證,那理論上應該是在Semi-conduct如果只有CHIPS,那當然比較簡單,對不對中美金然後聯電,那麼都是,不管是先進製程或成熟製程中美金不是CHIPS,它是WAFER的但是因為它也在,它就算有,它也在美國都有設廠
transcript.whisperx[5].start 131.343
transcript.whisperx[5].end 150.804
transcript.whisperx[5].text 所以股票市場的反應解讀就是我們針對這些CHIPS部分我們獲得關稅的豁免零關稅其他國家要100%關稅所以今天股市才大漲600在某些產品上台積電相關的成熟製程跟先進資產那如果半導體的話你怎麼解讀
transcript.whisperx[6].start 153.117
transcript.whisperx[6].end 168.727
transcript.whisperx[6].text 半導體的解讀,我想這個還是要去,這可能要看一下美方的定義因為一般來講它會有一個定義在後面因為它還沒有正式公告,這是它的預公告它的正式公告會針對Semiconductor它會有註解
transcript.whisperx[7].start 175.251
transcript.whisperx[7].end 187.723
transcript.whisperx[7].text 然後它是大概是100%大概是100%對不對對所以這個我們後續觀察也是很重要對於這次這個國會有沒有談判代表
transcript.whisperx[8].start 189.997
transcript.whisperx[8].end 213.672
transcript.whisperx[8].text 國會的成員有沒有參與所以現在暫時限制關稅20%那當然日本跟韓國也經過暫時限制關稅然後最後再降到15%越南也是你要搭配投資搭配開放市場大概用這種方式所以才從20%降到15%那你看一下
transcript.whisperx[9].start 214.492
transcript.whisperx[9].end 243.772
transcript.whisperx[9].text 這個日本跟韓國的這個整體的GDP跟我們對美國的貿易利差來看日本GDP是台灣的大概五倍那韓國也大概是台灣的兩倍沒有錯嘛那雖然我們對美國的貿易順差大概739億日本對美貿易順差685韓國660差距也不大但因為我們GDP的規模分別是日本的五分之一韓國的二分之一
transcript.whisperx[10].start 244.612
transcript.whisperx[10].end 251.919
transcript.whisperx[10].text 那如果用台灣跟日本韓國的經驗來看韓國要投資5500億然後韓國要3500億之前我們有行政部門官員說4000億他已經有澄清過了不管是用國家的預算去購買或者是我們開放國內市場等等我認為
transcript.whisperx[11].start 269.554
transcript.whisperx[11].end 279.573
transcript.whisperx[11].text 我們降到15%的機會是蠻大的而且我們開放或者是採購的金額啊應當不至於比照美國比照日本跟韓國因為你從GDP的水平來看
transcript.whisperx[12].start 281.411
transcript.whisperx[12].end 310.319
transcript.whisperx[12].text 跟人口數來看韓國人口是台灣的兩倍對 也是2.2倍人口是台灣的五倍對所以整體的影響經濟規模不一樣所以你用同樣的標準去看這個我用常識來判斷應當是不屬於有那麼高的金額我的看法跟委員接近那我們唯一就是說我們的出口金額跟逆差是稍微不那麼高多了也沒有多很多跟日本韓國也沒有增加很多大概多了
transcript.whisperx[13].start 311.68
transcript.whisperx[13].end 336.761
transcript.whisperx[13].text 50億左右當然這個我們希望說盡快最終的這個會不會簽協議就是說台美之間針對關稅會有最終的協議因為美國跟日本是沒有白紙黑字協議是沒有白紙黑字所以沒有白紙黑字會造成說它的有效性的問題或者執行性的問題
transcript.whisperx[14].start 338.424
transcript.whisperx[14].end 366.473
transcript.whisperx[14].text 沒錯 因為他有之前川普有說過嘛他會看你的執行表現嘛對 因為他是一個動態的所以沒有白紙黑字白紙黑字是一個正式的協議它有在有效的執行的這個期程或者在執行的這個程序嘛但你沒有白紙黑字不管是日本或者是南韓到目前談的最終的稅率都沒有白紙黑字嘛那台灣是不是也是如此呢這個我就不清楚了
transcript.whisperx[15].start 368.386
transcript.whisperx[15].end 378.937
transcript.whisperx[15].text 我想韓日都是這樣子我們大概也是這樣子所以會造成說未來執行面我們還值得去觀察因為沒有白紙黑字做一個基礎
transcript.whisperx[16].start 381.581
transcript.whisperx[16].end 398.437
transcript.whisperx[16].text 那另外這個當然不管是匯率啦或者是關稅的不確定性啦這扣建產業是相當的這個辛苦台灣以前是扣建產業全球第三大全三大的生產基地特別是在這個我的選區在岡山這個陸竹
transcript.whisperx[17].start 401.539
transcript.whisperx[17].end 415.414
transcript.whisperx[17].text 所以是一個全球最大的螺絲生產機率之一我最近聽到很多扣薪業者跟我很多抱怨就是說第一個匯率的影響第二個關稅的影響對他們這個不僅沒有辦法賺錢而且還虧損虧損到沒有辦法繼續經營下去
transcript.whisperx[18].start 420.902
transcript.whisperx[18].end 447.952
transcript.whisperx[18].text 也逼得也許要外移這種情況我們對國化合會有很大的期待要協調各部會能夠比照我們大概三年前在疫情的時候對扣接應的協助包括貸款的展延或者是新增的融資貸款協助產業周轉資金面很大的問題
transcript.whisperx[19].start 449.414
transcript.whisperx[19].end 451.53
transcript.whisperx[19].text 他沒有銷售就沒有收入嘛
transcript.whisperx[20].start 453.155
transcript.whisperx[20].end 479.786
transcript.whisperx[20].text 所以這部分我期待是不是國會能夠見急旅急能夠針對這些跨部會的這需要協助的部分能夠來國會來召集會議不管是經管會或者經濟部這個我們來努力看看那我想也表達一下我想委員應該也看到我們總統跟院長很在意這個產業多次帶著經濟部去跟業者溝通那經濟部長
transcript.whisperx[21].start 480.886
transcript.whisperx[21].end 494.077
transcript.whisperx[21].text 日前也才跟業者又有座談那我們會找經濟部來看看他們有沒有什麼樣的需求就像如果是貨款等等重點是座談之後要拿出具體的做法讓產業能夠繼續穩定繼續成長
transcript.whisperx[22].start 498.4
transcript.whisperx[22].end 507.85
transcript.whisperx[22].text 後面的做法就是要由國發會來統籌這個座談的結論然後去執行提出可行的規劃跟方案去執行我們去了解我們來努力看看
transcript.whisperx[23].start 513.638
transcript.whisperx[23].end 537.048
transcript.whisperx[23].text 所以包括有專業雜誌啊 他有很多的政策建言他去針對台灣目前十大產值 可能會萎縮最大的十大產值的產業啊包括這個傳統製造業 他產值要萎縮大概2500億衝擊大概兩萬家的廠商 而且這兩萬家的廠商都是中小企業 都集中在中南部 對不對
transcript.whisperx[24].start 539.324
transcript.whisperx[24].end 560.346
transcript.whisperx[24].text 這種需要政府相關的作為來協助的部分包括涵蓋四大的策略十一項作為這些作為這些期待都是業界座談所提出來的訴求我期待這部分是不是可以請國發會能夠針對這些企業界所提出來的訴求提出這相對應的方案
transcript.whisperx[25].start 561.086
transcript.whisperx[25].end 577.518
transcript.whisperx[25].text 來整合各部會提出相對應的方案讓業界能夠安心因為經濟部已經提出來了在分工上面因為這個地方是分在經濟部我們在中長期的所以我們是協助轉型的部分我們會一起來做
transcript.whisperx[26].start 578.999
transcript.whisperx[26].end 607.023
transcript.whisperx[26].text 那委員有這個要求我就來找經濟部談一下因為我一直期待說國安會應該是財經小內閣來整合相關的財經部門應該是國安會的這個執掌嘛因為你們在宏觀調控的能力嘛那你經濟部也許不能指揮財政部但是你國安會可以站在這個宏觀經濟宏觀調控的角度來看去可以協調相關部會我是覺得應該國安會要扮演更積極的功能
transcript.whisperx[27].start 608.41
transcript.whisperx[27].end 634.992
transcript.whisperx[27].text 我們來論一下 因為這個有一個分工那我們會來按照委員的指示我們來論剛剛有委員提到就是說台積電的技術外洩當然技術外洩我們當然很慎重來看這個關於先進製程的我們的這個幾米當然是非常重要特別是2奈米當然這個是很專業的那畢竟這個技術外洩這是一個事實沒有錯嘛
transcript.whisperx[28].start 636.246
transcript.whisperx[28].end 651.607
transcript.whisperx[28].text 是一个事实然后他的外泄的对象也是一个确定嘛是的那台日我不是期待台日半导体能够合作能够合作那如果是这样子的话变成一个恶性竞争的关系啊
transcript.whisperx[29].start 652.663
transcript.whisperx[29].end 673.089
transcript.whisperx[29].text 會不會讓台日過去半導體的合作方向會造成一些影響甚至對台積電這個2奈米的製程的競爭力會不會或者後續的營收會不會有相關的衝擊我想台積電這個公司有這個責任向董事會做個說明
transcript.whisperx[30].start 674.866
transcript.whisperx[30].end 702.268
transcript.whisperx[30].text 我們在下一次董事會他們會針對整個案情進行說明因為目前還在查證調查中那目前從我的角度來看他檢調進來了然後國科會進來了那已經在整個安全性是止血了那現在是要把他的動機跟目的那這些人的背後的動機跟目的是來自於誰那目前必須查清楚才能確定
transcript.whisperx[31].start 703.109
transcript.whisperx[31].end 731.011
transcript.whisperx[31].text 那我們也不能說現在就去就會把他指向是哪一個哪一個國家哪一個我們會讓檢調跟國會我想這個國安會或者諸位你也持續關注後續的這個處理情形另外這個先進製程我比較不擔心就加上有今天記者會他所說的承諾他們所說的承諾但我比較相對關心相對擔心的是成熟製程說實在大概在中國大概他
transcript.whisperx[32].start 731.832
transcript.whisperx[32].end 756.762
transcript.whisperx[32].text 可以掌握百分之五成的這個成熟製程的市場所以台灣也有很多成熟製程的這個廠商 對不對那成熟製程我看這個百分之百的關稅豁免呃 剋制百分之百的關稅是針對中國是劍指中國 我認為啦劍指中國是什麼 成熟製程這成熟製程它佔百分之五十趴的這個市佔率
transcript.whisperx[33].start 758.038
transcript.whisperx[33].end 785.817
transcript.whisperx[33].text 因為這個中國的城中市也沒有在美國設廠戶你要輸美國你就課百分之百台灣有些城中市的人有有些沒有對台灣城中市的人也會造成影響我想城中市政府也請國安會先去做一些了解今天早上就有因為要來這裡所以我已經傳訊息給到工協會我們希望他們再評估看看
transcript.whisperx[34].start 786.597
transcript.whisperx[34].end 806.67
transcript.whisperx[34].text 因為我的從直覺來看Global Fungi會占到一些優勢那如果誰跟他有一點客戶衝突的話那他這個評估我們希望他盡快評估出來那其他的部分的話我們也請他們評估因為在第一次的討論裡面大家是認為只要大家都一樣長一樣的話影響力就沒有那麼大
transcript.whisperx[35].start 807.35
transcript.whisperx[35].end 824.422
transcript.whisperx[35].text 委員在扣減業也有聽到如果大家都50%的時候我們扣減業就還算比較擔心反而是匯率的問題對不對所以我們現在正在收集這個部分好 謝謝好 謝謝委員