iVOD / 163224

Field Value
IVOD_ID 163224
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/163224
日期 2025-07-21
會議資料.會議代碼 委員會-11-3-19-18
會議資料.會議代碼:str 第11屆第3會期經濟委員會第18次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 18
會議資料.種類 委員會
會議資料.委員會代碼[0] 19
會議資料.委員會代碼:str[0] 經濟委員會
會議資料.標題 第11屆第3會期經濟委員會第18次全體委員會議
影片種類 Clip
開始時間 2025-07-21T11:52:06+08:00
結束時間 2025-07-21T12:02:31+08:00
影片長度 00:10:25
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/03307e70a03ca0b950660c26d42c3ae6bc8bc26138795b0e2d4f4f63d7cb167b79d122fef1d5156d5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 邱志偉
委員發言時間 11:52:06 - 12:02:31
會議時間 2025-07-21T09:00:00+08:00
會議名稱 立法院第11屆第3會期經濟委員會第18次全體委員會議(事由:邀請經濟部部長、農業部部長、內政部首長及交通部首長就「丹娜絲颱風及0708豪雨災損及回復情形」進行報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 0.14909375
transcript.pyannote[0].end 1.02659375
transcript.pyannote[1].speaker SPEAKER_03
transcript.pyannote[1].start 14.23971875
transcript.pyannote[1].end 14.91471875
transcript.pyannote[2].speaker SPEAKER_03
transcript.pyannote[2].start 15.37034375
transcript.pyannote[2].end 16.09596875
transcript.pyannote[3].speaker SPEAKER_03
transcript.pyannote[3].start 16.87221875
transcript.pyannote[3].end 22.39034375
transcript.pyannote[4].speaker SPEAKER_03
transcript.pyannote[4].start 23.79096875
transcript.pyannote[4].end 26.28846875
transcript.pyannote[5].speaker SPEAKER_03
transcript.pyannote[5].start 27.46971875
transcript.pyannote[5].end 28.85346875
transcript.pyannote[6].speaker SPEAKER_03
transcript.pyannote[6].start 29.96721875
transcript.pyannote[6].end 30.52409375
transcript.pyannote[7].speaker SPEAKER_03
transcript.pyannote[7].start 31.53659375
transcript.pyannote[7].end 32.68409375
transcript.pyannote[8].speaker SPEAKER_03
transcript.pyannote[8].start 33.47721875
transcript.pyannote[8].end 35.99159375
transcript.pyannote[9].speaker SPEAKER_03
transcript.pyannote[9].start 36.66659375
transcript.pyannote[9].end 37.37534375
transcript.pyannote[10].speaker SPEAKER_03
transcript.pyannote[10].start 37.74659375
transcript.pyannote[10].end 38.84346875
transcript.pyannote[11].speaker SPEAKER_03
transcript.pyannote[11].start 39.14721875
transcript.pyannote[11].end 40.19346875
transcript.pyannote[12].speaker SPEAKER_03
transcript.pyannote[12].start 41.52659375
transcript.pyannote[12].end 42.10034375
transcript.pyannote[13].speaker SPEAKER_03
transcript.pyannote[13].start 42.79221875
transcript.pyannote[13].end 43.36596875
transcript.pyannote[14].speaker SPEAKER_03
transcript.pyannote[14].start 43.88909375
transcript.pyannote[14].end 44.46284375
transcript.pyannote[15].speaker SPEAKER_03
transcript.pyannote[15].start 45.39096875
transcript.pyannote[15].end 46.57221875
transcript.pyannote[16].speaker SPEAKER_03
transcript.pyannote[16].start 46.65659375
transcript.pyannote[16].end 47.77034375
transcript.pyannote[17].speaker SPEAKER_03
transcript.pyannote[17].start 48.51284375
transcript.pyannote[17].end 50.58846875
transcript.pyannote[18].speaker SPEAKER_03
transcript.pyannote[18].start 51.24659375
transcript.pyannote[18].end 52.30971875
transcript.pyannote[19].speaker SPEAKER_03
transcript.pyannote[19].start 52.98471875
transcript.pyannote[19].end 53.74409375
transcript.pyannote[20].speaker SPEAKER_03
transcript.pyannote[20].start 54.16596875
transcript.pyannote[20].end 54.94221875
transcript.pyannote[21].speaker SPEAKER_03
transcript.pyannote[21].start 55.14471875
transcript.pyannote[21].end 55.87034375
transcript.pyannote[22].speaker SPEAKER_03
transcript.pyannote[22].start 56.56221875
transcript.pyannote[22].end 57.74346875
transcript.pyannote[23].speaker SPEAKER_03
transcript.pyannote[23].start 58.41846875
transcript.pyannote[23].end 58.78971875
transcript.pyannote[24].speaker SPEAKER_03
transcript.pyannote[24].start 59.17784375
transcript.pyannote[24].end 60.66284375
transcript.pyannote[25].speaker SPEAKER_03
transcript.pyannote[25].start 61.08471875
transcript.pyannote[25].end 61.77659375
transcript.pyannote[26].speaker SPEAKER_03
transcript.pyannote[26].start 62.73846875
transcript.pyannote[26].end 63.16034375
transcript.pyannote[27].speaker SPEAKER_03
transcript.pyannote[27].start 63.63284375
transcript.pyannote[27].end 64.98284375
transcript.pyannote[28].speaker SPEAKER_03
transcript.pyannote[28].start 65.21909375
transcript.pyannote[28].end 66.23159375
transcript.pyannote[29].speaker SPEAKER_03
transcript.pyannote[29].start 67.05846875
transcript.pyannote[29].end 69.26909375
transcript.pyannote[30].speaker SPEAKER_03
transcript.pyannote[30].start 70.56846875
transcript.pyannote[30].end 71.39534375
transcript.pyannote[31].speaker SPEAKER_03
transcript.pyannote[31].start 71.83409375
transcript.pyannote[31].end 73.25159375
transcript.pyannote[32].speaker SPEAKER_03
transcript.pyannote[32].start 73.36971875
transcript.pyannote[32].end 73.92659375
transcript.pyannote[33].speaker SPEAKER_03
transcript.pyannote[33].start 78.02721875
transcript.pyannote[33].end 80.18721875
transcript.pyannote[34].speaker SPEAKER_03
transcript.pyannote[34].start 80.60909375
transcript.pyannote[34].end 82.60034375
transcript.pyannote[35].speaker SPEAKER_03
transcript.pyannote[35].start 83.22471875
transcript.pyannote[35].end 84.42284375
transcript.pyannote[36].speaker SPEAKER_03
transcript.pyannote[36].start 85.18221875
transcript.pyannote[36].end 86.22846875
transcript.pyannote[37].speaker SPEAKER_03
transcript.pyannote[37].start 86.86971875
transcript.pyannote[37].end 87.71346875
transcript.pyannote[38].speaker SPEAKER_03
transcript.pyannote[38].start 88.01721875
transcript.pyannote[38].end 90.46409375
transcript.pyannote[39].speaker SPEAKER_03
transcript.pyannote[39].start 91.78034375
transcript.pyannote[39].end 102.83346875
transcript.pyannote[40].speaker SPEAKER_03
transcript.pyannote[40].start 104.03159375
transcript.pyannote[40].end 104.92596875
transcript.pyannote[41].speaker SPEAKER_03
transcript.pyannote[41].start 105.24659375
transcript.pyannote[41].end 105.66846875
transcript.pyannote[42].speaker SPEAKER_03
transcript.pyannote[42].start 108.23346875
transcript.pyannote[42].end 109.70159375
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 108.28409375
transcript.pyannote[43].end 111.06846875
transcript.pyannote[44].speaker SPEAKER_03
transcript.pyannote[44].start 110.56221875
transcript.pyannote[44].end 116.29971875
transcript.pyannote[45].speaker SPEAKER_03
transcript.pyannote[45].start 116.94096875
transcript.pyannote[45].end 121.26096875
transcript.pyannote[46].speaker SPEAKER_03
transcript.pyannote[46].start 122.29034375
transcript.pyannote[46].end 128.26409375
transcript.pyannote[47].speaker SPEAKER_03
transcript.pyannote[47].start 128.92221875
transcript.pyannote[47].end 139.77284375
transcript.pyannote[48].speaker SPEAKER_03
transcript.pyannote[48].start 140.44784375
transcript.pyannote[48].end 144.71721875
transcript.pyannote[49].speaker SPEAKER_03
transcript.pyannote[49].start 145.88159375
transcript.pyannote[49].end 146.55659375
transcript.pyannote[50].speaker SPEAKER_03
transcript.pyannote[50].start 148.07534375
transcript.pyannote[50].end 152.86784375
transcript.pyannote[51].speaker SPEAKER_03
transcript.pyannote[51].start 154.08284375
transcript.pyannote[51].end 155.55096875
transcript.pyannote[52].speaker SPEAKER_03
transcript.pyannote[52].start 155.70284375
transcript.pyannote[52].end 158.41971875
transcript.pyannote[53].speaker SPEAKER_03
transcript.pyannote[53].start 159.49971875
transcript.pyannote[53].end 159.98909375
transcript.pyannote[54].speaker SPEAKER_03
transcript.pyannote[54].start 160.25909375
transcript.pyannote[54].end 162.01409375
transcript.pyannote[55].speaker SPEAKER_03
transcript.pyannote[55].start 162.75659375
transcript.pyannote[55].end 163.41471875
transcript.pyannote[56].speaker SPEAKER_03
transcript.pyannote[56].start 163.97159375
transcript.pyannote[56].end 166.40159375
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 166.40159375
transcript.pyannote[57].end 166.41846875
transcript.pyannote[58].speaker SPEAKER_03
transcript.pyannote[58].start 166.89096875
transcript.pyannote[58].end 167.02596875
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 167.02596875
transcript.pyannote[59].end 167.24534375
transcript.pyannote[60].speaker SPEAKER_03
transcript.pyannote[60].start 167.24534375
transcript.pyannote[60].end 167.34659375
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 167.34659375
transcript.pyannote[61].end 167.61659375
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 168.22409375
transcript.pyannote[62].end 168.30846875
transcript.pyannote[63].speaker SPEAKER_03
transcript.pyannote[63].start 168.30846875
transcript.pyannote[63].end 169.03409375
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 169.03409375
transcript.pyannote[64].end 170.99159375
transcript.pyannote[65].speaker SPEAKER_03
transcript.pyannote[65].start 172.05471875
transcript.pyannote[65].end 176.45909375
transcript.pyannote[66].speaker SPEAKER_03
transcript.pyannote[66].start 176.93159375
transcript.pyannote[66].end 179.27721875
transcript.pyannote[67].speaker SPEAKER_03
transcript.pyannote[67].start 180.88034375
transcript.pyannote[67].end 185.09909375
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 182.58471875
transcript.pyannote[68].end 186.88784375
transcript.pyannote[69].speaker SPEAKER_03
transcript.pyannote[69].start 186.17909375
transcript.pyannote[69].end 194.34659375
transcript.pyannote[70].speaker SPEAKER_03
transcript.pyannote[70].start 195.51096875
transcript.pyannote[70].end 198.07596875
transcript.pyannote[71].speaker SPEAKER_03
transcript.pyannote[71].start 198.22784375
transcript.pyannote[71].end 199.59471875
transcript.pyannote[72].speaker SPEAKER_03
transcript.pyannote[72].start 200.48909375
transcript.pyannote[72].end 201.28221875
transcript.pyannote[73].speaker SPEAKER_03
transcript.pyannote[73].start 201.83909375
transcript.pyannote[73].end 202.39596875
transcript.pyannote[74].speaker SPEAKER_03
transcript.pyannote[74].start 202.98659375
transcript.pyannote[74].end 204.43784375
transcript.pyannote[75].speaker SPEAKER_03
transcript.pyannote[75].start 204.89346875
transcript.pyannote[75].end 206.02409375
transcript.pyannote[76].speaker SPEAKER_03
transcript.pyannote[76].start 207.23909375
transcript.pyannote[76].end 207.86346875
transcript.pyannote[77].speaker SPEAKER_03
transcript.pyannote[77].start 207.98159375
transcript.pyannote[77].end 209.11221875
transcript.pyannote[78].speaker SPEAKER_03
transcript.pyannote[78].start 210.44534375
transcript.pyannote[78].end 213.04409375
transcript.pyannote[79].speaker SPEAKER_03
transcript.pyannote[79].start 213.68534375
transcript.pyannote[79].end 220.48596875
transcript.pyannote[80].speaker SPEAKER_03
transcript.pyannote[80].start 220.82346875
transcript.pyannote[80].end 225.09284375
transcript.pyannote[81].speaker SPEAKER_03
transcript.pyannote[81].start 225.81846875
transcript.pyannote[81].end 226.89846875
transcript.pyannote[82].speaker SPEAKER_03
transcript.pyannote[82].start 227.77596875
transcript.pyannote[82].end 230.93159375
transcript.pyannote[83].speaker SPEAKER_03
transcript.pyannote[83].start 231.35346875
transcript.pyannote[83].end 234.00284375
transcript.pyannote[84].speaker SPEAKER_03
transcript.pyannote[84].start 235.28534375
transcript.pyannote[84].end 237.51284375
transcript.pyannote[85].speaker SPEAKER_03
transcript.pyannote[85].start 238.52534375
transcript.pyannote[85].end 242.27159375
transcript.pyannote[86].speaker SPEAKER_03
transcript.pyannote[86].start 242.77784375
transcript.pyannote[86].end 244.92096875
transcript.pyannote[87].speaker SPEAKER_03
transcript.pyannote[87].start 245.25846875
transcript.pyannote[87].end 250.99596875
transcript.pyannote[88].speaker SPEAKER_03
transcript.pyannote[88].start 251.51909375
transcript.pyannote[88].end 261.55971875
transcript.pyannote[89].speaker SPEAKER_03
transcript.pyannote[89].start 261.79596875
transcript.pyannote[89].end 265.40721875
transcript.pyannote[90].speaker SPEAKER_03
transcript.pyannote[90].start 265.64346875
transcript.pyannote[90].end 269.08596875
transcript.pyannote[91].speaker SPEAKER_03
transcript.pyannote[91].start 269.38971875
transcript.pyannote[91].end 274.30034375
transcript.pyannote[92].speaker SPEAKER_03
transcript.pyannote[92].start 274.70534375
transcript.pyannote[92].end 279.02534375
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 279.02534375
transcript.pyannote[93].end 279.73409375
transcript.pyannote[94].speaker SPEAKER_03
transcript.pyannote[94].start 280.44284375
transcript.pyannote[94].end 280.45971875
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 280.45971875
transcript.pyannote[95].end 286.87221875
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 287.37846875
transcript.pyannote[96].end 295.96784375
transcript.pyannote[97].speaker SPEAKER_03
transcript.pyannote[97].start 291.86721875
transcript.pyannote[97].end 295.95096875
transcript.pyannote[98].speaker SPEAKER_03
transcript.pyannote[98].start 295.96784375
transcript.pyannote[98].end 296.00159375
transcript.pyannote[99].speaker SPEAKER_03
transcript.pyannote[99].start 296.32221875
transcript.pyannote[99].end 306.05909375
transcript.pyannote[100].speaker SPEAKER_03
transcript.pyannote[100].start 306.44721875
transcript.pyannote[100].end 312.16784375
transcript.pyannote[101].speaker SPEAKER_03
transcript.pyannote[101].start 312.28596875
transcript.pyannote[101].end 316.99409375
transcript.pyannote[102].speaker SPEAKER_03
transcript.pyannote[102].start 317.44971875
transcript.pyannote[102].end 318.02346875
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 318.02346875
transcript.pyannote[103].end 318.86721875
transcript.pyannote[104].speaker SPEAKER_03
transcript.pyannote[104].start 318.86721875
transcript.pyannote[104].end 318.88409375
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 319.39034375
transcript.pyannote[105].end 319.79534375
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 319.81221875
transcript.pyannote[106].end 321.98909375
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 322.32659375
transcript.pyannote[107].end 328.87409375
transcript.pyannote[108].speaker SPEAKER_03
transcript.pyannote[108].start 328.87409375
transcript.pyannote[108].end 328.90784375
transcript.pyannote[109].speaker SPEAKER_03
transcript.pyannote[109].start 329.59971875
transcript.pyannote[109].end 338.05409375
transcript.pyannote[110].speaker SPEAKER_03
transcript.pyannote[110].start 338.44221875
transcript.pyannote[110].end 340.48409375
transcript.pyannote[111].speaker SPEAKER_03
transcript.pyannote[111].start 340.77096875
transcript.pyannote[111].end 341.02409375
transcript.pyannote[112].speaker SPEAKER_03
transcript.pyannote[112].start 341.53034375
transcript.pyannote[112].end 346.10346875
transcript.pyannote[113].speaker SPEAKER_03
transcript.pyannote[113].start 346.57596875
transcript.pyannote[113].end 348.38159375
transcript.pyannote[114].speaker SPEAKER_03
transcript.pyannote[114].start 352.68471875
transcript.pyannote[114].end 374.18346875
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 364.64909375
transcript.pyannote[115].end 364.69971875
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 364.69971875
transcript.pyannote[116].end 364.85159375
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 371.90534375
transcript.pyannote[117].end 372.47909375
transcript.pyannote[118].speaker SPEAKER_03
transcript.pyannote[118].start 374.47034375
transcript.pyannote[118].end 382.75596875
transcript.pyannote[119].speaker SPEAKER_03
transcript.pyannote[119].start 383.07659375
transcript.pyannote[119].end 387.81846875
transcript.pyannote[120].speaker SPEAKER_03
transcript.pyannote[120].start 388.07159375
transcript.pyannote[120].end 408.55784375
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 408.55784375
transcript.pyannote[121].end 418.51409375
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 418.85159375
transcript.pyannote[122].end 420.65721875
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 420.91034375
transcript.pyannote[123].end 421.55159375
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 421.93971875
transcript.pyannote[124].end 444.97409375
transcript.pyannote[125].speaker SPEAKER_03
transcript.pyannote[125].start 441.53159375
transcript.pyannote[125].end 442.13909375
transcript.pyannote[126].speaker SPEAKER_03
transcript.pyannote[126].start 444.97409375
transcript.pyannote[126].end 454.35659375
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 447.65721875
transcript.pyannote[127].end 448.02846875
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 451.15034375
transcript.pyannote[128].end 451.36971875
transcript.pyannote[129].speaker SPEAKER_03
transcript.pyannote[129].start 454.66034375
transcript.pyannote[129].end 456.02721875
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 456.02721875
transcript.pyannote[130].end 456.24659375
transcript.pyannote[131].speaker SPEAKER_03
transcript.pyannote[131].start 456.24659375
transcript.pyannote[131].end 456.97221875
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 456.97221875
transcript.pyannote[132].end 465.64596875
transcript.pyannote[133].speaker SPEAKER_03
transcript.pyannote[133].start 457.02284375
transcript.pyannote[133].end 457.96784375
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 466.54034375
transcript.pyannote[134].end 483.51659375
transcript.pyannote[135].speaker SPEAKER_03
transcript.pyannote[135].start 481.54221875
transcript.pyannote[135].end 486.25034375
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 484.59659375
transcript.pyannote[136].end 486.06471875
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 486.25034375
transcript.pyannote[137].end 502.18034375
transcript.pyannote[138].speaker SPEAKER_03
transcript.pyannote[138].start 488.41034375
transcript.pyannote[138].end 489.40596875
transcript.pyannote[139].speaker SPEAKER_03
transcript.pyannote[139].start 499.29471875
transcript.pyannote[139].end 516.16971875
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 503.07471875
transcript.pyannote[140].end 506.17971875
transcript.pyannote[141].speaker SPEAKER_00
transcript.pyannote[141].start 507.93471875
transcript.pyannote[141].end 508.50846875
transcript.pyannote[142].speaker SPEAKER_03
transcript.pyannote[142].start 517.62096875
transcript.pyannote[142].end 521.97471875
transcript.pyannote[143].speaker SPEAKER_00
transcript.pyannote[143].start 517.73909375
transcript.pyannote[143].end 518.73471875
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 519.29159375
transcript.pyannote[144].end 519.62909375
transcript.pyannote[145].speaker SPEAKER_00
transcript.pyannote[145].start 520.25346875
transcript.pyannote[145].end 521.94096875
transcript.pyannote[146].speaker SPEAKER_00
transcript.pyannote[146].start 521.97471875
transcript.pyannote[146].end 522.36284375
transcript.pyannote[147].speaker SPEAKER_03
transcript.pyannote[147].start 522.26159375
transcript.pyannote[147].end 527.40846875
transcript.pyannote[148].speaker SPEAKER_00
transcript.pyannote[148].start 523.22346875
transcript.pyannote[148].end 524.25284375
transcript.pyannote[149].speaker SPEAKER_03
transcript.pyannote[149].start 527.52659375
transcript.pyannote[149].end 528.74159375
transcript.pyannote[150].speaker SPEAKER_03
transcript.pyannote[150].start 529.65284375
transcript.pyannote[150].end 530.27721875
transcript.pyannote[151].speaker SPEAKER_03
transcript.pyannote[151].start 535.57596875
transcript.pyannote[151].end 563.52096875
transcript.pyannote[152].speaker SPEAKER_02
transcript.pyannote[152].start 546.76409375
transcript.pyannote[152].end 547.03409375
transcript.pyannote[153].speaker SPEAKER_03
transcript.pyannote[153].start 564.07784375
transcript.pyannote[153].end 564.97221875
transcript.pyannote[154].speaker SPEAKER_02
transcript.pyannote[154].start 564.97221875
transcript.pyannote[154].end 565.14096875
transcript.pyannote[155].speaker SPEAKER_03
transcript.pyannote[155].start 565.36034375
transcript.pyannote[155].end 565.37721875
transcript.pyannote[156].speaker SPEAKER_02
transcript.pyannote[156].start 565.37721875
transcript.pyannote[156].end 604.79721875
transcript.pyannote[157].speaker SPEAKER_03
transcript.pyannote[157].start 590.65596875
transcript.pyannote[157].end 590.94284375
transcript.pyannote[158].speaker SPEAKER_03
transcript.pyannote[158].start 595.39784375
transcript.pyannote[158].end 595.81971875
transcript.pyannote[159].speaker SPEAKER_03
transcript.pyannote[159].start 602.06346875
transcript.pyannote[159].end 602.40096875
transcript.pyannote[160].speaker SPEAKER_00
transcript.pyannote[160].start 602.40096875
transcript.pyannote[160].end 602.41784375
transcript.pyannote[161].speaker SPEAKER_03
transcript.pyannote[161].start 603.46409375
transcript.pyannote[161].end 604.34159375
transcript.pyannote[162].speaker SPEAKER_03
transcript.pyannote[162].start 604.79721875
transcript.pyannote[162].end 604.88159375
transcript.pyannote[163].speaker SPEAKER_02
transcript.pyannote[163].start 604.88159375
transcript.pyannote[163].end 605.01659375
transcript.pyannote[164].speaker SPEAKER_03
transcript.pyannote[164].start 605.01659375
transcript.pyannote[164].end 605.03346875
transcript.pyannote[165].speaker SPEAKER_02
transcript.pyannote[165].start 605.21909375
transcript.pyannote[165].end 605.72534375
transcript.pyannote[166].speaker SPEAKER_03
transcript.pyannote[166].start 605.72534375
transcript.pyannote[166].end 606.97409375
transcript.pyannote[167].speaker SPEAKER_03
transcript.pyannote[167].start 608.13846875
transcript.pyannote[167].end 612.05346875
transcript.pyannote[168].speaker SPEAKER_03
transcript.pyannote[168].start 614.46659375
transcript.pyannote[168].end 614.90534375
transcript.pyannote[169].speaker SPEAKER_03
transcript.pyannote[169].start 617.26784375
transcript.pyannote[169].end 620.03534375
transcript.whisperx[0].start 14.524
transcript.whisperx[0].end 42.132
transcript.whisperx[0].text 謝謝主席這個對主席的尊重是我一向的原則所以上台資訊之前一定要先跟主席敬禮做任何的工作做任何職位素養很重要素養素養就是你有沒有適當的能力能夠勝任這個工作素養有三個部分的過程ASKattitude
transcript.whisperx[1].start 42.833
transcript.whisperx[1].end 65.775
transcript.whisperx[1].text Secure Knowledge為什麼A要放前面就attitude做什麼工作 你得做這個國會議員attitude已經重要要尊重質詢的這個官員要尊重主席所以我上台之前一定要跟主席好了敬個禮另外 我要遵守主席設定的時間
transcript.whisperx[2].start 67.136
transcript.whisperx[2].end 73.719
transcript.whisperx[2].text 所以我今天質詢時間就是6加2是不是請經濟部郭部長我不是說我的素養很好那基本上我是按照ASK我素養應該不會差但是我覺得這個本院的委員有一些的素養有待加強
transcript.whisperx[3].start 91.98
transcript.whisperx[3].end 120.363
transcript.whisperx[3].text 第一個問題啊大家都說什麼這個關稅的已經收到美國通知啊這個很多的訊息不時的搖曳就是說我們這個已經說到了就是不公佈 我要等大罷免這是不是假訊息 部長我認為是假訊息我不知道這個訊息從哪裡來的有很多在網路上說已經公佈了這個國安會都知道 總統也都知道就是要等大罷免不公佈然後甚至說直接表明是25%又有媒體人說是32%
transcript.whisperx[4].start 122.352
transcript.whisperx[4].end 143.396
transcript.whisperx[4].text 那如果是這樣子的話為什麼鄧麗君副院長還要今天去美國進行第四輪的談判呢第四輪談判針對起產地的問題跟美國不同的意見你到底要用這個印尼模式還是用越南模式是十九加N還是這個一口價這個之後還要繼續討論如果已經確定收到美國的關稅通知書為什麼鄧麗君副院長還要去美國
transcript.whisperx[5].start 148.16
transcript.whisperx[5].end 168.821
transcript.whisperx[5].text 所以這是謠言不公自破嘛很多人相信這些網路的假訊息有些是刻意的有些是亂編的有些是要破壞政府的威信破壞民眾對政府的觀感政治目的那個部長您的看法呢是 我認同委員的這樣的一個說法
transcript.whisperx[6].start 172.213
transcript.whisperx[6].end 199.053
transcript.whisperx[6].text 對啊 所以你做小訊息 你知道有這些小訊息你就要去做做澄清 去嚴正的做一些更正我們也不知道這些訊息是從哪裡來的這個為什麼他們會有這樣的一個網絡傳的到都是這個這個徵信團體或地區徵信團體都說 啊已經決定了我們收到了 就是為了這個罷免 所以不公布這個一定要嚴正的去駁斥所以這部分再請
transcript.whisperx[7].start 200.846
transcript.whisperx[7].end 224.76
transcript.whisperx[7].text 部長繼續努力啦 我想這個我是樂觀期待好的啊 一定在最後才公佈啦不要你先公佈 你如果好的先公佈在那邊啦大家有樣學一樣 哇 之前那15% 現在我25%所以 喝酒在岸底啦 我覺得我是有期待的
transcript.whisperx[8].start 226.005
transcript.whisperx[8].end 236.005
transcript.whisperx[8].text 另外就是說當然跟台電 今天這部分在主題台電的曾董事長也在就是說這個
transcript.whisperx[9].start 238.547
transcript.whisperx[9].end 260.499
transcript.whisperx[9].text 防災型的電纜滴下滑很重要 不用這次從台灣海峽 沿著台灣海峽上來所以這些過去的台灣路徑是很不尋常的 對不對所以如果我們提早規劃把這個電感能夠及時滴下滑 像我在切定就做了不少所以這次切定沒有太大的風災
transcript.whisperx[10].start 261.92
transcript.whisperx[10].end 268.026
transcript.whisperx[10].text 整個海線 到雲林 甚至到雲林以南這個時候海線的相關省道就應該儘速地籌措相關經費讓這個電纜地下化不然整個都停電了 這很嚴重的問題這要優先處理好嗎
transcript.whisperx[11].start 281.37
transcript.whisperx[11].end 292.984
transcript.whisperx[11].text 報告員謝謝您關心第一個事情我們會優先處理我也向您說明因為您那個選區其實我們有新達電廠猜它是重要的電源線出口所以我們對那個重要電源線出口其實都會強化
transcript.whisperx[12].start 296.628
transcript.whisperx[12].end 318.595
transcript.whisperx[12].text 但是你如果在台南、嘉義甚至雲林這些受風區啊你很難保證說這個台灣路徑怎麼走所以我覺得這些啊容易受到風災影響點溫點溫度整個停電可能不是這兩三天可能這一周以上所以這部分是不是加強熱網耐性把這個列為優先區啊漲化也要列入
transcript.whisperx[13].start 319.455
transcript.whisperx[13].end 344.41
transcript.whisperx[13].text 是沿海的部分我們會一定會特別那個彰化過去發生的是沿海就是有風沒有雨的狀況我們也後來有加強來改善對這不只是只有高雄台南還有這個西部沿海我覺得只有要加強這個電纜電感的這個韌性儘快的速度求說預算讓它這個地下化好謝謝董事長謝謝董事長跟部長我請這個農業部農業部陳部長
transcript.whisperx[14].start 353.311
transcript.whisperx[14].end 373.78
transcript.whisperx[14].text 部長上週我們到永安流浪口管理的問題部裡面也了解相關的管理問題必須要再強化這是要入法的可能性入法的話需要有一些共識需要跟這些相關同事做一些更多的討論跟溝通所以我覺得幾個方向
transcript.whisperx[15].start 374.58
transcript.whisperx[15].end 400.343
transcript.whisperx[15].text 包括加強事主的責任提升收容管理的能力強化動物保護另外賦予動保檢察員寵物業管理然後其他的修法重點這些我們都討論過所以我覺得是不是這些修法方向部裡面都已經了解了是不是針對這些禁止餵養的部分甚至相關的寵物管理這個部分
transcript.whisperx[16].start 400.843
transcript.whisperx[16].end 424.636
transcript.whisperx[16].text 是不是有可能在下一次趕快在下個會期把這個院版的這個動保法修正案能夠送來立法院好我跟委員說明現在動保法現在已經在行政院做一些審議那我們也跟上次跟委員報告大概下個會期會送進來那現在有兩個比較大的比較有爭議的議題就是就是所謂的禁止餵養還有動保警察
transcript.whisperx[17].start 425.316
transcript.whisperx[17].end 454.017
transcript.whisperx[17].text 那禁止餵養當初我們也希望說透過禁止餵養能夠減少就是遊盪犬的聚集但是有不同的團體有不同的立場所以這個部分可能還需溝通那另外動保警察也有他不同的所以我們現在就是比例上呢反對禁止餵養的這個比例高嗎這個就是雙方不同的團體大概差不多啦我覺得這個只要是做高風險就需要樂區的部分啦
transcript.whisperx[18].start 454.818
transcript.whisperx[18].end 481.058
transcript.whisperx[18].text 大家都希望說能夠禁止餵養就像委員說的我會去處理就是高風險的熱區一定要強制禁止餵養特別像永安我覺得讓人民在外出的時候他的居住生活的安全我覺得是最重要的你不能說因為禁止餵養流蕩捲一堆的時候讓我們的民眾外出都要拿個打狗棒我覺得政府該檢討
transcript.whisperx[19].start 481.938
transcript.whisperx[19].end 508.026
transcript.whisperx[19].text 政府要必須保持人民的生活安全散步運動都會受到國的攻擊那個是非常危險所以我現在就是說我們收集全台灣因為被遊蕩犬攻擊而受傷的這些案例那我們希望說透過這個案例再舉辦一些公聽會讓團體把這些共識趕快領取下個會期是不是能夠收起來對 我們朝這個目標來處理下個會期就是希望說今年年底能夠修法通過
transcript.whisperx[20].start 508.846
transcript.whisperx[20].end 528.723
transcript.whisperx[20].text 把禁止餵養能夠入法是然後你說的管理這個動物警察的部分也能夠入法這個比較有問題你們再想辦法好 我們再來協調一定要建立社會的共識是好 謝謝那最後一點時間請那個交內政部董事長董事長
transcript.whisperx[21].start 535.626
transcript.whisperx[21].end 564.847
transcript.whisperx[21].text 委員好市長這個防災室是防災室我們應該經過相關的推動到現在大概有4萬人希望年底要有10萬人那這是一個救災的能量防災的能量我是能夠有效的能夠運用所以我是期待說未來內政部能夠把這些防災室的人力做妥善的規劃有一些相關的工作的明確法源然後演練的機制這部分市長您的看法是
transcript.whisperx[22].start 565.427
transcript.whisperx[22].end 582.528
transcript.whisperx[22].text 好 那跟主席跟各位委員報告謝謝委員的垂詢事實上內政部防災室我們今年的目標是希望能夠達到10萬人有能夠防災室的執照所以我們從去年開始就積極在做訓練那今年也擴大到11個訓練目標那目前已經有5萬多人
transcript.whisperx[23].start 583.129
transcript.whisperx[23].end 611.904
transcript.whisperx[23].text 那我們防災室的訓練最主要就是要強化民眾對於災防的一些知識跟技能那麼也透過這樣的方式讓大家可以自救跟互救是不是可以請市長把詳細的你們規劃的期程跟規劃的工作內容 相關的法律是不是可以提供一些資料給我是 我們會把相關的資料我們就書面提供給委員做參考那我們已經增加了許多的好 因為時間一到好 謝謝我要這個顯示一下這個國務院基本的素養時間到一定要
transcript.whisperx[24].start 617.326
transcript.whisperx[24].end 619.349
transcript.whisperx[24].text 謝謝我們現在請林俊憲委員做詢問