iVOD / 163401

Field Value
IVOD_ID 163401
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/163401
日期 2025-08-07
會議資料.會議代碼 委員會-11-3-19-19
會議資料.會議代碼:str 第11屆第3會期經濟委員會第19次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 19
會議資料.種類 委員會
會議資料.委員會代碼[0] 19
會議資料.委員會代碼:str[0] 經濟委員會
會議資料.標題 第11屆第3會期經濟委員會第19次全體委員會議
影片種類 Clip
開始時間 2025-08-07T09:53:12+08:00
結束時間 2025-08-07T10:05:19+08:00
影片長度 00:12:07
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/ce960b47cc6398b99c7edcc07ab7195170dc6911ab88c3aa02881fab7f5768fb9eca1244ea1315045ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 陳亭妃
委員發言時間 09:53:12 - 10:05:19
會議時間 2025-08-07T09:00:00+08:00
會議名稱 立法院第11屆第3會期經濟委員會第19次全體委員會議(事由:邀請國家發展委員會主任委員就「美國對等關稅底定後,我國經濟未來之景氣情況及產業全球佈局新規劃」進行報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 7.23659375
transcript.pyannote[0].end 10.13909375
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 11.48909375
transcript.pyannote[1].end 11.92784375
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 17.95221875
transcript.pyannote[2].end 18.55971875
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 18.89721875
transcript.pyannote[3].end 31.78971875
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 32.31284375
transcript.pyannote[4].end 33.54471875
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 33.61221875
transcript.pyannote[5].end 35.45159375
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 35.77221875
transcript.pyannote[6].end 37.93221875
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 38.55659375
transcript.pyannote[7].end 44.36159375
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 45.23909375
transcript.pyannote[8].end 48.46221875
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 48.73221875
transcript.pyannote[9].end 59.32971875
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 59.76846875
transcript.pyannote[10].end 76.47471875
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 76.79534375
transcript.pyannote[11].end 77.03159375
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 77.03159375
transcript.pyannote[12].end 77.77409375
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 78.01034375
transcript.pyannote[13].end 80.92971875
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 78.53346875
transcript.pyannote[14].end 78.85409375
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 81.40221875
transcript.pyannote[15].end 89.46846875
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 89.90721875
transcript.pyannote[16].end 106.66409375
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 106.88346875
transcript.pyannote[17].end 108.19971875
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 108.58784375
transcript.pyannote[18].end 129.05721875
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 129.19221875
transcript.pyannote[19].end 138.60846875
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 139.06409375
transcript.pyannote[20].end 151.16346875
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 151.36596875
transcript.pyannote[21].end 152.74971875
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 153.23909375
transcript.pyannote[22].end 154.33596875
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 154.70721875
transcript.pyannote[23].end 159.88784375
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 154.77471875
transcript.pyannote[24].end 155.44971875
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 160.15784375
transcript.pyannote[25].end 187.15784375
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 179.91846875
transcript.pyannote[26].end 180.74534375
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 186.06096875
transcript.pyannote[27].end 200.45534375
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 200.64096875
transcript.pyannote[28].end 202.85159375
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 202.64909375
transcript.pyannote[29].end 204.42096875
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 204.42096875
transcript.pyannote[30].end 206.42909375
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 206.78346875
transcript.pyannote[31].end 214.64721875
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 214.79909375
transcript.pyannote[32].end 221.04284375
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 221.48159375
transcript.pyannote[33].end 228.23159375
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 228.61971875
transcript.pyannote[34].end 229.75034375
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 230.35784375
transcript.pyannote[35].end 231.58971875
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 232.31534375
transcript.pyannote[36].end 234.22221875
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 234.25596875
transcript.pyannote[37].end 241.42784375
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 241.46159375
transcript.pyannote[38].end 245.69721875
transcript.pyannote[39].speaker SPEAKER_01
transcript.pyannote[39].start 246.03471875
transcript.pyannote[39].end 257.15534375
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 257.52659375
transcript.pyannote[40].end 260.86784375
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 261.07034375
transcript.pyannote[41].end 265.91346875
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 264.90096875
transcript.pyannote[42].end 273.55784375
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 273.99659375
transcript.pyannote[43].end 282.09659375
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 280.94909375
transcript.pyannote[44].end 286.14659375
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 287.10846875
transcript.pyannote[45].end 288.05346875
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 288.23909375
transcript.pyannote[46].end 290.21346875
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 290.97284375
transcript.pyannote[47].end 293.16659375
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 293.90909375
transcript.pyannote[48].end 294.76971875
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 294.12846875
transcript.pyannote[49].end 296.69346875
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 296.96346875
transcript.pyannote[50].end 299.19096875
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 299.59596875
transcript.pyannote[51].end 301.43534375
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 302.14409375
transcript.pyannote[52].end 306.27846875
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 306.83534375
transcript.pyannote[53].end 307.47659375
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 307.79721875
transcript.pyannote[54].end 316.79159375
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 317.11221875
transcript.pyannote[55].end 318.12471875
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 318.88409375
transcript.pyannote[56].end 322.51221875
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 323.32221875
transcript.pyannote[57].end 324.73971875
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 324.73971875
transcript.pyannote[58].end 326.47784375
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 325.95471875
transcript.pyannote[59].end 326.34284375
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 326.96721875
transcript.pyannote[60].end 330.32534375
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 330.64596875
transcript.pyannote[61].end 331.74284375
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 331.91159375
transcript.pyannote[62].end 333.39659375
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 333.80159375
transcript.pyannote[63].end 335.08409375
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 335.64096875
transcript.pyannote[64].end 336.26534375
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 337.48034375
transcript.pyannote[65].end 338.34096875
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 338.49284375
transcript.pyannote[66].end 338.83034375
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 338.83034375
transcript.pyannote[67].end 340.11284375
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 340.55159375
transcript.pyannote[68].end 344.97284375
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 345.78284375
transcript.pyannote[69].end 347.55471875
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 347.87534375
transcript.pyannote[70].end 349.02284375
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 349.42784375
transcript.pyannote[71].end 350.01846875
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 350.62596875
transcript.pyannote[72].end 351.16596875
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 352.60034375
transcript.pyannote[73].end 359.35034375
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 359.51909375
transcript.pyannote[74].end 366.10034375
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 366.72471875
transcript.pyannote[75].end 375.68534375
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 375.87096875
transcript.pyannote[76].end 378.57096875
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 378.60471875
transcript.pyannote[77].end 381.22034375
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 381.64221875
transcript.pyannote[78].end 383.11034375
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 381.86159375
transcript.pyannote[79].end 382.08096875
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 383.70096875
transcript.pyannote[80].end 387.71721875
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 388.05471875
transcript.pyannote[81].end 388.35846875
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 388.61159375
transcript.pyannote[82].end 394.02846875
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 394.56846875
transcript.pyannote[83].end 394.58534375
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 394.58534375
transcript.pyannote[84].end 394.60221875
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 394.60221875
transcript.pyannote[85].end 394.66971875
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 394.66971875
transcript.pyannote[86].end 394.93971875
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 394.93971875
transcript.pyannote[87].end 401.03159375
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 401.43659375
transcript.pyannote[88].end 404.23784375
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 404.37284375
transcript.pyannote[89].end 406.95471875
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 407.66346875
transcript.pyannote[90].end 416.87721875
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 417.34971875
transcript.pyannote[91].end 419.74596875
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 420.21846875
transcript.pyannote[92].end 427.59284375
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 428.20034375
transcript.pyannote[93].end 430.27596875
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 430.93409375
transcript.pyannote[94].end 432.40221875
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 433.16159375
transcript.pyannote[95].end 439.40534375
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 439.40534375
transcript.pyannote[96].end 440.09721875
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 440.01284375
transcript.pyannote[97].end 441.29534375
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 440.95784375
transcript.pyannote[98].end 443.32034375
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 443.55659375
transcript.pyannote[99].end 456.21284375
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 456.49971875
transcript.pyannote[100].end 464.26221875
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 464.59971875
transcript.pyannote[101].end 472.64909375
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 472.95284375
transcript.pyannote[102].end 476.85096875
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 477.64409375
transcript.pyannote[103].end 478.74096875
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 479.23034375
transcript.pyannote[104].end 480.73221875
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 481.03596875
transcript.pyannote[105].end 495.04221875
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 481.91346875
transcript.pyannote[106].end 483.29721875
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 485.28846875
transcript.pyannote[107].end 486.60471875
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 495.19409375
transcript.pyannote[108].end 503.93534375
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 504.34034375
transcript.pyannote[109].end 506.46659375
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 507.02346875
transcript.pyannote[110].end 507.79971875
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 507.79971875
transcript.pyannote[111].end 507.91784375
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 508.18784375
transcript.pyannote[112].end 509.58846875
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 510.48284375
transcript.pyannote[113].end 524.15159375
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 524.57346875
transcript.pyannote[114].end 525.40034375
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 525.75471875
transcript.pyannote[115].end 530.59784375
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 531.91409375
transcript.pyannote[116].end 533.39909375
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 533.83784375
transcript.pyannote[117].end 533.88846875
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 533.88846875
transcript.pyannote[118].end 534.10784375
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 534.56346875
transcript.pyannote[119].end 536.74034375
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 537.34784375
transcript.pyannote[120].end 545.53221875
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 546.19034375
transcript.pyannote[121].end 549.86909375
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 549.78471875
transcript.pyannote[122].end 555.42096875
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 551.28659375
transcript.pyannote[123].end 551.55659375
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 556.01159375
transcript.pyannote[124].end 564.65159375
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 564.65159375
transcript.pyannote[125].end 568.65096875
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 569.05596875
transcript.pyannote[126].end 570.38909375
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 570.70971875
transcript.pyannote[127].end 572.14409375
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 572.80221875
transcript.pyannote[128].end 583.63596875
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 584.29409375
transcript.pyannote[129].end 587.58471875
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 587.87159375
transcript.pyannote[130].end 587.90534375
transcript.pyannote[131].speaker SPEAKER_01
transcript.pyannote[131].start 587.90534375
transcript.pyannote[131].end 596.93346875
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 587.95596875
transcript.pyannote[132].end 588.51284375
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 594.63846875
transcript.pyannote[133].end 595.00971875
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 597.43971875
transcript.pyannote[134].end 597.99659375
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 597.59159375
transcript.pyannote[135].end 599.83596875
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 600.20721875
transcript.pyannote[136].end 601.87784375
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 602.51909375
transcript.pyannote[137].end 604.05471875
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 604.72971875
transcript.pyannote[138].end 608.29034375
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 608.72909375
transcript.pyannote[139].end 609.40409375
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 609.94409375
transcript.pyannote[140].end 611.27721875
transcript.pyannote[141].speaker SPEAKER_00
transcript.pyannote[141].start 611.78346875
transcript.pyannote[141].end 612.71159375
transcript.pyannote[142].speaker SPEAKER_00
transcript.pyannote[142].start 613.15034375
transcript.pyannote[142].end 614.06159375
transcript.pyannote[143].speaker SPEAKER_00
transcript.pyannote[143].start 614.92221875
transcript.pyannote[143].end 616.79534375
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 616.94721875
transcript.pyannote[144].end 619.93409375
transcript.pyannote[145].speaker SPEAKER_00
transcript.pyannote[145].start 620.40659375
transcript.pyannote[145].end 621.48659375
transcript.pyannote[146].speaker SPEAKER_01
transcript.pyannote[146].start 621.72284375
transcript.pyannote[146].end 622.12784375
transcript.pyannote[147].speaker SPEAKER_00
transcript.pyannote[147].start 622.41471875
transcript.pyannote[147].end 624.65909375
transcript.pyannote[148].speaker SPEAKER_01
transcript.pyannote[148].start 625.92471875
transcript.pyannote[148].end 641.43284375
transcript.pyannote[149].speaker SPEAKER_01
transcript.pyannote[149].start 641.90534375
transcript.pyannote[149].end 651.70971875
transcript.pyannote[150].speaker SPEAKER_00
transcript.pyannote[150].start 651.81096875
transcript.pyannote[150].end 659.35409375
transcript.pyannote[151].speaker SPEAKER_00
transcript.pyannote[151].start 660.14721875
transcript.pyannote[151].end 669.47909375
transcript.pyannote[152].speaker SPEAKER_00
transcript.pyannote[152].start 669.81659375
transcript.pyannote[152].end 674.81159375
transcript.pyannote[153].speaker SPEAKER_00
transcript.pyannote[153].start 675.16596875
transcript.pyannote[153].end 676.12784375
transcript.pyannote[154].speaker SPEAKER_01
transcript.pyannote[154].start 676.53284375
transcript.pyannote[154].end 677.24159375
transcript.pyannote[155].speaker SPEAKER_00
transcript.pyannote[155].start 676.90409375
transcript.pyannote[155].end 677.91659375
transcript.pyannote[156].speaker SPEAKER_00
transcript.pyannote[156].start 678.37221875
transcript.pyannote[156].end 679.94159375
transcript.pyannote[157].speaker SPEAKER_00
transcript.pyannote[157].start 680.19471875
transcript.pyannote[157].end 682.97909375
transcript.pyannote[158].speaker SPEAKER_00
transcript.pyannote[158].start 683.53596875
transcript.pyannote[158].end 686.47221875
transcript.pyannote[159].speaker SPEAKER_00
transcript.pyannote[159].start 686.86034375
transcript.pyannote[159].end 689.39159375
transcript.pyannote[160].speaker SPEAKER_00
transcript.pyannote[160].start 690.06659375
transcript.pyannote[160].end 692.71596875
transcript.pyannote[161].speaker SPEAKER_00
transcript.pyannote[161].start 693.42471875
transcript.pyannote[161].end 696.96846875
transcript.pyannote[162].speaker SPEAKER_00
transcript.pyannote[162].start 697.76159375
transcript.pyannote[162].end 702.89159375
transcript.pyannote[163].speaker SPEAKER_00
transcript.pyannote[163].start 703.16159375
transcript.pyannote[163].end 704.83221875
transcript.pyannote[164].speaker SPEAKER_00
transcript.pyannote[164].start 705.28784375
transcript.pyannote[164].end 709.74284375
transcript.pyannote[165].speaker SPEAKER_00
transcript.pyannote[165].start 710.11409375
transcript.pyannote[165].end 715.48034375
transcript.pyannote[166].speaker SPEAKER_01
transcript.pyannote[166].start 715.64909375
transcript.pyannote[166].end 718.01159375
transcript.pyannote[167].speaker SPEAKER_00
transcript.pyannote[167].start 718.01159375
transcript.pyannote[167].end 721.40346875
transcript.pyannote[168].speaker SPEAKER_00
transcript.pyannote[168].start 721.96034375
transcript.pyannote[168].end 725.33534375
transcript.pyannote[169].speaker SPEAKER_01
transcript.pyannote[169].start 725.62221875
transcript.pyannote[169].end 725.97659375
transcript.pyannote[170].speaker SPEAKER_00
transcript.pyannote[170].start 725.97659375
transcript.pyannote[170].end 726.34784375
transcript.pyannote[171].speaker SPEAKER_00
transcript.pyannote[171].start 726.60096875
transcript.pyannote[171].end 727.09034375
transcript.whisperx[0].start 7.948
transcript.whisperx[0].end 11.872
transcript.whisperx[0].text 謝謝召喚會我們是不是請主委劉主委委員早
transcript.whisperx[1].start 19.296
transcript.whisperx[1].end 39.826
transcript.whisperx[1].text 今天川普總統在我們臺灣凌晨四點半的部分發布了這個消息其實大家原本以為是下個禮拜可是他提早把這樣的聲音丟出來那這個聲音丟出來之後主委你認為對於我們臺灣的半導體產業有什麼影響
transcript.whisperx[2].start 45.966
transcript.whisperx[2].end 71.064
transcript.whisperx[2].text 台灣半導體產業大部分的大部分的晶片是輸到那個組裝廠去大部分不在美國只有少部分那目前原來我們看到去年是74億美金那74億美金如果扣掉台積電再把中美經營在美國也有廠扣下來的話大概應該會在60不到60億美金接近60億美金的數字
transcript.whisperx[3].start 71.784
transcript.whisperx[3].end 89.151
transcript.whisperx[3].text 在我們出口的總額應該是百分之應該是1.12啦1.12對那所以你認為它的衝擊力呢它的衝擊力大概就是以我們可以用60億美金來看它的衝擊可是事實上並沒有那麼高的原因我解釋一下就是說
transcript.whisperx[4].start 90.377
transcript.whisperx[4].end 105.112
transcript.whisperx[4].text 除了我們剛剛講在美國有廠的廠商之外我們現在還有人是跟Intel合作他也可以跟Intel談合作那另外很明顯我們有建廠跟併購兩種有些企業也可以進行併購快速的進去只要有承諾就可以
transcript.whisperx[5].start 105.672
transcript.whisperx[5].end 126.348
transcript.whisperx[5].text 那有實現就沒有實現就要再退這段期間的關稅所以呢大的廠應該會有一些佈局跟動作那我跟我們佈局台灣跟台灣佈局全球一樣嘛那這個政策是一樣我們會支持他那另外我們在德州也幫也正在努力想幫大家拿到的爭取這個我們正在爭取這個
transcript.whisperx[6].start 127.308
transcript.whisperx[6].end 152.059
transcript.whisperx[6].text 零週稅的機會目前至少州長是對我們很支持所以這些都開始在佈局那另外一次我們之前跟廠商開會的時候大部分廠商都說他們其實第一個可全球佈局第二個事情只要那個時候多數廠商的表達是說只要他的競爭對手也是課一樣的稅的話
transcript.whisperx[7].start 153.28
transcript.whisperx[7].end 168.612
transcript.whisperx[7].text 他們的競爭力還是一樣的所以他們認為如果只要是一樣他就沒有很大的差異那現在我們在評估的是Global Fungi比較大的代工也部分在美國那但是他是以8吋廠為主所以我們還在這個還要看他相對的競爭值我們現在
transcript.whisperx[8].start 172.957
transcript.whisperx[8].end 188.317
transcript.whisperx[8].text 今天早上我其实发了一些讯息给到相关的协会我们希望尽快的请他们帮我们收集出来那这个影响应该是非常小因为Global Foundry对跟台厂之间没有那么强的竞争我觉得因为今天川普已经在
transcript.whisperx[9].start 189.477
transcript.whisperx[9].end 204.245
transcript.whisperx[9].text 这个台湾时间凌晨四点半做了这样的一个宣布就是说半导体要开征百分之百的关税除非你是在美国设厂我想他今天会讲出这个大概也差不多是这个方向了对还有承诺在美国设厂
transcript.whisperx[10].start 204.485
transcript.whisperx[10].end 229.608
transcript.whisperx[10].text 对 就是说在美国设厂可能就排除在这之外那我必须说是不是因为这个样子所以其实在昨天川普他有说了一个所谓台积电要再投资3000亿美元那当然台积电本身已经有说了他们目前还是维持在1650亿美元这样的一个标准
transcript.whisperx[11].start 230.407
transcript.whisperx[11].end 245.553
transcript.whisperx[11].text 那是不是会因为川普今天早上四点半所做的这个百分之百关税的一个问题而造成台积电在整个投资的一个范围会扩大会不会是这个样子
transcript.whisperx[12].start 246.289
transcript.whisperx[12].end 260.418
transcript.whisperx[12].text 這個我們還是要尊重台積電的看法那但是我的經驗是這樣子這個沒有訂單他也不會去有訂單他才會去這是他必須對他的股東負責因為他是一個上市公司
transcript.whisperx[13].start 261.238
transcript.whisperx[13].end 289.811
transcript.whisperx[13].text 所以呢台積電應該會衡量這些因素可是競爭力啊如果說他把這樣子投資他說的如果在美國市場可以排除在百分之百關稅的一個部分嘛會不會是在這樣的一個競爭力的條件之下而讓台積電有所轉移其實大家擔心的是這個狀況我的瞭解台積電輸美的比例非常低啦因為他大概在1%出頭而已啦那所以沒有那麼大的
transcript.whisperx[14].start 291.398
transcript.whisperx[14].end 317.826
transcript.whisperx[14].text 它大部分都出到了组装厂去所以主委你这个才是关键因为现在台积电是一个我们台湾的护国神山大家所担心的是说会不会因为这样的一个变动关税的调整而让台积电在经营的层面当中有所改变可是如果依照主委所说的其实它本身
transcript.whisperx[15].start 318.939
transcript.whisperx[15].end 344.379
transcript.whisperx[15].text 它鎖在這個區塊影響是很少的目前是這樣的對啊 目前嘛可是跟著半導體開徵百分之百關稅的這個部分會不會有所變動大家擔心的是這個目前影響很少可是未來因為川普對半導體開徵百分之百關稅之後
transcript.whisperx[16].start 345.834
transcript.whisperx[16].end 364.8
transcript.whisperx[16].text 然後在競爭力的條件會有沒有可能有轉移他現在因為他台積電其實有一個8吋廠在阿勒岡州加上先進製程所以他應該比他的競爭對手更佔優勢目前的狀態反而是他的優勢比較高
transcript.whisperx[17].start 366.792
transcript.whisperx[17].end 392.439
transcript.whisperx[17].text 所以我覺得主委我們應該不是在於三千億兩千億一千六百五十億而是你要把我們目前對於產業別的分析告訴民眾我覺得重點兩千億三千億一千六百五十億我覺得這是一個數字可是這個數字會影響人民的信心畢竟台積電是護國神山
transcript.whisperx[18].start 395.121
transcript.whisperx[18].end 406.739
transcript.whisperx[18].text 但是如果依照主委所说的依照目前台积电它的整个经营方式它其实在美国这个区块是竞争力跟各方面是影响比较少
transcript.whisperx[19].start 407.754
transcript.whisperx[19].end 424.541
transcript.whisperx[19].text 如果是這樣的話 那當然他就不會思考我要去投注三千億美元我要去投注多少的一個增加資本額的一個部分所以我覺得應該把這個我們在整個產業的一個投資狀況跟發展狀況還有分佈狀況跟民眾說清楚否則你糾結在這個數字 人民會搞不清楚
transcript.whisperx[20].start 433.24
transcript.whisperx[20].end 456.047
transcript.whisperx[20].text 好像說在這一波的一個關稅當中是不是連我們護國神山都要過去其實不是不是的對嘛 其實不是目前應該只有差不多6%對嘛 其實不是嘛所以如果6%跟大家腦袋裡面所想是不是哇 三千億美元多少美元過去那台灣怎麼辦所以是不是的
transcript.whisperx[21].start 456.747
transcript.whisperx[21].end 479.896
transcript.whisperx[21].text 我覺得我們要去講的是我們目前在針對產業當然投不投資是台積電本身他們在整個商業經營的一個範疇當中他們的思考可是我們政府是可以我們整個半導體發展的區塊我們來做分析目前就是6%
transcript.whisperx[22].start 481.349
transcript.whisperx[22].end 509.037
transcript.whisperx[22].text 產能的部分這個產能講的是2029年的產能對 產能的部分但2029年不是現在現在它輸美的部分只有在1%上下那這個影響非常小的那未來產能擴大之後因為主要有一些組裝廠也會在墨西哥跟德州那大概是這樣的一個狀態所以目前就是一person目前 對那在整個
transcript.whisperx[23].start 510.623
transcript.whisperx[23].end 531.974
transcript.whisperx[23].text 所有的區塊做調整之後這個所謂未來的投資1650億美元增加之後我們所有看到的2029年可能影響到6%對 可是它這整個還很久因為2029年是第三場的量產2028年是四產
transcript.whisperx[24].start 534.649
transcript.whisperx[24].end 555.048
transcript.whisperx[24].text 所以依照主委所分析的基本上它的整个影响的程度其实没有我们想象的那么多那么大范围那么广因为它是全球布局的一个概念台积业还是一个企业它还是以企业经营为核心因为它还要对股东负责
transcript.whisperx[25].start 556.298
transcript.whisperx[25].end 583.424
transcript.whisperx[25].text 他的資金來源是從他的股東來的那他在股市上市公司他必須要很謹慎而且很負責的去面對所以主委我覺得你今天這個講法才能真正的讓台灣人民安心否則一直我們講的護國神山然後不斷的訊息來的是說他的投資在美國投資會增加是不是我們所有的主要的
transcript.whisperx[26].start 584.864
transcript.whisperx[26].end 601.494
transcript.whisperx[26].text 主要的部分都會往美國來移但並不是嘛對 它其實現在有八個廠要建設或是未建設在台灣那遠比美國多很多啦所以我覺得我們要把這個最關鍵的講出來然後主委我要再問一下
transcript.whisperx[27].start 604.936
transcript.whisperx[27].end 624.412
transcript.whisperx[27].text 這一波在美國關稅的部分其實對台南兩個部分影響最多就是蝴蝶蘭跟台灣貂這兩個是在我們所有的產業其實市占率台南是最多的所以在這個部分到底我們要怎麼做
transcript.whisperx[28].start 626.37
transcript.whisperx[28].end 650.448
transcript.whisperx[28].text 這個部分我們有一個短期因應方案由農業部主政提出來就是我們在我們編列的900多億來協助產業跟農業那這個是在我們短期協助的方向那中長期的部分當然我們還是會慢慢的去分散市場但短期的應急我們現在是用資金來協助業者度過當前的問題
transcript.whisperx[29].start 651.857
transcript.whisperx[29].end 658.408
transcript.whisperx[29].text 尤其今天早上行政院院長有提到一個叫投資台灣三大方案的2.0版
transcript.whisperx[30].start 660.182
transcript.whisperx[30].end 689.251
transcript.whisperx[30].text 他要引資1.2兆這個部分裡面有一個叫貸款額度要新增貸款額度來讓企業能夠增加他的一個投資量跟他的穩定性主委這個很重要每一次都是我們有方案但是銀行端的配合度並沒有那麼好所以如果我們真的要讓他百分之百達到效果銀行端的部分你們要去溝通好
transcript.whisperx[31].start 690.171
transcript.whisperx[31].end 715.326
transcript.whisperx[31].text 否則真正想用的用不到他們為了要讓你們看美化數字然後去拜託那個那個可能不需要貸款的人去貸然後真正需要貸的 貸不到我覺得這個部分是每次只要我們有這個投資方案我們得到基層的這些企業最大的反應所以我在這裡提醒一下我們的主委
transcript.whisperx[32].start 715.806
transcript.whisperx[32].end 724.96
transcript.whisperx[32].text 我們反映給那個經管會跟對這個部分你們既然要跨部會這個都跨部會你們跨部會在處理的時候這是很重要的謝謝好謝謝委員謝謝